Strong pH-Dependent Near-Infrared Fluorescence in a Microbial Rhodopsin Reconstituted with a Red-Shifting Retinal Analogue

. 2018 Nov 15 ; 9 (22) : 6469-6474. [epub] 20181101

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid30376338

Near-infrared (NIR)-driven rhodopsins are of great interest in optogenetics and other optobiotechnological developments such as artificial photosynthesis and deep-tissue voltage imaging. Here we report that the proton pump proteorhodopsin (PR) containing a NIR-active retinal analogue (PR:MMAR) exhibits intense NIR fluorescence at a quantum yield of 3.3%. This is 130 times higher than native PR ( Lenz , M. O. ; Biophys J. 2006 , 91 , 255 - 262 ) and 3-8 times higher than the QuasAr and PROPS voltage sensors ( Kralj , J. ; Science 2011 , 333 , 345 - 348 ; Hochbaum , D. R. ; Nat. Methods 2014 , 11 , 825 - 833 ). The NIR fluorescence strongly depends on the pH in the range of 6-8.5, suggesting potential application of MMAR-binding proteins as ultrasensitive NIR-driven pH and/or voltage sensors. Femtosecond transient absorption spectroscopy showed that upon near-IR excitation, PR:MMAR features an unusually long fluorescence lifetime of 310 ps and the absence of isomerized photoproducts, consistent with the high fluorescence quantum yield. Stimulated Raman analysis indicates that the NIR-absorbing species develops upon protonation of a conserved aspartate, which promotes charge delocalization and bond length leveling due to an additional methylamino group in MMAR, in essence providing a secondary protonated Schiff base. This results in much smaller bond length alteration along the conjugated backbone, thereby conferring significant single-bond character to the C13═C14 bond and structural deformation of the chromophore, which interferes with photoinduced isomerization and extends the lifetime for fluorescence. Hence, our studies allow for a molecular understanding of the relation between absorption/emission wavelength, isomerization, and fluorescence in PR:MMAR. As acidification enhances the resonance state, this explains the strong pH dependence of the NIR emission.

Zobrazit více v PubMed

Ernst O. P.; Lodowski D. T.; Elstner M.; Hegemann P.; Brown L. S.; Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 2014, 114, 126–63. 10.1021/cr4003769. PubMed DOI PMC

Govorunova E. G.; Sineshchekov O. A.; Li H.; Spudich J. L.. Microbial rhodopsins: diversity, mechanisms, and optogenetic applications. In Annual Reviews in Biochemistry; Kornberg R. D., Ed.; 2017; Vol. 86, pp 845–872. PubMed PMC

Zhang F.; Vierock J.; Yizhar O.; Fenno L. E.; Tsunoda S.; Kianianmomeni A.; Prigge M.; Berndt A.; Cushman J.; Polle J.; Magnuson J.; Hegemann P.; Deisseroth K. The microbial opsin family of optogenetic tools. Cell 2011, 147, 1446–57. 10.1016/j.cell.2011.12.004. PubMed DOI PMC

Kralj J. M.; Hochbaum D. R.; Douglass A. D.; Cohen A. E. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 2011, 333, 345–348. 10.1126/science.1204763. PubMed DOI

Hochbaum D. R.; Zhao Y.; Farhi S. L.; Klapoetke N.; Werley C. A.; Kapoor V.; Zou P.; Kralj J. M.; Maclaurin D.; Smedemark-Margulies N.; Saulnier J. L.; Boulting G. L.; Straub C.; Cho Y. K.; Melkonian M.; Wong G. K. S.; Harrison D. J.; Murthy V. N.; Sabatini B. L.; Boyden E. S.; Campbell R. E.; Cohen A. E. All-optical electrophysiology in mammalian neurons using engineered microbial rhodopsins. Nat. Methods 2014, 11, 825–833. 10.1038/nmeth.3000. PubMed DOI PMC

Kralj J. M.; Douglass A. D.; Hochbaum D. R.; Maclaurin D.; Cohen A. E. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 2012, 9, 90–U130. 10.1038/nmeth.1782. PubMed DOI PMC

Claassens N. J.; Sousa D. Z.; dos Santos V.; de Vos W. M.; van der Oost J. Harnessing the power of microbial autotrophy. Nat. Rev. Microbiol. 2016, 14, 692–706. 10.1038/nrmicro.2016.130. PubMed DOI

Chen Q.; van der Steen J. B.; Arents J. C.; Hartog A. F.; Ganapathy S.; de Grip W. J.; Hellingwerf K. J. Deletion of sll1541 in Synechocystis sp strain PCC 6803 allows formation of a far-red-shifted holo-proteorhodopsin in vivo. Appl. Environ. Microbiol. 2018, 10.1128/AEM.02435-17. PubMed DOI PMC

Fenno L.; Yizhar O.; Deisseroth K. The development and application of optogenetics. Annu. Rev. Neurosci. 2011, 34, 389–412. 10.1146/annurev-neuro-061010-113817. PubMed DOI PMC

Erbguth K.; Prigge M.; Schneider F.; Hegemann P.; Gottschalk A. Bimodal activation of different neuron classes with the spectrally red-shifted channelrhodopsin chimera C1V1 in Caenorhabditis elegans. PLoS One 2012, 7, e46827.10.1371/journal.pone.0046827. PubMed DOI PMC

Klapoetke N. C.; Murata Y.; Kim S. S.; Pulver S. R.; Birdsey-Benson A.; Cho Y. K.; Morimoto T. K.; Chuong A. S.; Carpenter E. J.; Tian Z.; Wang J.; Xie Y.; Yan Z.; Zhang Y.; Chow B. Y.; Surek B.; Melkonian M.; Jayaraman V.; Constantine-Paton M.; Wong G. K.; Boyden E. S. Independent optical excitation of distinct neural populations. Nat. Methods 2014, 11, 338–46. 10.1038/nmeth.2836. PubMed DOI PMC

Ganapathy S.; Venselaar H.; Chen Q.; de Groot H. J.; Hellingwerf K. J.; de Grip W. J. Retinal-Based Proton Pumping in the Near Infrared. J. Am. Chem. Soc. 2017, 139, 2338–2344. 10.1021/jacs.6b11366. PubMed DOI PMC

Herwig L.; Rice A. J.; Bedbrook C. N.; Zhang R. J. K.; Lignell A.; Cahn J. K. B.; Renata H.; Dodani S. C.; Cho I.; Cai L.; Gradinaru V.; Arnold F. H. Directed evolution of a bright near-infrared fluorescent rhodopsin using a synthetic chromophore. Cell Chem. Biol. 2017, 24, 415–425. 10.1016/j.chembiol.2017.02.008. PubMed DOI PMC

Govindjee R.; Becher B.; Ebrey T. G. Fluorescence from chromophore of purple membrane-protein. Biophys. J. 1978, 22, 67–77. 10.1016/S0006-3495(78)85471-X. PubMed DOI PMC

Kochendoerfer G. G.; Mathies R. A. Spontaneous emission study of the femtosecond isomerization dynamics of rhodopsin. J. Phys. Chem. 1996, 100, 14526–14532. 10.1021/jp960509+. DOI

Lenz M. O.; Huber R.; Schmidt B.; Gilch P.; Kalmbach R.; Engelhard M.; Wachtveitl J. First steps of retinal photoisomerization in proteorhodopsin. Biophys. J. 2006, 91, 255–62. 10.1529/biophysj.105.074690. PubMed DOI PMC

Piatkevich K. D.; Jung E. E.; Straub C.; Linghu C. Y.; Park D.; Suk H. J.; Hochbaum D. R.; Goodwin D.; Pnevmatikakis E.; Pak N.; Kawashima T.; Yang C. T.; Rhoades J. L.; Shemesh O.; Asano S.; Yoon Y. G.; Freifeld L.; Saulnier J. L.; Riegler C.; Engert F.; Hughes T.; Drobizhev M.; Szabo B.; Ahrens M. B.; Flavell S. W.; Sabatini B. L.; Boyden E. S. A robotic multidimensional directed evolution approach applied to fluorescent voltage reporters. Nat. Chem. Biol. 2018, 14, 352.10.1038/s41589-018-0004-9. PubMed DOI PMC

Shcherbakova D. M.; Baloban M.; Verkhusha V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 2015, 27, 52–63. 10.1016/j.cbpa.2015.06.005. PubMed DOI PMC

Gartner W.; Buss V.; Martin H. D.; Hoischen D.; Steinmuller S. Merocyanines as extremely bathochromically absorbing chromophores in the halobacterial membrane protein bacteriorhodopsin. Angew. Chem., Int. Ed. Engl. 1997, 36, 1630–1633. 10.1002/anie.199716301. DOI

Asato A. E.; Li X. Y.; Mead D.; Patterson G. M. L.; Liu R. S. H. Azulenic retinoids and the corresponding bacteriorhodopsin analogs - unusually red-shifted pigments. J. Am. Chem. Soc. 1990, 112, 7398–7399. 10.1021/ja00176a051. DOI

Hontani Y.; Marazzi M.; Stehfest K.; Mathes T.; van Stokkum I. H. M.; Elstner M.; Hegemann P.; Kennis J. T. M. Reaction dynamics of the chimeric channelrhodopsin C1C2. Sci. Rep. 2017, 7, 7217.10.1038/s41598-017-07363-w. PubMed DOI PMC

Berera R.; van Grondelle R.; Kennis J. T. M. Ultrafast transient absorption spectroscopy: principles and application to photosynthetic systems. Photosynth. Res. 2009, 101, 105–118. 10.1007/s11120-009-9454-y. PubMed DOI PMC

Mathes T.; Heilmann M.; Pandit A.; Zhu J. Y.; Ravensbergen J.; Kloz M.; Fu Y. A.; Smith B. O.; Christie J. M.; Jenkins G. I.; Kennis J. T. M. Proton-coupled electron transfer constitutes the photoactivation mechanism of the plant photoreceptor UVR8. J. Am. Chem. Soc. 2015, 137, 8113–8120. 10.1021/jacs.5b01177. PubMed DOI

Ravensbergen J.; Abdi F. F.; van Santen J. H.; Frese R. N.; Dam B.; van de Krol R.; Kennis J. T. M. Unraveling the carrier dynamics of BiVO4: a femtosecond to microsecond transient absorption study. J. Phys. Chem. C 2014, 118, 27793–27800. 10.1021/jp509930s. DOI

Mathies R. A.; Brito Cruz C. H.; Pollard W. T.; Shank C. V. Direct observation of the femtosecond excited-state cis-trans isomerization in bacteriorhodopsin. Science 1988, 240, 777–779. 10.1126/science.3363359. PubMed DOI

Rupenyan A.; van Stokkum I. H.; Arents J. C.; van Grondelle R.; Hellingwerf K. J.; Groot M. L. Reaction pathways of photoexcited retinal in proteorhodopsin studied by pump-dump-probe spectroscopy. J. Phys. Chem. B 2009, 113, 16251–6. 10.1021/jp9065289. PubMed DOI

Tahara S.; Takeuchi S.; Abe-Yoshizumi R.; Inoue K.; Ohtani H.; Kandori H.; Tahara T. Ultrafast photoreaction dynamics of a light-driven sodium-ion-pumping retinal protein from Krokinobacter eikastus revealed by femtosecond time-resolved absorption spectroscopy. J. Phys. Chem. Lett. 2015, 6, 4481–4486. 10.1021/acs.jpclett.5b01994. PubMed DOI

Hontani Y.; Broser M.; Silapetere A.; Krause B. S.; Hegemann P.; Kennis J. T. M. The femtosecond-to-second photochemistry of red-shifted fast-closing anion channelrhodopsin PsACR1. Phys. Chem. Chem. Phys. 2017, 19, 30402–30409. 10.1039/C7CP06414D. PubMed DOI

Verhoefen M. K.; Bamann C.; Blocher R.; Forster U.; Bamberg E.; Wachtveitl J. The photocycle of channelrhodopsin-2: ultrafast reaction dynamics and subsequent reaction steps. ChemPhysChem 2010, 11, 3113–22. 10.1002/cphc.201000181. PubMed DOI

Schnedermann C.; Muders V.; Ehrenberg D.; Schlesinger R.; Kukura P.; Heberle J. Vibronic dynamics of the ultrafast all-trans to 13-cis photoisomerization of retinal in Channelrhodopsin-1. J. Am. Chem. Soc. 2016, 138, 4757–4762. 10.1021/jacs.5b12251. PubMed DOI

Xiao Y. W.; Partha R.; Krebs R.; Braiman M. Time-resolved FTIR spectroscopy of the photointermediates involved in fast transient H+ release by proteorhodopsin. J. Phys. Chem. B 2005, 109, 634–641. 10.1021/jp046314g. PubMed DOI

Dioumaev A. K.; Brown L. S.; Shih J.; Spudich E. N.; Spudich J. L.; Lanyi J. K. Proton transfers in the photochemical reaction cycle of proteorhodopsin. Biochemistry 2002, 41, 5348–58. 10.1021/bi025563x. PubMed DOI

Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–36. 10.1039/C6CP05240A. PubMed DOI

Kloz M.; Weissenborn J.; Polivka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S-star state. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/C6CP01464J. PubMed DOI

Hontani Y.; Kloz M.; Polivka T.; Shukla M. K.; Sobotka R.; Kennis J. T. M. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1788–1792. 10.1021/acs.jpclett.8b00663. PubMed DOI PMC

Smith S. O.; Pardoen J. A.; Lugtenburg J.; Mathies R. A. Vibrational analysis of the 13-cis-retinal chromophore in dark-adapted bacteriorhodopsin. J. Phys. Chem. 1987, 91, 804–819. 10.1021/j100288a011. DOI

Krebs R. A.; Dunmire D.; Partha R.; Braiman M. S. Resonance Raman characterization of proteorhodopsin’s chromophore environment. J. Phys. Chem. B 2003, 107, 7877–7883. 10.1021/jp034574c. DOI

Socrates G.Infrared and Raman Characteristic Group Frequencies: tables and charts, 3rd ed.; John Wiley and Sons: Chichester, U.K., 2001.

Smith S. O.; Braiman M. S.; Myers A. B.; Pardoen J. A.; Courtin J. M. L.; Winkel C.; Lugtenburg J.; Mathies R. A. Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109, 3108–3125. 10.1021/ja00244a038. DOI

Stockburger M.; Alshuth T.; Oesterhelt D.; Gärtner W.. Resonance Raman spectroscopy of bacteriorhodopsin: structure and function. In Spectroscopy of Biological Systems, Clark R. J. H., Hester R. E., Eds.; John Wiley and Sons: New York, 1986; pp 483–535.

Smith S. O.; Braiman M. S.; Myers A. B.; Pardoen J. A.; Courtin J. M. L.; Winkel C.; Lugtenburg J.; Mathies R. A. Vibrational analysis of the all-trans-retinal chromophore in light-adapted bacteriorhodopsin. J. Am. Chem. Soc. 1987, 109, 3108–3125. 10.1021/ja00244a038. DOI

Doukas A. G.; Aton B.; Callender R. H.; Ebrey T. G. Resonance Raman studies of bovine metarhodopsin I and metarhodopsin II. Biochemistry 1978, 17, 2430–5. 10.1021/bi00605a028. PubMed DOI

Kajimoto K.; Kikukawa T.; Nakashima H.; Yamaryo H.; Saito Y.; Fujisawa T.; Demura M.; Unno M. Transient resonance raman spectroscopy of a light-driven sodium-ion-pump rhodopsin from Indibacter alkaliphilus. J. Phys. Chem. B 2017, 121, 4431–4437. 10.1021/acs.jpcb.7b02421. PubMed DOI

Ogren J. I.; Mamaev S.; Russano D.; Li H.; Spudich J. L.; Rothschild K. J. Retinal chromophore structure and Schiff base interactions in red-shifted Channelrhodopsin-1 from Chlamydomonas augustae. Biochemistry 2014, 53, 3961–3970. 10.1021/bi500445c. PubMed DOI PMC

Bruun S.; Stoeppler D.; Keidel A.; Kuhlmann U.; Luck M.; Diehl A.; Geiger M. A.; Woodmansee D.; Trauner D.; Hegemann P.; Oschkinat H.; Hildebrandt P.; Stehfest K. Light-dark adaptation of channelrhodopsin involves photoconversion between the all-trans and 13-cis retinal isomers. Biochemistry 2015, 54, 5389–400. 10.1021/acs.biochem.5b00597. PubMed DOI

Friedrich T.; Geibel S.; Kalmbach R.; Chizhov I.; Ataka K.; Heberle J.; Engelhard M.; Bamberg E. Proteorhodopsin is a light-driven proton pump with variable vectoriality. J. Mol. Biol. 2002, 321, 821–838. 10.1016/S0022-2836(02)00696-4. PubMed DOI

Varo G.; Brown L. S.; Lakatos M.; Lanyi J. K. Characterization of the photochemical reaction cycle of proteorhodopsin. Biophys. J. 2003, 84, 1202–7. 10.1016/S0006-3495(03)74934-0. PubMed DOI PMC

Hussain S.; Kinnebrew M.; Schonenbach N. S.; Aye E.; Han S. Functional consequences of the oligomeric assembly of proteorhodopsin. J. Mol. Biol. 2015, 427, 1278–1290. 10.1016/j.jmb.2015.01.004. PubMed DOI PMC

Kohler T.; Weber I.; Glaubitz C.; Wachtveitl J. Proteorhodopsin photocycle kinetics between pH 5 and pH 9. Photochem. Photobiol. 2017, 93, 762–771. 10.1111/php.12753. PubMed DOI

Muthyala R.; Watanabe D.; Asato A. E.; Liu R. S. H. The nature of the delocalized cations in azulenic bacteriorhodopsin analogs. Photochem. Photobiol. 2001, 74, 837–845. 10.1562/0031-8655(2001)0740837TNOTDC2.0.CO2. PubMed DOI

Escobedo J. O.; Rusin O.; Lim S.; Strongin R. M. NIR dyes for bioimaging applications. Curr. Opin. Chem. Biol. 2010, 14, 64–70. 10.1016/j.cbpa.2009.10.022. PubMed DOI PMC

Levitus M.; Ranjit S. Cyanine dyes in biophysical research: the photophysics of polymethine fluorescent dyes in biomolecular environments. Q. Rev. Biophys. 2011, 44, 123–151. 10.1017/S0033583510000247. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...