Genetic control of CCL24, POR, and IL23R contributes to the pathogenesis of sarcoidosis
Language English Country Great Britain, England Media electronic
Document type Journal Article, Meta-Analysis, Research Support, Non-U.S. Gov't
PubMed
32826979
PubMed Central
PMC7442816
DOI
10.1038/s42003-020-01185-9
PII: 10.1038/s42003-020-01185-9
Knihovny.cz E-resources
- MeSH
- Alleles MeSH
- Genome-Wide Association Study MeSH
- Chemokine CCL24 genetics metabolism MeSH
- Genetic Predisposition to Disease * MeSH
- Genetic Association Studies MeSH
- Genotype MeSH
- Polymorphism, Single Nucleotide MeSH
- Humans MeSH
- Quantitative Trait Loci MeSH
- Odds Ratio MeSH
- Receptors, Interleukin genetics metabolism MeSH
- Sarcoidosis diagnosis etiology metabolism MeSH
- Cytochrome P-450 Enzyme System genetics metabolism MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Meta-Analysis MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Japan MeSH
- Names of Substances
- CCL24 protein, human MeSH Browser
- Chemokine CCL24 MeSH
- IL23R protein, human MeSH Browser
- POR protein, human MeSH Browser
- Receptors, Interleukin MeSH
- Cytochrome P-450 Enzyme System MeSH
Sarcoidosis is a genetically complex systemic inflammatory disease that affects multiple organs. We present a GWAS of a Japanese cohort (700 sarcoidosis cases and 886 controls) with replication in independent samples from Japan (931 cases and 1,042 controls) and the Czech Republic (265 cases and 264 controls). We identified three loci outside the HLA complex, CCL24, STYXL1-SRRM3, and C1orf141-IL23R, which showed genome-wide significant associations (P < 5.0 × 10-8) with sarcoidosis; CCL24 and STYXL1-SRRM3 were novel. The disease-risk alleles in CCL24 and IL23R were associated with reduced CCL24 and IL23R expression, respectively. The disease-risk allele in STYXL1-SRRM3 was associated with elevated POR expression. These results suggest that genetic control of CCL24, POR, and IL23R expression contribute to the pathogenesis of sarcoidosis. We speculate that the CCL24 risk allele might be involved in a polarized Th1 response in sarcoidosis, and that POR and IL23R risk alleles may lead to diminished host defense against sarcoidosis pathogens.
Department of Ophthalmology Kono Medical Clinic 3 30 28 Soshigaya Setagaya ku Tokyo 157 0072 Japan
Department of Ophthalmology Nippon Medical School 1 1 5 Sendagi Bunkyo ku Tokyo 113 8602 Japan
INSERM Franco Japanese Laboratoire International Associé Nextgen HLA Laboratory Nagano Japan
INSERM Franco Japanese Laboratoire International Associé Nextgen HLA Laboratory Strasbourg France
Yuasa Eye Clinic 3 1 1 Nishimoto cho Nishi ku Osaka 550 0005 Japan
See more in PubMed
Iannuzzi MC, Rybicki BA, Teirstein AS. Sarcoidosis. N. Engl. J. Med. 2007;357:2153–2165. PubMed
Statement on sarcoidosis. Joint Statement of the American Thoracic Society (ATS), the European Respiratory Society (ERS) and the World Association of Sarcoidosis and Other Granulomatous Disorders (WASOG) adopted by the ATS Board of Directors and by the ERS Executive Committee, February 1999. Am. J. Respir. Crit. Care Med. 1999;160:736–755. PubMed
Sato H, et al. Sarcoidosis HLA class II genotyping distinguishes differences of clinical phenotype across ethnic groups. Hum. Mol. Genet. 2010;19:4100–4111. PubMed PMC
Suzuki H, et al. Genetic characterization and susceptibility for sarcoidosis in Japanese patients: risk factors of BTNL2 gene polymorphisms and HLA class II alleles. Invest. Ophthalmol. Vis. Sci. 2012;53:7109–7115. PubMed
Grunewald J, Eklund A, Olerup O. Human leukocyte antigen class I alleles and the disease course in sarcoidosis patients. Am. J. Respir. Crit. Care Med. 2004;169:696–702. PubMed
Valentonyte R, et al. Sarcoidosis is associated with a truncating splice site mutation in BTNL2. Nat. Genet. 2005;37:357–364. PubMed
Lin Y, Wei J, Fan L, Cheng D. BTNL2 gene polymorphism and sarcoidosis susceptibility: a meta-analysis. PLoS ONE. 2015;10:e0122639. PubMed PMC
Kishore A, Petrek M. Immunogenetics of Sarcoidosis. Int. Trends Immun. 2013;1:43–53.
Levin AM, et al. Admixture fine-mapping in African Americans implicates XAF1 as a possible sarcoidosis risk gene. PLoS ONE. 2014;9:e92646. PubMed PMC
Fischer A, et al. Identification of immune-relevant factors conferring sarcoidosis genetic risk. Am. J. Respir. Crit. Care Med. 2015;192:727–736. PubMed PMC
Fischer A, et al. Association of inflammatory bowel disease risk loci with sarcoidosis, and its acute and chronic subphenotypes. Eur. Respir. J. 2011;37:610–616. PubMed
Kim HS, et al. Association of interleukin 23 receptor gene with sarcoidosis. Dis. Markers. 2011;31:17–24. PubMed PMC
Benner C, et al. FINEMAP: efficient variable selection using summary data from genome-wide association studies. Bioinformatics. 2016;32:1493–1501. PubMed PMC
GTEx Consortium. The Genotype-Tissue Expression (GTEx) project. Nat. Genet. 2013;45:580–585. PubMed PMC
Hormozdiari F, et al. Colocalization of GWAS and eQTL signals detects target genes. Am. J. Hum. Genet. 2016;99:1245–1260. PubMed PMC
Moller DR. Treatment of sarcoidosis—from a basic science point of view. J. Intern. Med. 2003;253:31–40. PubMed
Bergeron A, et al. Cytokine patterns in tuberculous and sarcoid granulomas: correlations with histopathologic features of the granulomatous response. J. Immunol. 1997;159:3034–3043. PubMed
Arakelyan A, et al. Protein levels of CC chemokine ligand (CCL)15, CCL16 and macrophage stimulating protein in patients with sarcoidosis. Clin. Exp. Immunol. 2009;155:457–465. PubMed PMC
Petrek M, Tomankova T, Zurkova M, Kolek V, Kriegova E. MicroRNA profiling revealed downregulated miR-204 expression in bronchoalveolar cells from patients with pulmonary sarcoidosis. Am. J. Respir. Crit. Care Med. 2013;187:A1207.
Malmhäll C, et al. MicroRNA-155 is essential for T(H)2-mediated allergen-induced eosinophilic inflammation in the lung. J. Allergy Clin. Immunol. 2014;133:1429–1438, 1438.e1-7. PubMed
Kohan M, Puxeddu I, Reich R, Levi-Schaffer F, Berkman N. Eotaxin-2/CCL24 and eotaxin-3/CCL26 exert differential profibrogenic effects on human lung fibroblasts. Ann. Allergy Asthma Immunol. 2010;104:66–72. PubMed
Mor A, et al. Blockade of CCL24 with a monoclonal antibody ameliorates experimental dermal and pulmonary fibrosis. Ann. Rheum. Dis. 2019;78:1260–1268. PubMed PMC
Miller WL, Auchus RJ. The molecular biology, biochemistry, and physiology of human steroidogenesis and its disorders. Endocr. Rev. 2011;32:81–151. PubMed PMC
Arlt W, et al. Congenital adrenal hyperplasia caused by mutant P450 oxidoreductase and human androgen synthesis: analytical study. Lancet. 2004;363:2128–2135. PubMed
Adachi M, et al. Compound heterozygous mutations of P450 oxidoreductase gene (POR) in two patients with Antley-Bixler syndrome. Am. J. Med. Genet. 2004;128A:333–339. PubMed
Elenkov IJ, et al. IL-12, TNF-α, and hormonal changes during late pregnancy and early postpartum: implications for autoimmune disease activity during these times. J. Clin. Endocrinol. Metab. 2001;86:4933–4938. PubMed
Chen AL, et al. Activation of the hypothalamic-pituitary-adrenal (HPA) axis contributes to the immunosuppression of mice infected with Angiostrongylus cantonensis. J. Neuroinflammation. 2016;13:266. PubMed PMC
Mayock RL, Sullivan RD, Greening RR, Jones R., Jr. Sarcoidosis and pregnancy. J. Am. Med. Assoc. 1957;164:158–163. PubMed
Scadding JG. Prognosis of intrathoracic sarcoidosis in England. A review of 136 cases after five years’ observation. Br. Med. J. 1961;2:1165–1172. PubMed PMC
Jung C, et al. A longitudinal study of plasma and urinary cortisol in pregnancy and postpartum. J. Clin. Endocrinol. Metab. 2011;96:1533–1540. PubMed
Iwakura Y, Ishigame H. The IL-23/IL-17 axis in inflammation. J. Clin. Invest. 2006;116:1218–1222. PubMed PMC
van de Veerdonk FL, et al. Th17 responses and host defense against microorganisms: an overview. BMB Rep. 2009;42:776–787. PubMed
Cho JH. Inflammatory bowel disease: genetic and epidemiologic considerations. World J. Gastroenterol. 2008;14:338–347. PubMed PMC
Cargill M, et al. A large-scale genetic association study confirms IL12B and leads to the identification of IL23R as psoriasis-risk genes. Am. J. Hum. Genet. 2007;80:273–290. PubMed PMC
Wellcome Trust Case Control Consortium, Australo-Anglo-American Spondylitis Consortium (TASC et al. Association scan of 14,500 nonsynonymous SNPs in four diseases identifies autoimmunity variants. Nat. Genet. 2007;39:1329–1337. PubMed PMC
Mizuki N, et al. Genome-wide association studies identify IL23R-IL12RB2 and IL10 as Behçet’s disease susceptibility loci. Nat. Genet. 2010;42:703–706. PubMed
Hou S, et al. Genome-wide association analysis of Vogt-Koyanagi-Harada syndrome identifies two new susceptibility loci at 1p31.2 and 10q21.3. Nat. Genet. 2014;46:1007–1011. PubMed
Furusawa H, Suzuki Y, Miyazaki Y, Inase N, Eishi Y. Th1 and Th17 immune responses to viable Propionibacterium acnes in patients with sarcoidosis. Respir. Investig. 2012;50:104–109. PubMed
Diagnostic standard and guidelines for sarcoidosis. Jpn.J. Sarcoidosis Granulomatous Disord. 27, 89–102 (2007).
Li Y, Willer CJ, Sanna S, Abecasis G. Genotype Imputation. Annu. Rev. Genomics Hum. Genet. 2009;10:387–406. PubMed PMC
Li Y, Willer CJ, Ding J, Scheet P, Abecasis GR. MaCH: using sequence and genotype data to estimate haplotypes and unobserved genotypes. Genet. Epidemiol. 2010;34:816–834. PubMed PMC
1000 Genomes Project Consortium et al. An integrated map of genetic variation from 1,092 human genomes. Nature. 2012;491:56–65. PubMed PMC
Jia X, et al. Imputing amino acid polymorphisms in human leukocyte antigens. PLoS ONE. 2013;8:e64683. PubMed PMC
Okada Y, et al. Risk for ACPA-positive rheumatoid arthritis is driven by shared HLA amino acid polymorphisms in Asian and European populations. Hum. Mol. Genet. 2014;23:6916–6926. PubMed PMC
Baran Y, et al. The landscape of genomic imprinting across diverse adult human tissues. Genome Res. 2015;25:927–936. PubMed PMC
Liu JZ, et al. Meta-analysis and imputation refines the association of 15q25 with smoking quantity. Nat. Genet. 2010;42:436–440. PubMed PMC
Pruim RJ, et al. LocusZoom: regional visualization of genome-wide association scan results. Bioinformatics. 2010;26:2336–2337. PubMed PMC
Barrett JC, Fry B, Maller J, Daly MJ. Haploview: analysis and visualization of LD and haplotype maps. Bioinformatics. 2005;21:263–265. PubMed