Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
32475117
PubMed Central
PMC7315636
DOI
10.1021/jacs.0c03229
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
UV-absorbing rhodopsins are essential for UV vision and sensing in all kingdoms of life. Unlike the well-known visible-absorbing rhodopsins, which bind a protonated retinal Schiff base for light absorption, UV-absorbing rhodopsins bind an unprotonated retinal Schiff base. Thus far, the photoreaction dynamics and mechanisms of UV-absorbing rhodopsins have remained essentially unknown. Here, we report the complete excited- and ground-state dynamics of the UV form of histidine kinase rhodopsin 1 (HKR1) from eukaryotic algae, using femtosecond stimulated Raman spectroscopy (FSRS) and transient absorption spectroscopy, covering time scales from femtoseconds to milliseconds. We found that energy-level ordering is inverted with respect to visible-absorbing rhodopsins, with an optically forbidden low-lying S1 excited state that has Ag- symmetry and a higher-lying UV-absorbing S2 state of Bu+ symmetry. UV-photoexcitation to the S2 state elicits a unique dual-isomerization reaction: first, C13═C14 cis-trans isomerization occurs during S2-S1 evolution in <100 fs. This very fast reaction features the remarkable property that the newly formed isomer appears in the excited state rather than in the ground state. Second, C15═N16 anti-syn isomerization occurs on the S1-S0 evolution to the ground state in 4.8 ps. We detected two ground-state unprotonated retinal photoproducts, 13-trans/15-anti (all-trans) and 13-cis/15-syn, after relaxation to the ground state. These isomers become protonated in 58 μs and 3.2 ms, respectively, resulting in formation of the blue-absorbing form of HKR1. Our results constitute a benchmark of UV-induced photochemistry of animal and microbial rhodopsins.
Zobrazit více v PubMed
Ernst O. P.; Lodowski D. T.; Elstner M.; Hegemann P.; Brown L. S.; Kandori H. Microbial and animal rhodopsins: structures, functions, and molecular mechanisms. Chem. Rev. 2014, 114 (1), 126–63. 10.1021/cr4003769. PubMed DOI PMC
Shichida Y.; Matsuyama T. Evolution of opsins and phototransduction. Philos. Trans. R. Soc., B 2009, 364 (1531), 2881–2895. 10.1098/rstb.2009.0051. PubMed DOI PMC
Kumauchi M.; Ebry T.. Visual Pigments as Photoreceptors. In Handbook of Photosensory Receptors; Briggs W. R., Spudich J. L., Eds.; Wiley: Weinheim, Germany, 2006; pp 43–76.
Gozem S.; Luk H. L.; Schapiro I.; Olivucci M. Theory and Simulation of the Ultrafast Double-Bond lsomerization of Biological Chromophores. Chem. Rev. 2017, 117 (22), 13502–13565. 10.1021/acs.chemrev.7b00177. PubMed DOI
Polli D.; Altoe P.; Weingart O.; Spillane K. M.; Manzoni C.; Brida D.; Tomasello G.; Orlandi G.; Kukura P.; Mathies R. A.; Garavelli M.; Cerullo G. Conical intersection dynamics of the primary photoisomerization event in vision. Nature 2010, 467 (7314), 440–3. 10.1038/nature09346. PubMed DOI
Johnson P. J. M.; Halpin A.; Morizumi T.; Prokhorenko V. I.; Ernst O. P.; Miller R. J. D. Local vibrational coherences drive the primary photochemistry of vision. Nat. Chem. 2015, 7 (12), 980–986. 10.1038/nchem.2398. PubMed DOI
Schapiro I.; Ryazantsev M. N.; Frutos L. M.; Ferre N.; Lindh R.; Olivucci M. The Ultrafast Photoisomerizations of Rhodopsin and Bathorhodopsin Are Modulated by Bond Length Alternation and HOOP Driven Electronic Effects. J. Am. Chem. Soc. 2011, 133 (10), 3354–3364. 10.1021/ja1056196. PubMed DOI
Shim S.; Dasgupta J.; Mathies R. A. Femtosecond time-resolved stimulated Raman reveals the birth of bacteriorhodopsin’s J and K intermediates. J. Am. Chem. Soc. 2009, 131 (22), 7592–7. 10.1021/ja809137x. PubMed DOI
Kukura P.; McCamant D. W.; Yoon S.; Wandschneider D. B.; Mathies R. A. Structural observation of the primary isomerization in vision with femtosecond-stimulated Raman. Science 2005, 310 (5750), 1006–9. 10.1126/science.1118379. PubMed DOI
Nogly P.; Weinert T.; James D.; Carbajo S.; Ozerov D.; Furrer A.; Gashi D.; Borin V.; Skopintsev P.; Jaeger K.; Nass K.; Bath P.; Bosman R.; Koglin J.; Seaberg M.; Lane T.; Kekilli D.; Brunle S.; Tanaka T.; Wu W. T.; Milne C.; White T.; Barty A.; Weierstall U.; Panneels V.; Nango E.; Iwata S.; Hunter M.; Schapiro I.; Schertler G.; Neutze R.; Standfuss J. Retinal isomerization in bacteriorhodopsin captured by a femtosecond x-ray laser. Science 2018, 361 (6398), eaat0094.10.1126/science.aat0094. PubMed DOI
Nass Kovacs G.; Colletier J. P.; Grunbein M. L.; Yang Y.; Stensitzki T.; Batyuk A.; Carbajo S.; Doak R. B.; Ehrenberg D.; Foucar L.; Gasper R.; Gorel A.; Hilpert M.; Kloos M.; Koglin J. E.; Reinstein J.; Roome C. M.; Schlesinger R.; Seaberg M.; Shoeman O. L.; Stricker M.; Boutet S.; Haacke S.; Heberle J.; Heyne K.; Domratcheva T.; Barends T. R. M.; Schlichting I. Three-dimensional view of ultrafast dynamics in photoexcited bacteriorhodopsin. Nat. Commun. 2019, 10, 3177.10.1038/s41467-019-10758-0. PubMed DOI PMC
Frutos L. M.; Andruniow T.; Santoro F.; Ferre N.; Olivucci M. Tracking the excited-state time evolution of the visual pigment with multiconfigurational quantum chemistry. Proc. Natl. Acad. Sci. U. S. A. 2007, 104 (19), 7764–7769. 10.1073/pnas.0701732104. PubMed DOI PMC
Hunt D. M.; Wilkie S. E.; Bowmaker J. K.; Poopalasundaram S. Vision in the ultraviolet. Cell. Mol. Life Sci. 2001, 58 (11), 1583–1598. 10.1007/PL00000798. PubMed DOI PMC
Salcedo E.; Zheng L.; Phistry M.; Bagg E. E.; Britt S. G. Molecular basis for ultraviolet vision in invertebrates. J. Neurosci. 2003, 23 (34), 10873–8. 10.1523/JNEUROSCI.23-34-10873.2003. PubMed DOI PMC
Shi Y.; Radlwimmer F. B.; Yokoyama S. Molecular genetics and the evolution of ultraviolet vision in vertebrates. Proc. Natl. Acad. Sci. U. S. A. 2001, 98 (20), 11731–6. 10.1073/pnas.201257398. PubMed DOI PMC
Koyanagi M.; Kawano E.; Kinugawa Y.; Oishi T.; Shichida Y.; Tamotsu S.; Terakita A. Bistable UV pigment in the lamprey pineal. Proc. Natl. Acad. Sci. U. S. A. 2004, 101 (17), 6687–91. 10.1073/pnas.0400819101. PubMed DOI PMC
Yamashita T.; Ohuchi H.; Tomonari S.; Ikeda K.; Sakai K.; Shichida Y. Opn5 is a UV-sensitive bistable pigment that couples with Gi subtype of G protein. Proc. Natl. Acad. Sci. U. S. A. 2010, 107 (51), 22084–9. 10.1073/pnas.1012498107. PubMed DOI PMC
Luck M.; Mathes T.; Bruun S.; Fudim R.; Hagedorn R.; Tran Nguyen T. M.; Kateriya S.; Kennis J. T.; Hildebrandt P.; Hegemann P. A photochromic histidine kinase rhodopsin (HKR1) that is bimodally switched by ultraviolet and blue light. J. Biol. Chem. 2012, 287 (47), 40083–90. 10.1074/jbc.M112.401604. PubMed DOI PMC
Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI
Luck M.; Bruun S.; Keidel A.; Hegemann P.; Hildebrandt P. Photochemical chromophore isomerization in histidine kinase rhodopsin HKR1. FEBS Lett. 2015, 589 (10), 1067–1071. 10.1016/j.febslet.2015.03.024. PubMed DOI
Kloz M.; WeiSsenborn J.; Polivka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18 (21), 14619–28. 10.1039/C6CP01464J. PubMed DOI
McCamant D. W.; Kukura P.; Mathies R. A. Femtosecond stimulated Raman study of excited-state evolution in bacteriorhodopsin. J. Phys. Chem. B 2005, 109 (20), 10449–10457. 10.1021/jp050095x. PubMed DOI PMC
Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18 (35), 24729–36. 10.1039/C6CP05240A. PubMed DOI
Schnedermann C.; Muders V.; Ehrenberg D.; Schlesinger R.; Kukura P.; Heberle J. Vibronic Dynamics of the Ultrafast all-trans to 13-cis Photoisomerization of Retinal in Channelrhodopsin-1. J. Am. Chem. Soc. 2016, 138 (14), 4757–62. 10.1021/jacs.5b12251. PubMed DOI
Simpson J. H.; McLaughlin L.; Smith D. S.; Christensen R. L. Vibronic Coupling in Polyenes - High-Resolution Optical Spectroscopy of All-trans-2,4,6,8,10,12,14-hexadecaheptaene. J. Chem. Phys. 1987, 87 (6), 3360–3365. 10.1063/1.452978. DOI
Christensen R. L.; Kohler B. E. Vibronic Coupling in Polyenes - High-Resolution Optical Spectroscopy of 2,10-Dimethylundecapentaene. J. Chem. Phys. 1975, 63 (5), 1837–1846. 10.1063/1.431560. DOI
Mukai Y.; Hashimoto H.; Koyama Y.; Kuroda S.; Hirata Y.; Mataga N. S1-State and T1-State Properties of Normal-Butylamine Schiff-Bases of Isomeric Retinylideneacetaldehyde As Revealed by Transient Absorption and Transient Raman Spectroscopies and by HPLC Analysis of Triplet-Sensitized Isomerization. J. Phys. Chem. 1991, 95 (26), 10586–10592. 10.1021/j100179a019. DOI
Tavan P.; Schulten K. the Low-Lying Electronic Excitations in Long Polyenes - A PPP-MRD-CL Study. J. Chem. Phys. 1986, 85 (11), 6602–6609. 10.1063/1.451442. DOI
Tavan P.; Schulten K. Electronic Excitations in Finite and Infinite Polyenes. Phys. Rev. B: Condens. Matter Mater. Phys. 1987, 36 (8), 4337–4358. 10.1103/PhysRevB.36.4337. PubMed DOI
Christensen R. L.; Enriquez M. M.; Wagner N. L.; Peacock-Villada A. Y.; Scriban C.; Schrock R. R.; Polivka T.; Frank H. A.; Birge R. R. Energetics and Dynamics of the Low-Lying Electronic States of Constrained Polyenes: Implications for Infinite Polyenes. J. Phys. Chem. A 2013, 117 (7), 1449–1465. 10.1021/jp310592s. PubMed DOI PMC
Christensen R. L.; Galinato M. G. I.; Chu E. F.; Howard J. N.; Broene R. D.; Frank H. A. Energies of Low-Lying Excited States of Linear Polyenes. J. Phys. Chem. A 2008, 112 (49), 12629–12636. 10.1021/jp8060202. PubMed DOI PMC
Garavelli M.; Celani P.; Bernardi F.; Robb M. A.; Olivucci M. Force fields for ’’ultrafast’’ photochemistry: The S-2 (1B(u))->S-1(2A(g))->S-0 (1A(g)) reaction path for all-trans-hexa-1,3,5-triene. J. Am. Chem. Soc. 1997, 119 (47), 11487–11494. 10.1021/ja971280u. DOI
Birge R. R. 2-Photon Spectroscopy of Protein-Bound Chromophores. Acc. Chem. Res. 1986, 19 (5), 138–146. 10.1021/ar00125a003. DOI
Cembran A.; Bernardi F.; Olivucci M.; Garavelli M. Counterion controlled photoisomerization of retinal chromophore models: a computational investigation. J. Am. Chem. Soc. 2004, 126 (49), 16018–16037. 10.1021/ja048782+. PubMed DOI
Cembran A.; Bernardi F.; Olivucci M.; Garavelli M. Excited-state singlet manifold and oscillatory features of a nonatetraeniminium retinal chromophore model. J. Am. Chem. Soc. 2003, 125 (41), 12509–12519. 10.1021/ja030215j. PubMed DOI
Marin M. D.; Agathangelou D.; Orozco-Gonzalez Y.; Valentini A.; Kato Y.; Abe-Yoshizumi R.; Kandori H.; Choi A.; Jung K. H.; Haacke S.; Olivucci M. Fluorescence Enhancement of a Microbial Rhodopsin via Electronic Reprogramming. J. Am. Chem. Soc. 2019, 141 (1), 262–271. 10.1021/jacs.8b09311. PubMed DOI PMC
Hontani Y.; Marazzi M.; Stehfest K.; Mathes T.; van Stokkum I. H. M.; Elstner M.; Hegemann P.; Kennis J. T. M. Reaction dynamics of the chimeric channelrhodopsin C1C2. Sci. Rep. 2017, 7 (1), 7217.10.1038/s41598-017-07363-w. PubMed DOI PMC
Dokukina I.; Weingart O. Spectral properties and isomerisation path of retinal in C1C2 channelrhodopsin. Phys. Chem. Chem. Phys. 2015, 17 (38), 25142–25150. 10.1039/C5CP02650D. PubMed DOI
Bachilo S. M.; Bondarev S. L.; Gillbro T. Fluorescence properties of protonated and unprotonated Schiff bases of retinal at room temperature. J. Photochem. Photobiol., B 1996, 34 (1), 39–46. 10.1016/1011-1344(95)07271-3. DOI
Bachilo S. M.; Gillbro T. Fluorescence of retinal Schiff base in alcohols. J. Phys. Chem. A 1999, 103 (15), 2481–2488. 10.1021/jp983646a. DOI
Bonvicini A.; Demoulin B.; Altavilla S. F.; Nenov A.; El-Tahawy M. M. T.; Segarra-Marti J.; Giussani A.; Batista V. S.; Garavelli M.; Rivalta I. Ultraviolet vision: photophysical properties of the unprotonated retinyl Schiff base in the Siberian hamster cone pigment. Theor. Chem. Acc. 2016, 135 (4), 110.10.1007/s00214-016-1869-x. DOI
Kraack J. P.; Buckup T.; Motzkus M. Coherent High-Frequency Vibrational Dynamics in the Excited Electronic State of All-Trans Retinal Derivatives. J. Phys. Chem. Lett. 2013, 4 (3), 383–387. 10.1021/jz302001m. PubMed DOI
Doukas A. G.; Aton B.; Callender R. H.; Ebrey T. G. Resonance Raman Studies of Bovine Metarhodopsin-I and Metarhodopsin-II. Biochemistry 1978, 17 (12), 2430–2435. 10.1021/bi00605a028. PubMed DOI
Aton B.; Doukas A. G.; Callender R. H.; Becher B.; Ebrey T. G. Resonance Raman Studies of Purple Membrane. Biochemistry 1977, 16 (13), 2995–2999. 10.1021/bi00632a029. PubMed DOI
Nagae H.; Kuki M.; Zhang J. P.; Sashima T.; Mukai Y.; Koyama Y. Vibronic coupling through the in-phase, C=C stretching mode plays a major role in the 2A(g)(−) to 1A(g)(−) internal conversion of all-trans-beta-carotene. J. Phys. Chem. A 2000, 104 (18), 4155–4166. 10.1021/jp9924833. DOI
Kuici M.; Nagae H.; Cogdell R. J.; Shimada K.; Koyama Y. Solvent Effect on Spheroidene in Nonpolar and Polar Solutions and the Environment of Spheroidene in the Light-Harvesting Complexes of Rhodobacter Sphaeroides 2.4.1 As Revealed by the Energy of the (1)A(G)(−)- B-1(U)+ Absorption and the Frequencies of the Vibronically Coupled C=C Stretching Raman Lines in the (1)A(G)(−) and 2(1)A(G)(−) States. Photochem. Photobiol. 1994, 59 (1), 116–124. 10.1111/j.1751-1097.1994.tb05009.x. DOI
Hashimoto H.; Koyama Y. the C=C Stretching Raman Lines of Beta-Carotene Isomers in the S1 State As Detected by Pump-Probe Resonance Raman-Spectroscopy. Chem. Phys. Lett. 1989, 154 (4), 321–325. 10.1016/0009-2614(89)85363-1. DOI
Hashimoto H.; Koyama Y.; Hirata Y.; Mataga N. S1 and T1 Species of Beta-Carotene Generated by Direct Photoexcitation from the All-Trans, 9-Cis, 13-Cis, and 15-Cis Isomers as Revealed by Picosecond Transient Absorption and Transient Raman Spectroscopies. J. Phys. Chem. 1991, 95 (8), 3072–3076. 10.1021/j100161a022. DOI
Granville M. F.; Holtom G. R.; Kohler B. E. High-Resolution One and Two Photon Excitation-Spectra of trans,trans-1,3,5,7-Octatetraene. J. Chem. Phys. 1980, 72 (9), 4671–4675. 10.1063/1.439802. DOI
Ishii K.; Takeuchi S.; Tahara T. A 35-fs time-resolved absorption study of all-trans retinal in a nonpolar solvent: Ultrafast photophysics revisited. Chem. Phys. Lett. 2006, 418 (4–6), 307–310. 10.1016/j.cplett.2005.11.002. DOI
Peteanu L. A.; Schoenlein R. W.; Wang Q.; Mathies R. A.; Shank C. V. the 1st Step in Vision Occurs in Femtoseconds - Complete Blue and Red Spectral Studies. Proc. Natl. Acad. Sci. U. S. A. 1993, 90 (24), 11762–11766. 10.1073/pnas.90.24.11762. PubMed DOI PMC
Levine B. G.; Martinez T. J. Isomerization through conical intersections. Annu. Rev. Phys. Chem. 2007, 58, 613–634. 10.1146/annurev.physchem.57.032905.104612. PubMed DOI
Kalisky O.; Lachish U.; Ottolenghi M. Time Resolution of a Back Photoreaction in Bacteriorhodopsin. Photochem. Photobiol. 1978, 28 (2), 261–263. 10.1111/j.1751-1097.1978.tb07705.x. DOI
Eckert C. E.; Kaur J.; Glaubitz C.; Wachtveitl J. Ultrafast Photoinduced Deactivation Dynamics of Proteorhodopsin. J. Phys. Chem. Lett. 2017, 8 (2), 512–517. 10.1021/acs.jpclett.6b02975. PubMed DOI
Bruun S.; Stoeppler D.; Keidel A.; Kuhlmann U.; Luck M.; Diehl A.; Geiger M. A.; Woodmansee D.; Trauner D.; Hegemann P.; Oschkinat H.; Hildebrandt P.; Stehfest K. Light-Dark Adaptation of Channelrhodopsin Involves Photoconversion between the all-trans and 13-cis Retinal Isomers. Biochemistry 2015, 54 (35), 5389–400. 10.1021/acs.biochem.5b00597. PubMed DOI
Nosrati M.; Berbasova T.; Vasileiou C.; Borhan B.; Geiger J. H. A Photoisomerizing Rhodopsin Mimic Observed at Atomic Resolution. J. Am. Chem. Soc. 2016, 138 (28), 8802–8808. 10.1021/jacs.6b03681. PubMed DOI PMC
Alexandre M. T.; Domratcheva T.; Bonetti C.; van Wilderen L. J.; van Grondelle R.; Groot M. L.; Hellingwerf K. J.; Kennis J. T. Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry. Biophys. J. 2009, 97 (1), 227–37. 10.1016/j.bpj.2009.01.066. PubMed DOI PMC
Groot M. L.; van Wilderen L.; Di Donato M. Time-resolved methods in biophysics. 5. Femtosecond time-resolved and dispersed infrared spectroscopy on proteins. Photochemical & Photobiological Sciences 2007, 6 (5), 501–507. 10.1039/b613023b. PubMed DOI
Luck M.; Hegemann P. The two parallel photocycles of the Chlamydomonas sensory photoreceptor histidine kinase rhodopsin 1. J. Plant Physiol. 2017, 217, 77–84. 10.1016/j.jplph.2017.07.008. PubMed DOI
Ravensbergen J.; Abdi F. F.; van Santen J. H.; Frese R. N.; Dam B.; van de Krol R.; Kennis J. T. M. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 2014, 118 (48), 27793–27800. 10.1021/jp509930s. DOI
Snellenburg J. J.; Laptenok S. P.; Seger R.; Mullen K. M.; van Stokkum I. H. M. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat Softw 2012, 49 (3), 1–22. 10.18637/jss.v049.i03. DOI
van Stokkum I. H. M.; Larsen D. S.; van Grondelle R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta, Bioenerg. 2004, 1657 (2–3), 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI
Kennis J. T. M.; Groot M. L. Ultrafast spectroscopy of biological photoreceptors. Curr. Opin. Struct. Biol. 2007, 17 (5), 623–630. 10.1016/j.sbi.2007.09.006. PubMed DOI
Toh K. C.; Stojkovic E. A.; van Stokkum I. H.; Moffat K.; Kennis J. T. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys. Chem. Chem. Phys. 2011, 13 (25), 11985–97. 10.1039/c1cp00050k. PubMed DOI
Retinal to Retinal Energy Transfer in a Bistable Microbial Rhodopsin Dimer
Multiple retinal isomerizations during the early phase of the bestrhodopsin photoreaction
Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome
Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome