Photoreaction Dynamics of Red-Shifting Retinal Analogues Reconstituted in Proteorhodopsin
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
30998011
PubMed Central
PMC6526469
DOI
10.1021/acs.jpcb.9b01136
Knihovny.cz E-resources
- MeSH
- Retinaldehyde analogs & derivatives radiation effects MeSH
- Rhodopsins, Microbial chemistry radiation effects MeSH
- Light MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- proteorhodopsin MeSH Browser
- Retinaldehyde MeSH
- Rhodopsins, Microbial MeSH
Microbial rhodopsins constitute a key protein family in optobiotechnological applications such as optogenetics and voltage imaging. Spectral tuning of rhodopsins into the deep-red and near-infrared spectral regions is of great demand in such applications because more bathochromic light into the near-infrared range penetrates deeper in living tissue. Recently, retinal analogues have been successfully used in ion transporting and fluorescent rhodopsins to achieve red-shifted absorption, activity, and emission properties. Understanding their photochemical mechanism is essential for further design of appropriate retinal analogues but is yet only poorly understood for most retinal analogue pigments. Here, we report the photoreaction dynamics of red-shifted analogue pigments of the proton pump proteorhodopsin (PR) containing A2 (all- trans-3,4-dehydroretinal), MOA2 (all- trans-3-methoxy-3,4-dehydroretinal), or DMAR (all- trans-3-dimethylamino-16-nor-1,2,3,4-didehydroretinal), utilizing femto- to submillisecond transient absorption spectroscopy. We found that the A2 analogue photoisomerizes in 1.4, 3.0, and/or 13 ps upon 510 nm light illumination, which is comparable to the native retinal (A1) in PR. On the other hand, the deprotonation of the A2 pigment Schiff base was observed with a dominant time constant of 67 μs, which is significantly slower than the A1 pigment. In the MOA2 pigment, no isomerization or photoproduct formation was detected upon 520 nm excitation, implying that all the excited molecules returned to the initial ground state in 2.0 and 4.2 ps. The DMAR pigment showed very slow excited state dynamics similar to the previously studied MMAR pigment, but only very little photoproduct was formed. The low efficiency of the photoproduct formation likely is the reason why DMAR analogue pigments of PR showed very weak proton pumping activity.
Department of Biochemistry Radboud University Medical Center Nijmegen 6500 HB The Netherlands
Department of Physics and Astronomy Vrije Universiteit Amsterdam 1081 HV The Netherlands
ELI Beamlines Institute of Physics Na Slovance 2 Praha 8 182 21 Czech Republic
See more in PubMed
Ernst O. P.; Lodowski D. T.; Elstner M.; Hegemann P.; Brown L. S.; Kandori H. Microbial and Animal Rhodopsins: Structures, Functions, and Molecular Mechanisms. Chem. Rev. 2014, 114, 126–163. 10.1021/cr4003769. PubMed DOI PMC
Grote M.; Engelhard M.; Hegemann P. Of Ion Pumps, Sensors and Channels - Perspectives on Microbial Rhodopsins between Science and History. Biochim. Biophys. Acta, Bioenerg. 2014, 1837, 533–545. 10.1016/j.bbabio.2013.08.006. PubMed DOI
Boyden E. S.; Zhang F.; Bamberg E.; Nagel G.; Deisseroth K. Millisecond-Timescale, Genetically Targeted Optical Control of Neural Activity. Nat. Neurosci. 2005, 8, 1263–1268. 10.1038/nn1525. PubMed DOI
Mohammad F.; Stewart J. C.; Ott S.; Chlebikova K.; Chua J. Y.; Koh T.-W.; Ho J.; Claridge-Chang A. Optogenetic Inhibition of Behavior with Anion Channelrhodopsins. Nat. Methods 2017, 14, 271–274. 10.1038/nmeth.4148. PubMed DOI
Kato H. E.; Inoue K.; Abe-Yoshizumi R.; Kato Y.; Ono H.; Konno M.; Hososhima S.; Ishizuka T.; Hoque M. R.; Kunitomo H.; et al. Structural basis for Na+ transport mechanism by a light-driven Na+ pump. Nature 2015, 521, 48–53. 10.1038/nature14322. PubMed DOI
Chow B. Y.; Han X.; Dobry A. S.; Qian X.; Chuong A. S.; Li M.; Henninger M. A.; Belfort G. M.; Lin Y.; Monahan P. E.; et al. High-Performance Genetically Targetable Optical Neural Silencing by Light-Driven Proton Pumps. Nature 2010, 463, 98–102. 10.1038/nature08652. PubMed DOI PMC
Kralj J. M.; Hochbaum D. R.; Douglass A. D.; Cohen A. E. Electrical Spiking in Escherichia Coli Probed with a Fluorescent Voltage-Indicating Protein. Science 2011, 333, 345–348. 10.1126/science.1204763. PubMed DOI
Kralj J. M.; Douglass A. D.; Hochbaum D. R.; MacLaurin D.; Cohen A. E. Optical Recording of Action Potentials in Mammalian Neurons Using a Microbial Rhodopsin. Nat. Methods 2012, 9, 90–95. 10.1038/nmeth.1782. PubMed DOI PMC
Hochbaum D. R.; Zhao Y.; Farhi S. L.; Klapoetke N.; Werley C. A.; Kapoor V.; Zou P.; Kralj J. M.; MacLaurin D.; Smedemark-Margulies N.; et al. All-Optical Electrophysiology in Mammalian Neurons Using Engineered Microbial Rhodopsins. Nat. Methods 2014, 11, 825–833. 10.1038/nmeth.3000. PubMed DOI PMC
Weissleder R.; Ntziachristos V. Shedding Light onto Live Molecular Targets. Nat. Med. 2003, 9, 123–128. 10.1038/nm0103-123. PubMed DOI
Sineshchekov O. A.; Govorunova E. G.; Wang J.; Spudich J. L. Enhancement of the Long-Wavelength Sensitivity of Optogenetic Microbial Rhodopsins by 3,4-Dehydroretinal. Biochemistry 2012, 51, 4499–4506. 10.1021/bi2018859. PubMed DOI PMC
Azimihashemi N.; Erbguth K.; Vogt A.; Riemensperger T.; Rauch E.; Woodmansee D.; Nagpal J.; Brauner M.; Sheves M.; Fiala A.; et al. Synthetic Retinal Analogues Modify the Spectral and Kinetic Characteristics of Microbial Rhodopsin Optogenetic Tools. Nat. Commun. 2014, 5, 5810.10.1038/ncomms6810. PubMed DOI
Ganapathy S.; Bécheau O.; Venselaar H.; Frölich S.; van der Steen J. B.; Chen Q.; Radwan S.; Lugtenburg J.; Hellingwerf K. J.; de Groot H. J. M.; et al. Modulation of Spectral Properties and Pump Activity of Proteorhodopsins by Retinal Analogues. Biochem. J. 2015, 467, 333–343. 10.1042/bj20141210. PubMed DOI
Ganapathy S.; Venselaar H.; Chen Q.; De Groot H. J. M.; Hellingwerf K. J.; De Grip W. J. Retinal-Based Proton Pumping in the Near Infrared. J. Am. Chem. Soc. 2017, 139, 2338–2344. 10.1021/jacs.6b11366. PubMed DOI PMC
Herwig L.; Rice A. J.; Bedbrook C. N.; Zhang R. K.; Lignell A.; Cahn J. K. B.; Renata H.; Dodani S. C.; Cho I.; Cai L.; et al. Directed Evolution of a Bright Near-Infrared Fluorescent Rhodopsin Using a Synthetic Chromophore. Cell Chem. Biol. 2017, 24, 415–425. 10.1016/j.chembiol.2017.02.008. PubMed DOI PMC
Shen Y.-C.; Sasaki T.; Matsuyama T.; Yamashita T.; Shichida Y.; Okitsu T.; Yamano Y.; Wada A.; Ishizuka T.; Yawo H.; et al. Red-Tuning of the Channelrhodopsin Spectrum Using Long Conjugated Retinal Analogues. Biochemistry 2018, 57, 24.10.1021/acs.biochem.8b00583. PubMed DOI
Wald G. The Molecular Basis of Visual Excitation. Nature 1968, 219, 800–807. 10.1038/219800a0. PubMed DOI
Foster R. G.; Garcia-Fernandez J. M.; Provencio I.; DeGrip W. J. Opsin Localization and Chromophore Retinoids Identified within the Basal Brain of the Lizard Anolis Carolinensis. J. Comp. Physiol., A 1993, 172, 33–45. 10.1007/bf00214713. DOI
Jokela-Määttä M.; Pahlberg J.; Lindström M.; Zak P. P.; Porter M.; Ostrovsky M. A.; Cronin T. W.; Donner K. Visual Pigment Absorbance and Spectral Sensitivity of the Mysis Relicta Species Group (Crustacea, Mysida) in Different Light Environments. J. Comp. Physiol., A 2005, 191, 1087–1097. 10.1007/s00359-005-0039-8. PubMed DOI
Yizhar O.; Fenno L. E.; Davidson T. J.; Mogri M.; Deisseroth K. Optogenetics in Neural Systems. Neuron 2011, 71, 9–34. 10.1016/j.neuron.2011.06.004. PubMed DOI
Hontani Y.; Ganapathy S.; Frehan S.; Kloz M.; de Grip W. J.; Kennis J. T. M. Strong PH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue. J. Phys. Chem. Lett. 2018, 9, 6469–6474. 10.1021/acs.jpclett.8b02780. PubMed DOI PMC
Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/c6cp01464j. PubMed DOI
Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. M. The Photochemistry of Sodium Ion Pump Rhodopsin Observed by Watermarked Femto- to Submillisecond Stimulated Raman Spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–24736. 10.1039/c6cp05240a. PubMed DOI
Hontani Y.; Kloz M.; Polívka T.; Shukla M. K.; Sobotka R.; Kennis J. T. M. Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1788–1792. 10.1021/acs.jpclett.8b00663. PubMed DOI PMC
Hontani Y.; Marazzi M.; Stehfest K.; Mathes T.; Van Stokkum I. H. M.; Elstner M.; Hegemann P.; Kennis J. T. M. Reaction Dynamics of the Chimeric Channelrhodopsin. Sci. Rep. 2017, 7, 7217.10.1038/s41598-017-07363-w. PubMed DOI PMC
Ravensbergen J.; Abdi F. F.; Van Santen J. H.; Frese R. N.; Dam B.; Van De Krol R.; Kennis J. T. M. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 2014, 118, 27793–27800. 10.1021/jp509930s. DOI
Alexandre M. T. A.; Domratcheva T.; Bonetti C.; Van Wilderen L. J. G. W.; Van Grondelle R.; Groot M.-L.; Hellingwerf K. J.; Kennis J. T. M. Primary Reactions of the LOV2 Domain of Phototropin Studied with Ultrafast Mid-Infrared Spectroscopy and Quantum Chemistry. Biophys. J. 2009, 97, 227–237. 10.1016/j.bpj.2009.01.066. PubMed DOI PMC
Snellenburg J. J.; Laptenok S. P.; Seger R.; Mullen K. M.; van Stokkum I. H. M. Glotaran : A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Softw. 2012, 49, 1–22. 10.18637/jss.v049.i03. DOI
Van Stokkum I. H. M.; Larsen D. S.; Van Grondelle R. Global and Target Analysis of Time-Resolved Spectra. Biochim. Biophys. Acta, Bioenerg. 2004, 1657, 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI
Hontani Y.; Broser M.; Silapetere A.; Krause B. S.; Hegemann P.; Kennis J. T. M. The Femtosecond-to-Second Photochemistry of Red-Shifted Fast-Closing Anion Channelrhodopsin PsACR1. Phys. Chem. Chem. Phys. 2017, 19, 30402–30409. 10.1039/c7cp06414d. PubMed DOI
Kennis J. T.; Groot M.-L. Ultrafast Spectroscopy of Biological Photoreceptors. Curr. Opin. Struct. Biol. 2007, 17, 623–630. 10.1016/j.sbi.2007.09.006. PubMed DOI
Toh K. C.; Stojković E. A.; Van Stokkum I. H. M.; Moffat K.; Kennis J. T. M. Fluorescence Quantum Yield and Photochemistry of Bacteriophytochrome Constructs. Phys. Chem. Chem. Phys. 2011, 13, 11985–11997. 10.1039/c1cp00050k. PubMed DOI
Dioumaev A. K.; Brown L. S.; Shih J.; Spudich E. N.; Spudich J. L.; Lanyi J. K. Proton Transfers in the Photochemical Reaction Cycle of Proteorhodopsin†. Biochemistry 2002, 41, 5348–5358. 10.1021/bi025563x. PubMed DOI
Krebs R. A.; Dunmire D.; Partha R.; Braiman M. S. Resonance Raman Characterization of Proteorhodopsin’s Chromophore Environment. J. Phys. Chem. B 2003, 107, 7877–7883. 10.1021/jp034574c. DOI
Smith S. O.; Braiman M. S.; Myers A. B.; Pardoen J. A.; Courtin J. M. L.; Winkel C.; Lugtenburg J.; Mathies R. A. Vibrational Analysis of the All-Trans-Retinal Chromophore in Light-Adapted Bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109, 3108–3125. 10.1021/ja00244a038. DOI
Bergo V.; Amsden J. J.; Spudich E. N.; Spudich J. L.; Rothschild K. J. Structural Changes in the Photoactive Site of Proteorhodopsin during the Primary Photoreaction†. Biochemistry 2004, 43, 9075–9083. 10.1021/bi0361968. PubMed DOI
Smith S. O.; Pardoen J. A.; Lugtenburg J.; Mathies R. A. Vibrational Analysis of the 13-Cis-Retinal Chromophore in Dark-Adapted Bacteriorhodopsin. J. Phys. Chem. 1987, 91, 804–819. 10.1021/j100288a011. DOI
Imasheva E. S.; Shimono K.; Balashov S. P.; Wang J. M.; Zadok U.; Sheves M.; Kamo N.; Lanyi J. K. Formation of a Long-Lived Photoproduct with a Deprotonated Schiff Base in Proteorhodopsin, and Its Enhancement by Mutation of Asp227†. Biochemistry 2005, 44, 10828–10838. 10.1021/bi050438h. PubMed DOI
Pfleger N.; Lorch M.; Woerner A. C.; Shastri S.; Glaubitz C. Characterisation of Schiff Base and Chromophore in Green Proteorhodopsin by Solid-State NMR. J. Biomol. NMR 2008, 40, 15–21. 10.1007/s10858-007-9203-5. PubMed DOI
Doukas A. G.; Aton B.; Callender R. H.; Ebrey T. G. Resonance Raman Studies of Bovine Metarhodopsin I and Metarhodopsin II. Biochemistry 1978, 17, 2430–2435. 10.1021/bi00605a028. PubMed DOI
Ogren J. I.; Mamaev S.; Russano D.; Li H.; Spudich J. L.; Rothschild K. J. Retinal Chromophore Structure and Schiff Base Interactions in Red-Shifted Channelrhodopsin-1 from Chlamydomonas Augustae. Biochemistry 2014, 53, 3961–3970. 10.1021/bi500445c. PubMed DOI PMC
Kajimoto K.; Kikukawa T.; Nakashima H.; Yamaryo H.; Saito Y.; Fujisawa T.; Demura M.; Unno M. Transient Resonance Raman Spectroscopy of a Light-Driven Sodium-Ion-Pump Rhodopsin from Indibacter Alkaliphilus. J. Phys. Chem. B 2017, 121, 4431–4437. 10.1021/acs.jpcb.7b02421. PubMed DOI
Mei G.; Mamaeva N.; Ganapathy S.; Wang P.; DeGrip W. J.; Rothschild K. J. Raman Spectroscopy of a near Infrared Absorbing Proteorhodopsin: Similarities to the Bacteriorhodopsin O Photointermediate. PLoS One 2018, 13, e020950610.1371/journal.pone.0209506. PubMed DOI PMC
Lenz M. O.; Huber R.; Schmidt B.; Gilch P.; Kalmbach R.; Engelhard M.; Wachtveitl J. First Steps of Retinal Photoisomerization in Proteorhodopsin. Biophys. J. 2006, 91, 255–262. 10.1529/biophysj.105.074690. PubMed DOI PMC
Mehler M.; Scholz F.; Ullrich S. J.; Mao J.; Braun M.; Brown L. J.; Brown R. C. D.; Fiedler S. A.; Becker-Baldus J.; Wachtveitl J.; et al. The EF Loop in Green Proteorhodopsin Affects Conformation and Photocycle Dynamics. Biophys. J. 2013, 105, 385–397. 10.1016/j.bpj.2013.06.014. PubMed DOI PMC
Verhoefen M.-K.; Bamann C.; Blöcher R.; Förster U.; Bamberg E.; Wachtveitl J. The Photocycle of Channelrhodopsin-2: Ultrafast Reaction Dynamics and Subsequent Reaction Steps. ChemPhysChem 2010, 11, 3113–3122. 10.1002/cphc.201000181. PubMed DOI
Scholz F.; Bamberg E.; Bamann C.; Wachtveitl J. Tuning the Primary Reaction of Channelrhodopsin-2 by Imidazole, PH, and Site-Specific Mutations. Biophys. J. 2012, 102, 2649–2657. 10.1016/j.bpj.2012.04.034. PubMed DOI PMC
Huber R.; Köhler T.; Lenz M. O.; Bamberg E.; Kalmbach R.; Engelhard M.; Wachtveitl J. pH-Dependent Photoisomerization of Retinal in Proteorhodopsin†. Biochemistry 2005, 44, 1800–1806. 10.1021/bi048318h. PubMed DOI
Rupenyan A.; Van Stokkum I. H. M.; Arents J. C.; Van Grondelle R.; Hellingwerf K. J.; Groot M. L. Reaction Pathways of Photoexcited Retinal in Proteorhodopsin Studied by Pump–Dump–Probe Spectroscopy. J. Phys. Chem. B 2009, 113, 16251–16256. 10.1021/jp9065289. PubMed DOI
Köhler T.; Weber I.; Glaubitz C.; Wachtveitl J. Proteorhodopsin Photocycle Kinetics Between PH 5 and PH 9. Photochem. Photobiol. 2017, 93, 762–771. 10.1111/php.12753. PubMed DOI
Mathies R.; Brito Cruz C.; Pollard W.; Shank C. Direct Observation of the Femtosecond Excited-State Cis-Trans Isomerization in Bacteriorhodopsin. Science 1988, 240, 777–779. 10.1126/science.3363359. PubMed DOI
Kandori H.; Yoshihara K.; Tomioka H.; Sasabe H. Primary Photochemical Events in Halorhodopsin Studied by Subpicosecond Time-Resolved Spectroscopy. J. Phys. Chem. 1992, 96, 6066–6071. 10.1021/j100193a076. DOI
Tahara S.; Takeuchi S.; Abe-Yoshizumi R.; Inoue K.; Ohtani H.; Kandori H.; Tahara T. Ultrafast Photoreaction Dynamics of a Light-Driven Sodium-Ion-Pumping Retinal Protein from Krokinobacter Eikastus Revealed by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. Lett. 2015, 6, 4481–4486. 10.1021/acs.jpclett.5b01994. PubMed DOI
Shibata M.; Yoshitsugu M.; Mizuide N.; Ihara K.; Kandori H. Halide Binding by the D212N Mutant of Bacteriorhodopsin Affects Hydrogen Bonding of Water in the Active Site†. Biochemistry 2007, 46, 7525–7535. 10.1021/bi7004224. PubMed DOI
Váró G.; Brown L. S.; Lakatos M.; Lanyi J. K. Characterization of the Photochemical Reaction Cycle of Proteorhodopsin. Biophys. J. 2003, 84, 1202–1207. 10.1016/s0006-3495(03)74934-0. PubMed DOI PMC
Bruun S.; Stoeppler D.; Keidel A.; Kuhlmann U.; Luck M.; Diehl A.; Geiger M.-A.; Woodmansee D.; Trauner D.; Hegemann P.; et al. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the All-Trans and 13-Cis Retinal Isomers. Biochemistry 2015, 54, 5389–5400. 10.1021/acs.biochem.5b00597. PubMed DOI
Ganapathy S.; Kratz S.; Chen Q.; Hellingwerf K. J.; de Groot H. J. M.; Rothschild K. J.; de Grip W. J. Red-Shifted and Near-infrared Active Analog Pigments Based upon Archaerhodopsin-3. Photochem. Photobiol. 2019, 10.1111/php.13093. PubMed DOI PMC
Manathunga M.; Yang X.; Olivucci M. Electronic State Mixing Controls the Photoreactivity of a Rhodopsin with all-trans Chromophore Analogues. J. Phys. Chem. Lett. 2018, 9, 6350–6355. 10.1021/acs.jpclett.8b02550. PubMed DOI PMC