• This record comes from PubMed

Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin

. 2019 May 16 ; 123 (19) : 4242-4250. [epub] 20190507

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

Microbial rhodopsins constitute a key protein family in optobiotechnological applications such as optogenetics and voltage imaging. Spectral tuning of rhodopsins into the deep-red and near-infrared spectral regions is of great demand in such applications because more bathochromic light into the near-infrared range penetrates deeper in living tissue. Recently, retinal analogues have been successfully used in ion transporting and fluorescent rhodopsins to achieve red-shifted absorption, activity, and emission properties. Understanding their photochemical mechanism is essential for further design of appropriate retinal analogues but is yet only poorly understood for most retinal analogue pigments. Here, we report the photoreaction dynamics of red-shifted analogue pigments of the proton pump proteorhodopsin (PR) containing A2 (all- trans-3,4-dehydroretinal), MOA2 (all- trans-3-methoxy-3,4-dehydroretinal), or DMAR (all- trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto- to submillisecond transient absorption spectroscopy. We found that the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510 nm light illumination, which is comparable to the native retinal (A1) in PR. On the other hand, the deprotonation of the A2 pigment Schiff base was observed with a dominant time constant of 67 μs, which is significantly slower than the A1 pigment. In the MOA2 pigment, no isomerization or photoproduct formation was detected upon 520 nm excitation, implying that all the excited molecules returned to the initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very slow excited state dynamics similar to the previously studied MMAR pigment, but only very little photoproduct was formed. The low efficiency of the photoproduct formation likely is the reason why DMAR analogue pigments of PR showed very weak proton pumping activity.

See more in PubMed

Ernst O. P.; Lodowski D. T.; Elstner M.; Hegemann P.; Brown L. S.; Kandori H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114, 126–163. 10.1021/cr4003769. PubMed DOI PMC

Grote M.; Engelhard M.; Hegemann P. Of Ion Pumps, Sensors and Channels - Perspectives on Microbial Rhodopsins between Science and History. Biochim. Biophys. Acta, Bioenerg. 2014, 1837, 533–545. 10.1016/j.bbabio.2013.08.006. PubMed DOI

Boyden E. S.; Zhang F.; Bamberg E.; Nagel G.; Deisseroth K. Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity. Nat. Neurosci. 2005, 8, 1263–1268. 10.1038/nn1525. PubMed DOI

Mohammad F.; Stewart J. C.; Ott S.; Chlebikova K.; Chua J. Y.; Koh T.-W.; Ho J.; Claridge-Chang A. Optogenetic Inhibition of Behavior with Anion Channelrhodopsins. Nat. Methods 2017, 14, 271–274. 10.1038/nmeth.4148. PubMed DOI

Kato H. E.; Inoue K.; Abe-Yoshizumi R.; Kato Y.; Ono H.; Konno M.; Hososhima S.; Ishizuka T.; Hoque M. R.; Kunitomo H.; et al. Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 2015, 521, 48–53. 10.1038/nature14322. PubMed DOI

Chow B. Y.; Han X.; Dobry A. S.; Qian X.; Chuong A. S.; Li M.; Henninger M. A.; Belfort G. M.; Lin Y.; Monahan P. E.; et al. High-Performance Genetically Targetable Optical Neural Silencing by Light-Driven Proton Pumps. Nature 2010, 463, 98–102. 10.1038/nature08652. PubMed DOI PMC

Kralj J. M.; Hochbaum D. R.; Douglass A. D.; Cohen A. E. Electrical Spiking in Escherichia Coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011, 333, 345–348. 10.1126/science.1204763. PubMed DOI

Kralj J. M.; Douglass A. D.; Hochbaum D. R.; MacLaurin D.; Cohen A. E. Optical Recording of Action Potentials in Mammalian Neurons Using a Microbial Rhodopsin. Nat. Methods 2012, 9, 90–95. 10.1038/nmeth.1782. PubMed DOI PMC

Hochbaum D. R.; Zhao Y.; Farhi S. L.; Klapoetke N.; Werley C. A.; Kapoor V.; Zou P.; Kralj J. M.; MacLaurin D.; Smedemark-Margulies N.; et al. All-Optical Electrophysiology in Mammalian Neurons Using Engineered Microbial Rhodopsins. Nat. Methods 2014, 11, 825–833. 10.1038/nmeth.3000. PubMed DOI PMC

Weissleder R.; Ntziachristos V. Shedding Light onto Live Molecular Targets. Nat. Med. 2003, 9, 123–128. 10.1038/nm0103-123. PubMed DOI

Sineshchekov O. A.; Govorunova E. G.; Wang J.; Spudich J. L. Enhancement of the Long-Wavelength Sensitivity of Optogenetic Microbial Rhodopsins by 3,4-Dehydroretinal. Biochemistry 2012, 51, 4499–4506. 10.1021/bi2018859. PubMed DOI PMC

Azimihashemi N.; Erbguth K.; Vogt A.; Riemensperger T.; Rauch E.; Woodmansee D.; Nagpal J.; Brauner M.; Sheves M.; Fiala A.; et al. Synthetic Retinal Analogues Modify the Spectral and Kinetic Characteristics of Microbial Rhodopsin Optogenetic Tools. Nat. Commun. 2014, 5, 5810.10.1038/ncomms6810. PubMed DOI

Ganapathy S.; Bécheau O.; Venselaar H.; Frölich S.; van der Steen J. B.; Chen Q.; Radwan S.; Lugtenburg J.; Hellingwerf K. J.; de Groot H. J. M.; et al. Modulation of Spectral Properties and Pump Activity of Proteorhodopsins by Retinal Analogues. Biochem. J. 2015, 467, 333–343. 10.1042/bj20141210. PubMed DOI

Ganapathy S.; Venselaar H.; Chen Q.; De Groot H. J. M.; Hellingwerf K. J.; De Grip W. J. Retinal-Based Proton Pumping in the Near Infrared. J. Am. Chem. Soc. 2017, 139, 2338–2344. 10.1021/jacs.6b11366. PubMed DOI PMC

Herwig L.; Rice A. J.; Bedbrook C. N.; Zhang R. K.; Lignell A.; Cahn J. K. B.; Renata H.; Dodani S. C.; Cho I.; Cai L.; et al. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chem. Biol. 2017, 24, 415–425. 10.1016/j.chembiol.2017.02.008. PubMed DOI PMC

Shen Y.-C.; Sasaki T.; Matsuyama T.; Yamashita T.; Shichida Y.; Okitsu T.; Yamano Y.; Wada A.; Ishizuka T.; Yawo H.; et al. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018, 57, 24.10.1021/acs.biochem.8b00583. PubMed DOI

Wald G. The Molecular Basis of Visual Excitation. Nature 1968, 219, 800–807. 10.1038/219800a0. PubMed DOI

Foster R. G.; Garcia-Fernandez J. M.; Provencio I.; DeGrip W. J. Opsin Localization and Chromophore Retinoids Identified within the Basal Brain of the Lizard Anolis Carolinensis. J. Comp. Physiol., A 1993, 172, 33–45. 10.1007/bf00214713. DOI

Jokela-Määttä M.; Pahlberg J.; Lindström M.; Zak P. P.; Porter M.; Ostrovsky M. A.; Cronin T. W.; Donner K. Visual Pigment Absorbance and Spectral Sensitivity of the Mysis Relicta Species Group (Crustacea, Mysida) in Different Light Environments. J. Comp. Physiol., A 2005, 191, 1087–1097. 10.1007/s00359-005-0039-8. PubMed DOI

Yizhar O.; Fenno L. E.; Davidson T. J.; Mogri M.; Deisseroth K. Optogenetics in Neural Systems. Neuron 2011, 71, 9–34. 10.1016/j.neuron.2011.06.004. PubMed DOI

Hontani Y.; Ganapathy S.; Frehan S.; Kloz M.; de Grip W. J.; Kennis J. T. M. Strong PH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J. Phys. Chem. Lett. 2018, 9, 6469–6474. 10.1021/acs.jpclett.8b02780. PubMed DOI PMC

Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/c6cp01464j. PubMed DOI

Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. M. The Photochemistry of Sodium Ion Pump Rhodopsin Observed by Watermarked Femto- to Submillisecond Stimulated Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–24736. 10.1039/c6cp05240a. PubMed DOI

Hontani Y.; Kloz M.; Polívka T.; Shukla M. K.; Sobotka R.; Kennis J. T. M. Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1788–1792. 10.1021/acs.jpclett.8b00663. PubMed DOI PMC

Hontani Y.; Marazzi M.; Stehfest K.; Mathes T.; Van Stokkum I. H. M.; Elstner M.; Hegemann P.; Kennis J. T. M. Reaction Dynamics of the Chimeric Channelrhodopsin. Sci. Rep. 2017, 7, 7217.10.1038/s41598-017-07363-w. PubMed DOI PMC

Ravensbergen J.; Abdi F. F.; Van Santen J. H.; Frese R. N.; Dam B.; Van De Krol R.; Kennis J. T. M. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 2014, 118, 27793–27800. 10.1021/jp509930s. DOI

Alexandre M. T. A.; Domratcheva T.; Bonetti C.; Van Wilderen L. J. G. W.; Van Grondelle R.; Groot M.-L.; Hellingwerf K. J.; Kennis J. T. M. Primary Reactions of the LOV2 Domain of Phototropin Studied with Ultrafast Mid-Infrared Spectroscopy and Quantum Chemistry. Biophys. J. 2009, 97, 227–237. 10.1016/j.bpj.2009.01.066. PubMed DOI PMC

Snellenburg J. J.; Laptenok S. P.; Seger R.; Mullen K. M.; van Stokkum I. H. M. Glotaran : A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Softw. 2012, 49, 1–22. 10.18637/jss.v049.i03. DOI

Van Stokkum I. H. M.; Larsen D. S.; Van Grondelle R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta, Bioenerg. 2004, 1657, 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI

Hontani Y.; Broser M.; Silapetere A.; Krause B. S.; Hegemann P.; Kennis J. T. M. The Femtosecond-to-Second Photochemistry of Red-Shifted Fast-Closing Anion Channelrhodopsin PsACR1. Phys. Chem. Chem. Phys. 2017, 19, 30402–30409. 10.1039/c7cp06414d. PubMed DOI

Kennis J. T.; Groot M.-L. Ultrafast Spectroscopy of Biological Photoreceptors. Curr. Opin. Struct. Biol. 2007, 17, 623–630. 10.1016/j.sbi.2007.09.006. PubMed DOI

Toh K. C.; Stojković E. A.; Van Stokkum I. H. M.; Moffat K.; Kennis J. T. M. Fluorescence Quantum Yield and Photochemistry of Bacteriophytochrome Constructs. Phys. Chem. Chem. Phys. 2011, 13, 11985–11997. 10.1039/c1cp00050k. PubMed DOI

Dioumaev A. K.; Brown L. S.; Shih J.; Spudich E. N.; Spudich J. L.; Lanyi J. K. Proton Transfers in the Photochemical Reaction Cycle of Proteorhodopsin†. Biochemistry 2002, 41, 5348–5358. 10.1021/bi025563x. PubMed DOI

Krebs R. A.; Dunmire D.; Partha R.; Braiman M. S. Resonance Raman Characterization of Proteorhodopsin’s Chromophore Environment. J. Phys. Chem. B 2003, 107, 7877–7883. 10.1021/jp034574c. DOI

Smith S. O.; Braiman M. S.; Myers A. B.; Pardoen J. A.; Courtin J. M. L.; Winkel C.; Lugtenburg J.; Mathies R. A. Vibrational Analysis of the All-Trans-Retinal Chromophore in Light-Adapted Bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109, 3108–3125. 10.1021/ja00244a038. DOI

Bergo V.; Amsden J. J.; Spudich E. N.; Spudich J. L.; Rothschild K. J. Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreaction†. Biochemistry 2004, 43, 9075–9083. 10.1021/bi0361968. PubMed DOI

Smith S. O.; Pardoen J. A.; Lugtenburg J.; Mathies R. A. Vibrational Analysis of the 13-Cis-Retinal Chromophore in Dark-Adapted Bacteriorhodopsin. J. Phys. Chem. 1987, 91, 804–819. 10.1021/j100288a011. DOI

Imasheva E. S.; Shimono K.; Balashov S. P.; Wang J. M.; Zadok U.; Sheves M.; Kamo N.; Lanyi J. K. Formation of a Long-Lived Photoproduct with a Deprotonated Schiff Base in Proteorhodopsin, and Its Enhancement by Mutation of Asp227†. Biochemistry 2005, 44, 10828–10838. 10.1021/bi050438h. PubMed DOI

Pfleger N.; Lorch M.; Woerner A. C.; Shastri S.; Glaubitz C. Characterisation of Schiff Base and Chromophore in Green Proteorhodopsin by Solid-State NMR. J. Biomol. NMR 2008, 40, 15–21. 10.1007/s10858-007-9203-5. PubMed DOI

Doukas A. G.; Aton B.; Callender R. H.; Ebrey T. G. Resonance Raman Studies of Bovine Metarhodopsin I and Metarhodopsin II. Biochemistry 1978, 17, 2430–2435. 10.1021/bi00605a028. PubMed DOI

Ogren J. I.; Mamaev S.; Russano D.; Li H.; Spudich J. L.; Rothschild K. J. Retinal Chromophore Structure and Schiff Base Interactions in Red-Shifted Channelrhodopsin-1 from Chlamydomonas Augustae. Biochemistry 2014, 53, 3961–3970. 10.1021/bi500445c. PubMed DOI PMC

Kajimoto K.; Kikukawa T.; Nakashima H.; Yamaryo H.; Saito Y.; Fujisawa T.; Demura M.; Unno M. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter Alkaliphilus. J. Phys. Chem. B 2017, 121, 4431–4437. 10.1021/acs.jpcb.7b02421. PubMed DOI

Mei G.; Mamaeva N.; Ganapathy S.; Wang P.; DeGrip W. J.; Rothschild K. J. Raman Spectroscopy of a near Infrared Absorbing Proteorhodopsin: Similarities to the Bacteriorhodopsin O Photointermediate. PLoS One 2018, 13, e020950610.1371/journal.pone.0209506. PubMed DOI PMC

Lenz M. O.; Huber R.; Schmidt B.; Gilch P.; Kalmbach R.; Engelhard M.; Wachtveitl J. First Steps of Retinal Photoisomerization in Proteorhodopsin. Biophys. J. 2006, 91, 255–262. 10.1529/biophysj.105.074690. PubMed DOI PMC

Mehler M.; Scholz F.; Ullrich S. J.; Mao J.; Braun M.; Brown L. J.; Brown R. C. D.; Fiedler S. A.; Becker-Baldus J.; Wachtveitl J.; et al. The EF Loop in Green Proteorhodopsin Affects Conformation and Photocycle Dynamics. Biophys. J. 2013, 105, 385–397. 10.1016/j.bpj.2013.06.014. PubMed DOI PMC

Verhoefen M.-K.; Bamann C.; Blöcher R.; Förster U.; Bamberg E.; Wachtveitl J. The Photocycle of Channelrhodopsin-2: Ultrafast Reaction Dynamics and Subsequent Reaction Steps. ChemPhysChem 2010, 11, 3113–3122. 10.1002/cphc.201000181. PubMed DOI

Scholz F.; Bamberg E.; Bamann C.; Wachtveitl J. Tuning the Primary Reaction of Channelrhodopsin-2 by Imidazole, PH, and Site-Specific Mutations. Biophys. J. 2012, 102, 2649–2657. 10.1016/j.bpj.2012.04.034. PubMed DOI PMC

Huber R.; Köhler T.; Lenz M. O.; Bamberg E.; Kalmbach R.; Engelhard M.; Wachtveitl J. pH-Dependent Photoisomerization of Retinal in Proteorhodopsin†. Biochemistry 2005, 44, 1800–1806. 10.1021/bi048318h. PubMed DOI

Rupenyan A.; Van Stokkum I. H. M.; Arents J. C.; Van Grondelle R.; Hellingwerf K. J.; Groot M. L. Reaction Pathways of Photoexcited Retinal in Proteorhodopsin Studied by Pump–Dump–Probe Spectroscopy. J. Phys. Chem. B 2009, 113, 16251–16256. 10.1021/jp9065289. PubMed DOI

Köhler T.; Weber I.; Glaubitz C.; Wachtveitl J. Proteorhodopsin Photocycle Kinetics Between PH 5 and PH 9. Photochem. Photobiol. 2017, 93, 762–771. 10.1111/php.12753. PubMed DOI

Mathies R.; Brito Cruz C.; Pollard W.; Shank C. Direct Observation of the Femtosecond Excited-State Cis-Trans Isomerization in Bacteriorhodopsin. Science 1988, 240, 777–779. 10.1126/science.3363359. PubMed DOI

Kandori H.; Yoshihara K.; Tomioka H.; Sasabe H. Primary Photochemical Events in Halorhodopsin Studied by Subpicosecond Time-Resolved Spectroscopy. J. Phys. Chem. 1992, 96, 6066–6071. 10.1021/j100193a076. DOI

Tahara S.; Takeuchi S.; Abe-Yoshizumi R.; Inoue K.; Ohtani H.; Kandori H.; Tahara T. Ultrafast Photoreaction Dynamics of a Light-Driven Sodium-Ion-Pumping Retinal Protein from Krokinobacter Eikastus Revealed by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. Lett. 2015, 6, 4481–4486. 10.1021/acs.jpclett.5b01994. PubMed DOI

Shibata M.; Yoshitsugu M.; Mizuide N.; Ihara K.; Kandori H. Halide Binding by the D212N Mutant of Bacteriorhodopsin Affects Hydrogen Bonding of Water in the Active Site†. Biochemistry 2007, 46, 7525–7535. 10.1021/bi7004224. PubMed DOI

Váró G.; Brown L. S.; Lakatos M.; Lanyi J. K. Characterization of the Photochemical Reaction Cycle of Proteorhodopsin. Biophys. J. 2003, 84, 1202–1207. 10.1016/s0006-3495(03)74934-0. PubMed DOI PMC

Bruun S.; Stoeppler D.; Keidel A.; Kuhlmann U.; Luck M.; Diehl A.; Geiger M.-A.; Woodmansee D.; Trauner D.; Hegemann P.; et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the All-Trans and 13-Cis Retinal Isomers. Biochemistry 2015, 54, 5389–5400. 10.1021/acs.biochem.5b00597. PubMed DOI

Ganapathy S.; Kratz S.; Chen Q.; Hellingwerf K. J.; de Groot H. J. M.; Rothschild K. J.; de Grip W. J. Red-Shifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem. Photobiol. 2019, 10.1111/php.13093. PubMed DOI PMC

Manathunga M.; Yang X.; Olivucci M. Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all-trans Chromophore Analogues. J. Phys. Chem. Lett. 2018, 9, 6350–6355. 10.1021/acs.jpclett.8b02550. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...