Susceptibility of diverse sand fly species to Toscana virus
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40315233
PubMed Central
PMC12047804
DOI
10.1371/journal.pntd.0013031
PII: PNTD-D-24-01646
Knihovny.cz E-zdroje
- MeSH
- hmyz - vektory * virologie MeSH
- lidé MeSH
- Phlebotomus * virologie MeSH
- Psychodidae * virologie klasifikace MeSH
- virus horečky pappataci * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Toscana virus (TOSV) is an emerging but neglected human pathogen currently circulating around the Mediterranean basin including North Africa. Human illness ranges from asymptomatic or mild flu-like syndromes to severe neurological diseases such as meningitis or meningoencephalitis. Despite its significant impact, understanding of TOSV transmission and epidemiology remains limited. Sand flies (Diptera: Phlebotominae), specifically Phlebotomus perniciosus and Phlebotomus perfiliewi, are believed to be the primary vectors of TOSV. However, the spread of TOSV to new geographical areas and its detection in other sand fly species suggest that additional species play a role in the circulation and transmission of this virus. This study investigated the vector competence of four sand fly species - P. tobbi, P. sergenti, P. papatasi, and Sergentomyia schwetzi - for two TOSV strains: 1500590 (TOSV A lineage) and MRS20104319501 (TOSV B lineage). Sand flies were orally challenged with TOSV via bloodmeals. None of the tested species showed susceptibility to the TOSV A strain. However, for TOSV B strain, P. tobbi demonstrated a high potential as a new vector, exhibiting high infection and dissemination rates. P. sergenti also showed some susceptibility to TOSV B, with the virus dissemination observed in all infected females. These finding suggests that P. tobbi and P. sergenti are new potential vectors for TOSV B. Given that P. tobbi and P. sergenti are the primary vectors of human leishmaniases in the Balkans, Turkey and Middle East, their susceptibility to TOSV could have significant epidemiological consequences. On the other hand, P. papatasi and S. schwetzi appeared refractory to TOSV B infection. Refractoriness of P. papatasi, a highly anthropophilic species distributed from the Mediterranean to the Middle East and India, suggests that this species does not contribute to TOSV circulation.
IVPC UMR754 INRAE Universite Claude Bernard Lyon 1 EPHE Université PSL Lyon France
MRC University of Glasgow Centre for Virus Research Glasgow United Kingdom
Zobrazit více v PubMed
Kuhn JH, Brown K, Adkins S, de la Torre JC, Digiaro M, Ergünay K, et al.. Promotion of order Bunyavirales to class Bunyaviricetes to accommodate a rapidly increasing number of related polyploviricotine viruses. J Virol. 2024;98(10):e0106924. doi: 10.1128/jvi.01069-24 PubMed DOI PMC
Charrel RN, Bichaud L, de Lamballerie X. Emergence of Toscana virus in the mediterranean area. World J Virol. 2012;1(5):135–41. doi: 10.5501/wjv.v1.i5.135 PubMed DOI PMC
Ayhan N, Prudhomme J, Laroche L, Bañuls A-L, Charrel RN. Broader Geographical Distribution of Toscana Virus in the Mediterranean Region Suggests the Existence of Larger Varieties of Sand Fly Vectors. Microorganisms. 2020;8(1):114. doi: 10.3390/microorganisms8010114 PubMed DOI PMC
Keskek Turk Y, Ergunay K, Kohl A, Hughes J, McKimmie CS. Toscana virus - an emerging Mediterranean arbovirus transmitted by sand flies. J Gen Virol. 2024;105(11):002045. doi: 10.1099/jgv.0.002045 PubMed DOI PMC
Popescu CP, Cotar AI, Dinu S, Zaharia M, Tardei G, Ceausu E, et al.. Emergence of Toscana Virus, Romania, 2017–2018. Emerg Infect Dis. 2021;27(5):1482. PubMed PMC
Punda-Polić V, Mohar B, Duh D, Bradarić N, Korva M, Fajs L, et al.. Evidence of an autochthonous Toscana virus strain in Croatia. J Clin Virol. 2012;55(1):4–7. doi: 10.1016/j.jcv.2012.06.006 PubMed DOI
Ayhan N, Charrel RN. An update on Toscana virus distribution, genetics, medical and diagnostic aspects. Clin Microbiol Infect. 2020;26(8):1017–23. PubMed
Charrel RN, Gallian P, Navarro-Mari J-M, Nicoletti L, Papa A, Sánchez-Seco MP, et al.. Emergence of Toscana virus in Europe. Emerg Infect Dis. 2005;11(11):1657–63. doi: 10.3201/eid1111.050869 PubMed DOI PMC
Hemmersbach-Miller M, Parola P, Charrel RN, Paul Durand J, Brouqui P. Sandfly fever due to Toscana virus: an emerging infection in southern France. Eur J Intern Med. 2004;15(5):316–7. doi: 10.1016/j.ejim.2004.05.006 PubMed DOI
Muñoz C, Ayhan N, Ortuño M, Ortiz J, Gould EA, Maia C, et al.. Experimental Infection of Dogs with Toscana Virus and Sandfly Fever Sicilian Virus to Determine Their Potential as Possible Vertebrate Hosts. Microorganisms. 2020;8(4):596. doi: 10.3390/microorganisms8040596 PubMed DOI PMC
Alkan C, Allal-Ikhlef AB, Alwassouf S, Baklouti A, Piorkowski G, de Lamballerie X, et al.. Virus isolation, genetic characterization and seroprevalence of Toscana virus in Algeria. Clin Microbiol Infect. 2015;21(11):1040.e1–9. doi: 10.1016/j.cmi.2015.07.012 PubMed DOI
Marchi S, Trombetta CM, Kistner O, Montomoli E. Seroprevalence study of Toscana virus and viruses belonging to the Sandfly fever Naples antigenic complex in central and southern Italy. J Infect Public Health. 2017;10(6):866–9. doi: 10.1016/j.jiph.2017.02.001 PubMed DOI
Christova I, Panayotova E, Trifonova I, Taseva E, Gladnishka T, Ivanova V. Serologic evidence of widespread Toscana virus infection in Bulgaria. J Infect Public Health. 2020;13(2):164–6. doi: 10.1016/j.jiph.2019.07.008 PubMed DOI
Navarro-Marí JM, Palop-Borrás B, Pérez-Ruiz M, Sanbonmatsu-Gámez S. Serosurvey study of Toscana virus in domestic animals, Granada, Spain. Vector Borne Zoonotic Dis. 2011;11(5):583–7. doi: 10.1089/vbz.2010.0065 PubMed DOI
Alwassouf S, Maia C, Ayhan N, Coimbra M, Cristovao JM, Richet H, et al.. Neutralization-based seroprevalence of Toscana virus and sandfly fever Sicilian virus in dogs and cats from Portugal. J Gen Virol. 2016;97(11):2816–23. doi: 10.1099/jgv.0.000592 PubMed DOI
Ayhan N, Alten B, Ivovic V, Martinkovic F, Kasap OE, Ozbel Y, et al.. Cocirculation of Two Lineages of Toscana Virus in Croatia. Front Public Health. 2017;5:336. doi: 10.3389/fpubh.2017.00336 PubMed DOI PMC
Pereira A, Ayhan N, Cristóvão JM, Vilhena H, Martins Â, Cachola P, et al.. Antibody Response to Toscana Virus and Sandfly Fever Sicilian Virus in Cats Naturally Exposed to Phlebotomine Sand Fly Bites in Portugal. Microorganisms. 2019;7(9):339. doi: 10.3390/microorganisms7090339 PubMed DOI PMC
Sellali S, Lafri I, Hachid A, Ayhan N, Benbetka C, Medrouh B, et al.. Presence of the sandfly-borne phlebovirus (Toscana virus) in different bio-geographical regions of Algeria demonstrated by a microneutralisation-based seroprevalence study in owned dogs. Comp Immunol Microbiol Infect Dis. 2022;88:101861. doi: 10.1016/j.cimid.2022.101861 PubMed DOI
Ayhan N, López-Roig M, Monastiri A, Charrel RN, Serra-Cobo J. Seroprevalence of Toscana Virus and Sandfly Fever Sicilian Virus in European Bat Colonies Measured Using a Neutralization Test. Viruses. 2021;13(1):88. doi: 10.3390/v13010088 PubMed DOI PMC
Hacioglu S, Dincer E, Isler CT, Karapinar Z, Ataseven VS, Ozkul A, et al.. A Snapshot Avian Surveillance Reveals West Nile Virus and Evidence of Wild Birds Participating in Toscana Virus Circulation. Vector Borne Zoonotic Dis. 2017;17(10):698–708. doi: 10.1089/vbz.2017.2138 PubMed DOI
Ayhan N, Rodríguez-Teijeiro JD, López-Roig M, Vinyoles D, Ferreres JA, Monastiri A, et al.. High rates of antibodies against Toscana and Sicilian phleboviruses in common quail Coturnix coturnix birds. Front Microbiol. 2023;13:1091908. doi: 10.3389/fmicb.2022.1091908 PubMed DOI PMC
Verani P, Ciufolini MG, Caciolli S, Renzi A, Nicoletti L, Sabatinelli G, et al.. Ecology of viruses isolated from sand flies in Italy and characterized of a new Phlebovirus (Arabia virus). Am J Trop Med Hyg. 1988;38(2):433–9. doi: 10.4269/ajtmh.1988.38.433 PubMed DOI
Hacioglu S, Ozkul A. Do birds play a role in the transmission of Toscana virus? Initial isolation results from birds in northernmost Türkiye. Zoonoses Public Health. 2024;71(3):225–35. doi: 10.1111/zph.13100 PubMed DOI
Ciufolini MG, Maroli M, Verani P. Growth of two phleboviruses after experimental infection of their suspected sand fly vector, Phlebotomus perniciosus (Diptera: Psychodidae ). The Am J Trop Med Hyg. 1985;34(1):174–9. PubMed
Tesh RB. Studies of the biology of Phleboviruses in sandflies. Yale Univ. New Haven Conn. School of Medicine; 1987.
Tesh RB, Modi GB. Maintenance of Toscana virus in Phlebotomus perniciosus by vertical transmission. Am J Trop Med Hyg. 1987;36(1):189–93. doi: 10.4269/ajtmh.1987.36.189 PubMed DOI
Tesh RB, Lubroth J, Guzman H. Simulation of arbovirus overwintering: survival of Toscana virus (Bunyaviridae: Phlebovirus) in its natural sand fly vector Phlebotomus perniciosus. Am J Trop Med Hyg. 1992;47(5):574–81. PubMed
Killick-Kendrick R. The biology and control of phlebotomine sand flies. Clin Dermatol. 1999;17(3):279–89. doi: 10.1016/s0738-081x(99)00046-2 PubMed DOI
Maroli M, Feliciangeli MD, Bichaud L, Charrel RN, Gradoni L. Phlebotomine sandflies and the spreading of leishmaniases and other diseases of public health concern. Med Vet Entomol. 2013;27(2):123–47. doi: 10.1111/j.1365-2915.2012.01034.x PubMed DOI
Charrel RN, Izri A, Temmam S, De Lamballerie X, Parola P. Toscana virus RNA in Sergentomyia minuta flies. Emerg Infect Dis. 2006;12(8):1299. PubMed PMC
Ergunay K, Kasap OE, Orsten S, Oter K, Gunay F, Yoldar AZA, et al.. Phlebovirus and Leishmania detection in sandflies from eastern Thrace and northern Cyprus. Parasit Vectors. 2014;7:575. doi: 10.1186/s13071-014-0575-6 PubMed DOI PMC
Es-Sette N, Ajaoud M, Bichaud L, Hamdi S, Mellouki F, Charrel RN, et al.. Phlebotomus sergenti a common vector of Leishmania tropica and Toscana virus in Morocco. J Vector Borne Dis. 2014;51(2):86–90. doi: 10.4103/0972-9062.134785 PubMed DOI
Es-sette N, Ajaoud M, Anga L, Mellouki F, Lemrani M. Toscana virus isolated from sandflies, Morocco. Parasit Vectors. 2015;8:205. doi: 10.1186/s13071-015-0826-1 PubMed DOI PMC
Daoudi M, Calzolari M, Boussaa S, Bonilauri P, Torri D, Romeo G, et al.. Identification of Toscana virus in natural population of sand flies (Diptera: Psychodidae) from Moroccan leishmaniasis foci. J Infect Public Health. 2022;15(4):406–11. doi: 10.1016/j.jiph.2022.03.007 PubMed DOI
Özbel Y, Oğuz G, Arserim SK, Erişöz Kasap Ö, Karaoglu B, Yilmaz A, et al.. The initial detection of Toscana virus in phlebotomine sandflies from Turkey. Med Vet Entomol. 2020;34(4):402–10. PubMed
Dvorak V, Shaw J, Volf P. Parasite biology: the vectors. Bruschi F, Gradoni L, editors. The Leishmaniases: Old Neglected Tropical Diseases. Cham: Springer International Publishing; 2018.
Volf P, Volfova V. Establishment and maintenance of sand fly colonies. J Vector Ecol. 2011;36 Suppl 1:S1–9. doi: 10.1111/j.1948-7134.2011.00106.x PubMed DOI
Buchholz UJ, Finke S, Conzelmann KK. Generation of bovine respiratory syncytial virus (BRSV) from cDNA: BRSV NS2 is not essential for virus replication in tissue culture, and the human RSV leader region acts as a functional BRSV genome promoter. J Virol. 1999;73(1):251–9. doi: 10.1128/JVI.73.1.251-259.1999 PubMed DOI PMC
Charrel RN, Izri A, Temmam S, Delaunay P, Toga I, Dumon H, et al.. Cocirculation of 2 genotypes of Toscana virus, southeastern France. Emerg Infect Dis. 2007;13(3):465–8. doi: 10.3201/eid1303.061086 PubMed DOI PMC
Nougairede A, Bichaud L, Thiberville S-D, Ninove L, Zandotti C, de Lamballerie X, et al.. Isolation of Toscana virus from the cerebrospinal fluid of a man with meningitis in Marseille, France, 2010. Vector Borne Zoonotic Dis. 2013;13(9):685–8. doi: 10.1089/vbz.2013.1316 PubMed DOI
Lindenbach BD. Measuring HCV infectivity produced in cell culture and in vivo. Tang H, editor. Hepatitis C. Methods in molecular biology™. Humana Press; 2009; vol 510. PubMed
Pérez-Ruiz M, Collao X, Navarro-Marí JM, Tenorio A. Reverse transcription, real-time PCR assay for detection of Toscana virus. J Clin Virol. 2007;39(4):276–81. PubMed
R Core Team. R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing; 2018. Available from: https://www.R-project.org/
Franz AWE, Kantor AM, Passarelli AL, Clem RJ. Tissue Barriers to Arbovirus Infection in Mosquitoes. Viruses. 2015;7(7):3741–67. doi: 10.3390/v7072795 PubMed DOI PMC
Kramer LD, Hardy JL, Presser SB, Houk EJ. Dissemination barriers for western equine encephalomyelitis virus in Culex tarsalis infected after ingestion of low viral doses. Am J Trop Med Hyg. 1981;30(1):190–7. doi: 10.4269/ajtmh.1981.30.190 PubMed DOI
Hardy JL, Houk EJ, Kramer LD, Reeves WC. Intrinsic factors affecting vector competence of mosquitoes for arboviruses. Annu Rev Entomol. 1983;28:229–62. doi: 10.1146/annurev.en.28.010183.001305 PubMed DOI
Carpenter A, Clem RJ. Factors Affecting Arbovirus Midgut Escape in Mosquitoes. Pathogens. 2023;12(2):220. PubMed PMC
Behura SK, Gomez-Machorro C, deBruyn B, Lovin DD, Harker BW, Romero-Severson J, et al.. Influence of mosquito genotype on transcriptional response to dengue virus infection. Funct Integr Genomics. 2014;14(3):581–9. doi: 10.1007/s10142-014-0376-1 PubMed DOI PMC
Ciota AT, Chin PA, Ehrbar DJ, Micieli MV, Fonseca DM, Kramer LD. Differential effects of temperature and mosquito genetics determine transmissibility of arboviruses by Aedes aegypti in Argentina. Am J Trop Med Hyg. 2018;99(2):417. PubMed PMC
Pesko K, Westbrook CJ, Mores CN, Lounibos LP, Reiskind MH. Effects of infectious virus dose and bloodmeal delivery method on susceptibility of Aedes aegypti and Aedes albopictus to Chikungunya virus. J Med Entomol. 2009;46(2):395–9. PubMed PMC
Pongsiri A, Ponlawat A, Thaisomboonsuk B, Jarman RG, Scott TW, Lambrechts L. Differential susceptibility of two field Aedes aegypti populations to a low infectious dose of dengue virus. PLoS One. 2014;9(3):e92971. doi: 10.1371/journal.pone.0092971 PubMed DOI PMC
Roundy CM, Azar SR, Rossi SL, Huang JH, Leal G, Yun R, et al.. Variation in Aedes aegypti Mosquito Competence for Zika Virus Transmission. Emerg Infect Dis. 2017;23(4):625–32. doi: 10.3201/eid2304.161484 PubMed DOI PMC
Xi Z, Ramirez JL, Dimopoulos G. The Aedes aegypti toll pathway controls dengue virus infection. PLoS Pathog. 2008;4(7):e1000098. doi: 10.1371/journal.ppat.1000098 PubMed DOI PMC
Saraiva RG, Kang S, Simoes ML, Anglero-Rodriguez YI, Dimopoulos G. Mosquito gut antiparasitic and antiviral immunity. Dev Comp Immunol. 2016;64:53–64. PubMed
Tikhe CV, Dimopoulos G. Mosquito antiviral immune pathways. Dev Comp Immunol. 2021;116:103964. PubMed
Jupatanakul N, Sim S, Dimopoulos G. The insect microbiome modulates vector competence for arboviruses. Viruses. 2014;6(11):4294–313. doi: 10.3390/v6114294 PubMed DOI PMC
Angleró-Rodríguez YI, Talyuli OA, Blumberg BJ, Kang S, Demby C, Shields A, et al.. An Aedes aegypti-associated fungus increases susceptibility to dengue virus by modulating gut trypsin activity. Elife. 2017;6:e28844. doi: 10.7554/eLife.28844 PubMed DOI PMC
Wu P, Sun P, Nie K, Zhu Y, Shi M, Xiao C, et al.. A Gut Commensal Bacterium Promotes Mosquito Permissiveness to Arboviruses. Cell Host Microbe. 2019;25(1):101–12.e5. doi: 10.1016/j.chom.2018.11.004 PubMed DOI
Vazeille M, Gaborit P, Mousson L, Girod R, Failloux A-B. Competitive advantage of a dengue 4 virus when co-infecting the mosquito Aedes aegypti with a dengue 1 virus. BMC Infect Dis. 2016;16:318. doi: 10.1186/s12879-016-1666-0 PubMed DOI PMC
White AV, Fan M, Mazzara JM, Roper RL, Richards SL. Mosquito-infecting virus Espirito Santo virus inhibits replication and spread of dengue virus. J Med Virol. 2021;93(6):3362–73. doi: 10.1002/jmv.26686 PubMed DOI
Liu Z, Zhang Z, Lai Z, Zhou T, Jia Z, Gu J, et al.. Temperature Increase Enhances Aedes albopictus Competence to Transmit Dengue Virus. Front Microbiol. 2017;8:2337. doi: 10.3389/fmicb.2017.02337 PubMed DOI PMC
Ciota AT, Keyel AC. The Role of Temperature in Transmission of Zoonotic Arboviruses. Viruses. 2019;11(11):1013. doi: 10.3390/v11111013 PubMed DOI PMC
Alomar AA, Alto BW. Temperature-Mediated Effects on Mayaro Virus Vector Competency of Florida Aedes aegypti Mosquito Vectors. Viruses. 2022;14(5):880. doi: 10.3390/v14050880 PubMed DOI PMC
Svobodová M, Alten B, Zídková L, Dvorák V, Hlavacková J, Mysková J, et al.. Cutaneous leishmaniasis caused by Leishmania infantum transmitted by Phlebotomus tobbi. Int J Parasitol. 2009;39(2):251–6. doi: 10.1016/j.ijpara.2008.06.016 PubMed DOI
Gouzelou E, Haralambous C, Amro A, Mentis A, Pratlong F, Dedet J-P, et al.. Multilocus microsatellite typing (MLMT) of strains from Turkey and Cyprus reveals a novel monophyletic L. donovani sensu lato group. PLoS Negl Trop Dis. 2012;6(2):e1507. doi: 10.1371/journal.pntd.0001507 PubMed DOI PMC
Rogers MB, Downing T, Smith BA, Imamura H, Sanders M, Svobodova M, et al.. Genomic confirmation of hybridisation and recent inbreeding in a vector-isolated Leishmania population. PLoS Genet. 2014;10(1):e1004092. doi: 10.1371/journal.pgen.1004092 PubMed DOI PMC
Armstrong PM, Ehrlich HY, Magalhaes T, Miller MR, Conway PJ, Bransfield A, et al.. Successive blood meals enhance virus dissemination within mosquitoes and increase transmission potential. Nat microbiol. 2020;5(2):239–47. PubMed PMC
Antoniou M, Gramiccia M, Molina R, Dvorak V, Volf P. The role of indigenous phlebotomine sandflies and mammals in the spreading of leishmaniasis agents in the Mediterranean region. Euro Surveill. 2013;18(30):20540. doi: 10.2807/1560-7917.es2013.18.30.20540 PubMed DOI
World Health Organization. Arboviruses and human disease: report of a WHO scientific group [meeting held in Geneva from 26 September to 1 October 1966]. World Health Organization; 1967. PubMed
Fares W, Dachraoui K, Barhoumi W, Cherni S, Chelbi I, Zhioua E. Co-circulation of Toscana virus and Leishmania infantum in a focus of zoonotic visceral leishmaniasis from Central Tunisia. Acta Trop. 2020;204:105342. doi: 10.1016/j.actatropica.2020.105342 PubMed DOI
Saadawi WK, Abozaid FD, Almukhtar M, Annajar BB, Shaibi T. Seroprevalence study of Toscana virus in Yafran area, Libya. J Vector Borne Dis. 2022;59(2):186–9. doi: 10.4103/0972-9062.335728 PubMed DOI
Dvorak V, Kasap OE, Ivovic V, Mikov O, Stefanovska J, Martinkovic F, et al.. (2020) Sand flies (Diptera: Psychodidae) in eight Balkan countries: historical review and region-wide entomological survey. Parasit Vectors. 2020;13:1–15. PubMed PMC
Șuleșco T, Erisoz Kasap O, Halada P, Oğuz G, Rusnac D, Gresova M, et al.. Phlebotomine sand fly survey in the Republic of Moldova: species composition, distribution and host preferences. Parasit Vectors. 2021;14(1):371. doi: 10.1186/s13071-021-04858-4 PubMed DOI PMC
Calzolari M, Ferrarini G, Bonilauri P, Lelli D, Chiapponi C, Bellini R, et al.. Co-circulation of eight different phleboviruses in sand flies collected in the Northern Apennine Mountains (Italy). Infect Genet Evol. 2018;64:131–4. doi: 10.1016/j.meegid.2018.06.014 PubMed DOI
Bichaud L, Izri A, de Lamballerie X, Moureau G, Charrel RN. First detection of Toscana virus in Corsica, France. Clin Microbiol Infect. 2014;20(2):O101–4. doi: 10.1111/1469-0691.12347 PubMed DOI
Alexander AJT, Confort M-P, Desloire S, Dunlop JI, Kuchi S, Sreenu VB, et al.. Development of a Reverse Genetics System for Toscana Virus (Lineage A). Viruses. 2020;12(4):411. doi: 10.3390/v12040411 PubMed DOI PMC