• This record comes from PubMed

Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis

. 2020 Aug 21 ; 3 (1) : 465. [epub] 20200821

Language English Country Great Britain, England Media electronic

Document type Journal Article, Meta-Analysis, Research Support, Non-U.S. Gov't

Links

PubMed 32826979
PubMed Central PMC7442816
DOI 10.1038/s42003-020-01185-9
PII: 10.1038/s42003-020-01185-9
Knihovny.cz E-resources

Sarcoidosis is a genetically complex systemic inflammatory disease that affects multiple organs. We present a GWAS of a Japanese cohort (700 sarcoidosis cases and 886 controls) with replication in independent samples from Japan (931 cases and 1,042 controls) and the Czech Republic (265 cases and 264 controls). We identified three loci outside the HLA complex, CCL24, STYXL1-SRRM3, and C1orf141-IL23R, which showed genome-wide significant associations (P < 5.0 × 10-8) with sarcoidosis; CCL24 and STYXL1-SRRM3 were novel. The disease-risk alleles in CCL24 and IL23R were associated with reduced CCL24 and IL23R expression, respectively. The disease-risk allele in STYXL1-SRRM3 was associated with elevated POR expression. These results suggest that genetic control of CCL24, POR, and IL23R expression contribute to the pathogenesis of sarcoidosis. We speculate that the CCL24 risk allele might be involved in a polarized Th1 response in sarcoidosis, and that POR and IL23R risk alleles may lead to diminished host defense against sarcoidosis pathogens.

2nd Division Department of Internal Medicine Hamamatsu University School of Medicine 1 20 1 Handayama Hamamatsu Shizuoka 431 3192 Japan

Department of Immunology Faculty of Medicine and Dentistry Palacky University 1 P Pavlova Str 6 77520 Olomouc Czech Republic

Department of Internal Medicine National Hospital Organization Nishibeppu National Hospital 4548 Oaza Tsurumi Beppu Oita 874 0840 Japan

Department of Medical Biochemistry Kurume University School of Medicine 67 Asahimachi Kurume Fukuoka 830 0011 Japan

Department of Medical Science and Cardiorenal Medicine Yokohama City University School of Medicine 3 9 Fukuura Kanazawa ku Yokohama Kanagawa 236 0004 Japan

Department of Molecular Life Science Division of Molecular Medical Science and Molecular Medicine Tokai University School of Medicine 143 Shimokasuya Isehara Kanagawa 259 1193 Japan

Department of Ophthalmology and Visual Science Tokyo Medical and Dental University Graduate School of Medicine 1 5 45 Yushima Bunkyo ku Tokyo 113 8519 Japan

Department of Ophthalmology and Visual Science Yokohama City University Graduate School of Medicine 3 9 Fukuura Kanazawa ku Yokohama Kanagawa 236 0004 Japan

Department of Ophthalmology Faculty of Medicine and Graduate School of Medicine Hokkaido University N15 W7 Kita ku Sapporo Hokkaido 060 8638 Japan

Department of Ophthalmology Health Sciences University of Hokkaido Ainosato 2 5 Kita ku Sapporo Hokkaido 002 8072 Japan

Department of Ophthalmology Japan Community Health care Organization Osaka Hospital 4 2 78 Fukushima Fukushima ku Osaka 553 0003 Japan

Department of Ophthalmology Keio University School of Medicine 35 Shinanomachi Shinjuku ku Tokyo 160 0016 Japan

Department of Ophthalmology Kitasato Institute Hospital 5 9 1 Shirokane Minato ku Tokyo 108 8642 Japan

Department of Ophthalmology Kono Medical Clinic 3 30 28 Soshigaya Setagaya ku Tokyo 157 0072 Japan

Department of Ophthalmology National Defense Medical College 3 2 Namiki Tokorozawa Saitama 359 8513 Japan

Department of Ophthalmology Nippon Medical School 1 1 5 Sendagi Bunkyo ku Tokyo 113 8602 Japan

Department of Ophthalmology School of Medicine Sapporo Medical University S1 W16 Chuo ku Sapporo Hokkaido 060 8543 Japan

Department of Ophthalmology Tokyo Medical University 6 7 1 Nishishinjuku Shinjuku ku Tokyo 160 0023 Japan

Department of Ophthalmology University of Tokyo School of Medicine 7 3 1 Hongo Bunkyo ku Tokyo 113 8655 Japan

Department of Pathological Physiology Faculty of Medicine and Dentistry Palacky University Hnevotinska Str 77515 Olomouc Czech Republic

Department of Pulmonology Yokohama City University Graduate School of Medicine 3 9 Fukuura Kanazawa ku Yokohama Kanagawa 236 0004 Japan

Department of Respiratory Diseases Kumamoto City Hospital 1 1 60 Kotoh Kumamoto Kumamoto 862 8505 Japan

Department of Respiratory Medicine Faculty of Medicine and Dentistry Palacky University 1 P Pavlova Str 6 77900 Olomouc Czech Republic

Department of Respiratory Medicine Japan Railway Sapporo Hospital Higashi 1 Kita 3 Chuo ku Sapporo 060 0033 Japan

Department of Respiratory Medicine Japan Railway Tokyo General Hospital 2 1 3 Yoyogi Shibuya ku Tokyo 151 0053 Japan

Department of Respiratory Medicine Japanese Red Cross Medical Centre 4 1 22 Hiroo Shibuya ku Tokyo 150 8953 Japan

Division of Cardiology Department of Internal Medicine Fujita Health University School of Medicine 1 98 Dengakugakubo Kutsukakecho Toyoake Aichi 470 1192 Japan

Division of Genome Analysis Institute of Bioregulation Kyushu University 3 1 1 Maidashi Higashi ku Fukuoka Fukuoka 812 8582 Japan

Division of Hepatology and Gastroenterology Department of Medicine Shinshu University School of Medicine 3 1 1 Asahi Matsumoto Nagano 390 8621 Japan

Division of Pulmonary Medicine Department of Medicine Jichi Medical University 3311 1 Yakushiji Shimotsuke Tochigi 329 0498 Japan

Division of Respiratory Medicine and Allergology Aichi Medical University 21 Karimata Yazako Nagakute cho Aichi gun Aichi 480 1195 Japan

Inflammatory Disease Section National Human Genome Research Institute National Institutes of Health 10 Center Drive 10 CRC East B2 5235 Bethesda MD 20892 1849 USA

INSERM Franco Japanese Laboratoire International Associé Nextgen HLA Laboratory Nagano Japan

INSERM Franco Japanese Laboratoire International Associé Nextgen HLA Laboratory Strasbourg France

Kyoto Central Clinic Clinical Research Center 56 58 Masuyacho Sanjo Takakura Nakagyo ku Kyoto 604 8111 Japan

Plateforme GENOMAX Laboratoire d'ImmunoRhumatologie Moléculaire INSERM UMR_S1109 LabEx Transplantex Centre de Recherche d'Immunologie et d'Hématologie Faculté de Médecine Fédération Hospitalo Universitaire Université de Strasbourg Strasbourg France

Yuasa Eye Clinic 3 1 1 Nishimoto cho Nishi ku Osaka 550 0005 Japan

See more in PubMed

Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N. Engl. J. Med. 2007;357:2153–2165. PubMed

Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 1999;160:736–755. PubMed

Sato H, et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum. Mol. Genet. 2010;19:4100–4111. PubMed PMC

Suzuki H, et al. Genetic characterization and susceptibility for sarcoidosis in Japanese patients: risk factors of BTNL2 gene polymorphisms and HLA class II alleles. Invest. Ophthalmol. Vis. Sci. 2012;53:7109–7115. PubMed

Grunewald J, Eklund A, Olerup O. Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am. J. Respir. Crit. Care Med. 2004;169:696–702. PubMed

Valentonyte R, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat. Genet. 2005;37:357–364. PubMed

Lin Y, Wei J, Fan L, Cheng D. BTNL2 gene polymorphism and sarcoidosis susceptibility: a meta-analysis. PLoS ONE. 2015;10:e0122639. PubMed PMC

Kishore A, Petrek M. Immunogenetics of Sarcoidosis. Int. Trends Immun. 2013;1:43–53.

Levin AM, et al. Admixture fine-mapping in African Americans implicates XAF1 as a possible sarcoidosis risk gene. PLoS ONE. 2014;9:e92646. PubMed PMC

Fischer A, et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am. J. Respir. Crit. Care Med. 2015;192:727–736. PubMed PMC

Fischer A, et al. Association of inflammatory bowel disease risk loci with sarcoidosis, and its acute and chronic subphenotypes. Eur. Respir. J. 2011;37:610–616. PubMed

Kim HS, et al. Association of interleukin 23 receptor gene with sarcoidosis. Dis. Markers. 2011;31:17–24. PubMed PMC

Benner C, et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32:1493–1501. PubMed PMC

GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. PubMed PMC

Hormozdiari F, et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 2016;99:1245–1260. PubMed PMC

Moller DR. Treatment of sarcoidosis—from a basic science point of view. J. Intern. Med. 2003;253:31–40. PubMed

Bergeron A, et al. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J. Immunol. 1997;159:3034–3043. PubMed

Arakelyan A, et al. Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis. Clin. Exp. Immunol. 2009;155:457–465. PubMed PMC

Petrek M, Tomankova T, Zurkova M, Kolek V, Kriegova E. MicroRNA profiling revealed downregulated miR-204 expression in bronchoalveolar cells from patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 2013;187:A1207.

Malmhäll C, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014;133:1429–1438, 1438.e1-7. PubMed

Kohan M, Puxeddu I, Reich R, Levi-Schaffer F, Berkman N. Eotaxin-2/CCL24 and eotaxin-3/CCL26 exert differential profibrogenic effects on human lung fibroblasts. Ann. Allergy Asthma Immunol. 2010;104:66–72. PubMed

Mor A, et al. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019;78:1260–1268. PubMed PMC

Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. PubMed PMC

Arlt W, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004;363:2128–2135. PubMed

Adachi M, et al. Compound heterozygous mutations of P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am. J. Med. Genet. 2004;128A:333–339. PubMed

Elenkov IJ, et al. IL-12, TNF-α, and hormonal changes during late pregnancy and early postpartum: implications for autoimmune disease activity during these times. J. Clin. Endocrinol. Metab. 2001;86:4933–4938. PubMed

Chen AL, et al. Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J. Neuroinflammation. 2016;13:266. PubMed PMC

Mayock RL, Sullivan RD, Greening RR, Jones R., Jr. Sarcoidosis and pregnancy. J. Am. Med. Assoc. 1957;164:158–163. PubMed

Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years’ observation. Br. Med. J. 1961;2:1165–1172. PubMed PMC

Jung C, et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 2011;96:1533–1540. PubMed

Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 2006;116:1218–1222. PubMed PMC

van de Veerdonk FL, et al. Th17 responses and host defense against microorganisms: an overview. BMB Rep. 2009;42:776–787. PubMed

Cho JH. Inflammatory bowel disease: genetic and epidemiologic considerations. World J. Gastroenterol. 2008;14:338–347. PubMed PMC

Cargill M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 2007;80:273–290. PubMed PMC

Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 2007;39:1329–1337. PubMed PMC

Mizuki N, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat. Genet. 2010;42:703–706. PubMed

Hou S, et al. Genome-wide association analysis of Vogt-Koyanagi-Harada syndrome identifies two new susceptibility loci at 1p31.2 and 10q21.3. Nat. Genet. 2014;46:1007–1011. PubMed

Furusawa H, Suzuki Y, Miyazaki Y, Inase N, Eishi Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir. Investig. 2012;50:104–109. PubMed

Diagnostic standard and guidelines for sarcoidosis. Jpn.J. Sarcoidosis Granulomatous Disord. 27, 89–102 (2007).

Li Y, Willer CJ, Sanna S, Abecasis G. Genotype Imputation. Annu. Rev. Genomics Hum. Genet. 2009;10:387–406. PubMed PMC

Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 2010;34:816–834. PubMed PMC

1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. PubMed PMC

Jia X, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE. 2013;8:e64683. PubMed PMC

Okada Y, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 2014;23:6916–6926. PubMed PMC

Baran Y, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 2015;25:927–936. PubMed PMC

Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010;42:436–440. PubMed PMC

Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. PubMed PMC

Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. PubMed

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...