Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
PubMed
36697514
DOI
10.1038/s42004-020-00437-3
PII: 10.1038/s42004-020-00437-3
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Near-infrared fluorescent proteins (NIR FPs) engineered from bacterial phytochromes are widely used for structural and functional deep-tissue imaging in vivo. To fluoresce, NIR FPs covalently bind a chromophore, such as biliverdin IXa tetrapyrrole. The efficiency of biliverdin binding directly affects the fluorescence properties, rendering understanding of its molecular mechanism of major importance. miRFP proteins constitute a family of bright monomeric NIR FPs that comprise a Per-ARNT-Sim (PAS) and cGMP-specific phosphodiesterases - Adenylyl cyclases - FhlA (GAF) domain. Here, we structurally analyze biliverdin binding to miRFPs in real time using time-resolved stimulated Raman spectroscopy and quantum mechanics/molecular mechanics (QM/MM) calculations. Biliverdin undergoes isomerization, localization to its binding pocket, and pyrrolenine nitrogen protonation in <1 min, followed by hydrogen bond rearrangement in ~2 min. The covalent attachment to a cysteine in the GAF domain was detected in 4.3 min and 19 min in miRFP670 and its C20A mutant, respectively. In miRFP670, a second C-S covalent bond formation to a cysteine in the PAS domain occurred in 14 min, providing a rigid tetrapyrrole structure with high brightness. Our findings provide insights for the rational design of NIR FPs and a novel method to assess cofactor binding to light-sensitive proteins.
Department of Physics and Astronomy Vrije Universiteit Amsterdam Amsterdam 1081 HV The Netherlands
Departments of Anatomy and Structural Biology Albert Einstein College of Medicine Bronx NY 10461 USA
ELI Beamlines Institute of Physics Na Slovance 2 182 21 Praha 8 Czech Republic
Medicum Faculty of Medicine University of Helsinki Helsinki 00290 Finland
School of Applied and Engineering Physics Cornell University Ithaca NY 14853 USA
Zobrazit více v PubMed
Tsien, R. Y. Constructing and Exploiting the Fluorescent Protein Paintbox (Nobel Lecture). Angew. Chem. Int. Ed. 48, 5612–5626 (2009). DOI
Weissleder, R. & Pittet, M. J. Imaging in the era of molecular oncology. Nature 452, 580–589 (2008). PubMed DOI PMC
Shu, X. et al. Mammalian expression of infrared fluorescent proteins engineered from a bacterial phytochrome. Science 324, 804–807 (2009). PubMed DOI PMC
Filonov, G. S. et al. Bright and stable near-infrared fluorescent protein for in vivo imaging. Nat. Biotechnol. 29, 757–761 (2011). PubMed DOI PMC
Shcherbakova, D. M. & Verkhusha, V. V. Near-infrared fluorescent proteins for multicolor in vivo imaging. Nat. Methods 10, 751–754 (2013). PubMed DOI PMC
Shcherbakova, D. M., Baloban, M. & Verkhusha, V. V. Near-infrared fluorescent proteins engineered from bacterial phytochromes. Curr. Opin. Chem. Biol. 27, 52–63 (2015). PubMed DOI PMC
Shcherbakova, D. M., Shemetov, A. A., Kaberniuk, A. A. & Verkhusha, V. V. Natural photoreceptors as a source of fluorescent proteins, biosensors, and optogenetic tools. Annu. Rev. Biochem. 84, 519–550 (2015).
Shcherbakova, D. M. et al. Bright monomeric near-infrared fluorescent proteins as tags and biosensors for multiscale imaging. Nat. Commun. 7, 1–12 (2016). DOI
Matlashov, M. E. et al. A set of monomeric near-infrared fluorescent proteins for multicolor imaging across scales. Nat. Commun. 11, 239 (2020).
Auldridge, M. E., Satyshur, K. A., Anstrom, D. M. & Forest, K. T. Structure-guided engineering enhances a phytochrome-based infrared fluorescent protein. J. Biol. Chem. 287, 7000–7009 (2012). PubMed DOI
Baird, G. S., Zacharias, D. A. & Tsien, R. Y. Circular permutation and receptor insertion within green fluorescent proteins. Proc. Natl Acad. Sci. USA 96, 11241–11246 (1999). PubMed DOI PMC
Barondeau, D. P., Putnam, C. D., Kassmann, C. J., Tainer, J. A. & Getzoff, E. D. Mechanism and energetics of green fluorescent protein chromophore synthesis revealed by trapped intermediate structures. Proc. Natl Acad. Sci. USA 100, 12111–12116 (2003). PubMed DOI PMC
Zhang, L., Patel, H. N., Lappe, J. W. & Wachter, R. M. Reaction progress of chromophore biogenesis in green fluorescent protein. J. Am. Chem. Soc. 128, 4766–4772 (2006). PubMed DOI
Craggs, T. D. Green fluorescent protein: structure, folding and chromophore maturation. Chem. Soc. Rev. 38, 2865–2875 (2009). PubMed DOI
Shemetov, A. A., Oliinyk, O. S. & Verkhusha, V. V. How to increase brightness of near-infrared fluorescent proteins in mammalian cells. Cell Chem. Biol. 24, 758–766.e3 (2017). PubMed DOI PMC
Kloz, M., Weißenborn, J., Polívka, T., Frank, H. A. & Kennis, J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: Resolving the nature of the carotenoid S∗ state. Phys. Chem. Chem. Phys. 18, 14619–14628 (2016). PubMed DOI
Hontani, Y. et al. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 18, 24729–24736 (2016). PubMed DOI
Hontani, Y. et al. Molecular origin of photoprotection in cyanobacteria probed by watermarked femtosecond stimulated Raman spectroscopy. J. Phys. Chem. Lett. 9, 1788–1792 (2018). PubMed DOI PMC
Hontani, Y. et al. Strong pH-dependent near-infrared fluorescence in a microbial rhodopsin reconstituted with a red-shifting retinal analogue. J. Phys. Chem. Lett. 9, 6469–6474 (2018). PubMed DOI PMC
Pižl, M. et al. Time-resolved femtosecond stimulated Raman spectra and DFT anharmonic vibrational analysis of an electronically excited rhenium photosensitizer. J. Phys. Chem. A 124, 1253–1265 (2020). PubMed DOI
Hontani, Y. et al. Dual photoisomerization on distinct potential energy surfaces in a UV absorbing rhodopsin. J. Am. Chem. Soc. 142, 11464–11473 (2020). PubMed DOI PMC
Artes Vivancos, J. M. et al. Unraveling the excited-state dynamics and light-harvesting functions of xanthophylls in light-harvesting complex II using femtosecond stimulated Raman spectroscopy. J. Am. Chem. Soc. https://doi.org/10.1021/jacs.0c04619 (2020).
Shcherbakova, D. M. et al. Molecular basis of spectral diversity in near-infrared phytochrome-based fluorescent proteins. Chem. Biol. 22, 1540–1551 (2015). PubMed DOI PMC
Shcherbakova, D. M., Cammer, Cox, Huisman, N., Verkhusha, T. M. & Hodgson, V. V. L. Direct multiplex imaging and optogenetics of Rho GTPases enabled by near-infrared FRET. Nat. Chem. Biol. 14, 591–600 (2018). PubMed DOI PMC
Monakhov, M. V. et al. Screening and Cellular Characterization of Genetically Encoded Voltage Indicators Based on Near-Infrared Fluorescent Proteins. ACS Chemical Neuroscience 11, 3523–3531 (2020) PubMed DOI
Wagner, J. R., Brunzelle, J. S., Forest, K. T. & Vierstra, R. D. A light-sensing knot revealed by the structure of the chromophore-binding domain of phytochrome. Nature 438, 325–331 (2005). PubMed DOI
Wagner, J. R., Zhang, J., Brunzelle, J. S., Vierstra, R. D. & Forest, K. T. High resolution structure of Deinococcus bacteriophytochrome yields new insights into phytochrome architecture and evolution. J. Biol. Chem. 282, 12298–12309 (2007). PubMed DOI
Yang, X., Stojkovic, E. A., Kuk, J. & Moffat, K. Crystal structure of the chromophore binding domain of an unusual bacteriophytochrome, RpBphP3, reveals residues that modulate photoconversion. Proc. Natl Acad. Sci. USA 104, 12571–12576 (2007). PubMed DOI PMC
Lamparter, T., Michael, N., Mittmann, F. & Esteban, B. Phytochrome from Agrobacterium tumefaciens has unusual spectral properties and reveals an N-terminal chromophore attachment site. Proc. Natl Acad. Sci. USA 99, 11628–11633 (2002). PubMed DOI PMC
Lamparter, T. et al. The Biliverdin chromophore binds covalently to a conserved cysteine residue in the N-terminus of agrobacterium phytochrome Agp1. Biochemistry 43, 3659–3669 (2004). PubMed DOI
Baloban, M. et al. Designing brighter near-infrared fluorescent proteins: Insights from structural and biochemical studies. Chem. Sci. 8, 4546–4557 (2017). PubMed DOI PMC
Buhrke, D. et al. Chromophore binding to two cysteines increases quantum yield of near-infrared fluorescent proteins. Sci. Rep. 9, 1866 (2019). PubMed DOI PMC
Margulies, L. & Toporowicz, M. Resonance Raman study of model compounds of the phytochrome chromophore. 2. Biliverdin dimethyl ester. J. Am. Chem. Soc. 106, 7331–7336 (1984). DOI
Hsieh, Y. Z. & Morris, M. D. Resonance Raman spectroscopic study of bilirubin hydrogen bonding in solutions and in the albumin complex. J. Am. Chem. Soc. 110, 62–67 (1988). DOI
Holt, R. E., Farrens, D. L., Song, P. S. & Cotton, T. M. Surface-enhanced resonance Raman scattering (SERRS) spectroscopy applied to phytochrome and its model compounds. I. Biliverdin photoisomers. J. Am. Chem. Soc. 111, 9156–9162 (1989). DOI
Iturraspe, J. B., Bari, S. & Frydman, B. Total synthesis of ‘extended’ biliverdins. The relation between their conformation and their spectroscopic properties. J. Am. Chem. Soc. 111, 1525–1527 (1989). DOI
Wagner, J. R. et al. Mutational analysis of Deinococcus radiodurans bacteriophytochrome reveals key amino acids necessary for the photochromicity and proton exchange cycle of phytochromes. J. Biol. Chem. 283, 12212–12226 (2008). PubMed DOI PMC
Matute, R. A., Contreras, R. & González, L. Time-dependent DFT on phytochrome chromophores: a way to the right conformer. J. Phys. Chem. Lett. 1, 796–801 (2010). DOI
Zienicke, B. et al. Unusual Spectral Properties of Bacteriophytochrome Agp2 Result from a Deprotonation of the Chromophore in the Red-absorbing Form Pr *. https://doi.org/10.1074/jbc.M113.479535 (2013).
Velazquez Escobar, F. et al. Protonation-dependent structural heterogeneity in the chromophore binding site of cyanobacterial phytochrome Cph1. J. Phys. Chem. B 121, 47–57 (2017). PubMed DOI
Velazquez Escobar, F. et al. Structural parameters controlling the fluorescence properties of phytochromes. Biochemistry 53, 20–29 (2014). PubMed DOI
Kneip, C. et al. Protonation state and structural changes of the tetrapyrrole chromophore during the P(r) → P(fr) phototransformation of phytochrome: a resonance raman spectroscopic study. Biochemistry 38, 15185–15192 (1999). PubMed DOI
Mroginski, M. A. et al. Chromophore structure of cyanobacterial phytochrome Cph1 in the Pr state: reconciling structural and spectroscopic data by QM/MM calculations. Biophys. J. 96, 4153–4163 (2009). PubMed DOI PMC
von Stetten, D. et al. Highly conserved residues Asp-197 and His-250 in Agp1 phytochrome control the proton affinity of the chromophore and Pfr formation. J. Biol. Chem. 282, 2116–2123 (2007). DOI
Hontani, Y. et al. Bright blue-shifted fluorescent proteins with Cys in the GAF domain engineered from bacterial phytochromes: fluorescence mechanisms and excited-state dynamics. Sci. Rep. 6, 1–12 (2016). DOI
Snellenburg, J. J., Laptenok, S. P., Seger, R., Mullen, K. M. & van Stokkum, I. H. M. Glotaran: a Java-based graphical user interface for the R package TIMP. J. Stat. Softw. 49, 1–2 (2012). DOI
Van Stokkum, I. H. M., Larsen, D. S. & Van Grondelle, R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta - Bioenerg. 1657, 82–104 (2004). DOI
Kennis, J. T. & Groot, M. L. Ultrafast spectroscopy of biological photoreceptors. Curr. Opin. Struct. Biol. 17, 623–630 (2007). PubMed DOI
Toh, K. C., Stojković, E. A., Van Stokkum, I. H. M., Moffat, K. & Kennis, J. T. M. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys. Chem. Chem. Phys. 13, 11985–11997 (2011). PubMed DOI
Brooks, B. R. et al. CHARMM: a program for macromolecular energy, minimization, and dynamics calculations. J. Comput. Chem. 4, 187–217 (1983). DOI
Foloppe, N., Alexander, D. & MacKerell, J. All‐atom empirical force field for nucleic acids: I. Parameter optimization based on small molecule and condensed phase macromolecular target data. J. Comput. Chem. 21, 86–104 (2000). DOI
Senn, H. M. & Thiel, W. QM/MM methods for biomolecular systems. Angew. Chem. Int. Ed. 48, 1198–1229 (2009). DOI
Billeter, S. R., Turner, A. J. & Thiel, W. Linear scaling geometry optimisation and transition state search in hybrid delocalised internal coordinates. Phys. Chem. Chem. Phys. 2, 2177–2186 (2000). DOI
Sherwood, P. et al. QUASI: a general purpose implementation of the QM/MM approach and its application to problems in catalysis. J. Mol. Struct. THEOCHEM 632, 1–28 (2003). DOI
Mroginski, M. A., Mark, F., Thiel, W. & Hildebrandt, P. Quantum mechanics/molecular mechanics calculation of the Raman spectra of the phycocyanobilin chromophore in α-C-phycocyanin. Biophys. J. 93, 1885–1894 (2007). PubMed DOI PMC