Spectroscopic and Computational Observation of Glutamine Tautomerization in the Blue Light Sensing Using Flavin Domain Photoreaction

. 2023 Jan 18 ; 145 (2) : 1040-1052. [epub] 20230106

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid36607126

Blue light sensing using flavin (BLUF) domains constitute a family of flavin-binding photoreceptors of bacteria and eukaryotic algae. BLUF photoactivation proceeds via a light-driven hydrogen-bond switch among flavin adenine dinucleotide (FAD) and glutamine and tyrosine side chains, whereby FAD undergoes electron and proton transfer with tyrosine and is subsequently re-oxidized by a hydrogen back-shuttle in picoseconds, constituting an important model system to understand proton-coupled electron transfer in biology. The specific structure of the hydrogen-bond patterns and the prevalence of glutamine tautomeric states in dark-adapted (DA) and light-activated (LA) states have remained controversial. Here, we present a combined femtosecond stimulated Raman spectroscopy (FSRS), computational chemistry, and site-selective isotope labeling Fourier-transform infrared spectroscopy (FTIR) study of the Slr1694 BLUF domain. FSRS showed distinct vibrational bands from the FADS1 singlet excited state. We observed small but significant shifts in the excited-state vibrational frequency patterns of the DA and LA states, indicating that these frequencies constitute a sensitive probe for the hydrogen-bond arrangement around FAD. Excited-state model calculations utilizing four different realizations of hydrogen bond patterns and glutamine tautomeric states were consistent with a BLUF reaction model that involved glutamine tautomerization to imidic acid, accompanied by a rotation of its side chain. A combined FTIR and double-isotope labeling study, with 13C labeling of FAD and 15N labeling of glutamine, identified the glutamine imidic acid C═N stretch vibration in the LA state and the Gln C═O in the DA state. Hence, our study provides support for glutamine tautomerization and side-chain rotation in the BLUF photoreaction.

Zobrazit více v PubMed

Masuda S.; Bauer C. E. AppA is a blue light photoreceptor that antirepresses photosynthesis gene expression in Rhodobacter sphaeroides. Cell 2002, 110, 613–623. 10.1016/s0092-8674(02)00876-0. PubMed DOI

Braatsch S.; Klug G. Blue light perception in bacteria. Photosynth. Res. 2004, 79, 45–57. 10.1023/b:pres.0000011924.89742.f9. PubMed DOI

Braatsch S.; Gomelsky M.; Kuphal S.; Klug G. A single flavoprotein, AppA, integrates both redox and light signals in Rhodobacter sphaeroides. Mol. Microbiol. 2002, 45, 827–836. 10.1046/j.1365-2958.2002.03058.x. PubMed DOI

Iseki M.; Matsunaga S.; Murakami A.; Ohno K.; Shiga K.; Yoshida K.; Sugai M.; Takahashi T.; Hori T.; Watanabe M. A blue-light-activated adenylyl cyclase mediates photoavoidance in Euglena gracilis. Nature 2002, 415, 1047–1051. 10.1038/4151047a. PubMed DOI

Rajagopal S.; Key J. M.; Purcell E. B.; Boerema D. J.; Moffat K. Purification and Initial Characterization of a Putative Blue Light-regulated Phosphodiesterase from Escherichia coli. Photochem. Photobiol. 2004, 80, 542–547. 10.1562/0031-8655(2004)080<0542:paicoa>2.0.co;2. PubMed DOI

Stierl M.; Stumpf P.; Udwari D.; Gueta R.; Hagedorn R.; Losi A.; Gärtner W.; Petereit L.; Efetova M.; Schwarzel M.; Oertner T. G.; Nagel G.; Hegemann P. Light Modulation of Cellular cAMP by a Small Bacterial Photoactivated Adenylyl Cyclase, bPAC, of the Soil Bacterium Beggiatoa. J. Biol. Chem. 2011, 286, 1181–1188. 10.1074/jbc.m110.185496. PubMed DOI PMC

Schröder-Lang S.; Schwärzel M.; Seifert R.; Strünker T.; Kateriya S.; Looser J.; Watanabe M.; Kaupp U. B.; Hegemann P.; Nagel G. Fast manipulation of cellular cAMP level by light in vivo. Nat. Methods 2007, 4, 39–42. 10.1038/nmeth975. PubMed DOI

Jansen V.; Alvarez L.; Balbach M.; Strunker T.; Hegemann P.; Kaupp U. B.; Wachten D. Controlling fertilization and cAMP signaling in sperm by optogenetics. eLife 2015, 4, e0516110.7554/elife.05161. PubMed DOI PMC

Zhou Z. W.; Okamoto K.; Onodera J.; Hiragi T.; Andoh M.; Ikawa M.; Tanaka K. F.; Ikegaya Y.; Koyama R. Astrocytic cAMP modulates memory via synaptic plasticity. Proc. Natl. Acad. Sci. U.S.A. 2021, 118, e201658411810.1073/pnas.2016584118. PubMed DOI PMC

Sierra Y. A. B.; Rost B. R.; Pofahl M.; Fernandes A. M.; Kopton R. A.; Moser S.; Holtkamp D.; Masala N.; Beed P.; Tukker J. J.; Oldani S.; Bonigk W.; Kohl P.; Baier H.; Schneider-Warme F.; Hegemann P.; Beck H.; Seifert R.; Schmitz D. Potassium channel-based optogenetic silencing. Nat. Commun. 2018, 9, 4611.10.1038/s41467-018-07038-8. PubMed DOI PMC

Migliore A.; Polizzi N. F.; Therien M. J.; Beratan D. N. Biochemistry and Theory of Proton-Coupled Electron Transfer. Chem. Rev. 2014, 114, 3381–3465. 10.1021/cr4006654. PubMed DOI PMC

Gauden M.; van Stokkum I. H.; Key J. M.; Lührs D.; van Grondelle R.; Hegemann P.; Kennis J. T. Hydrogen-bond switching through a radical pair mechanism in a flavin-binding photoreceptor. Proc. Natl. Acad. Sci. U.S.A. 2006, 103, 10895–10900. 10.1073/pnas.0600720103. PubMed DOI PMC

Udvarhelyi A.; Domratcheva T. Photoreaction in BLUF Receptors: Proton-coupled Electron Transfer in the Flavin-Gln-Tyr System. Photochem. Photobiol. 2011, 87, 554–563. 10.1111/j.1751-1097.2010.00884.x. PubMed DOI

Goings J. J.; Hammes-Schiffer S. Early Photocycle of Slr1694 Blue-Light Using Flavin Photoreceptor Unraveled through Adiabatic Excited-State Quantum Mechanical/Molecular Mechanical Dynamics. J. Am. Chem. Soc. 2019, 141, 20470–20479. 10.1021/jacs.9b11196. PubMed DOI

Goings J. J.; Li P. F.; Zhu Q. W.; Hammes-Schiffer S. Formation of an unusual glutamine tautomer in a blue light using flavin photocycle characterizes the light-adapted state. Proc. Natl. Acad. Sci. U.S.A. 2020, 117, 26626–26632. 10.1073/pnas.2016719117. PubMed DOI PMC

Laan W.; van der Horst M. A.; van Stokkum I. H.; Hellingwerf K. J. Initial Characterization of the Primary Photochemistry of AppA, a Blue-light-using Flavin Adenine Dinucleotide-domain Containing Transcriptional Antirepressor Protein from Rhodobacter sphaeroides: A Key Role for Reversible Intramolecular Proton Transfer from the Flavin Adenine Dinucleotide Chromophore to a Conserved Tyrosine?. Photochem. Photobiol. 2003, 78, 290–297. 10.1562/0031-8655(2003)078<0290:icotpp>2.0.co;2. PubMed DOI

Masuda S.; Hasegawa K.; Ishii A.; Ono T. Light-Induced Structural Changes in a Putative Blue-Light Receptor with a Novel FAD Binding Fold Sensor of Blue-Light Using FAD (BLUF); Slr1694 of Synechocystis sp. PCC6803. Biochemistry 2004, 43, 5304–5313. 10.1021/bi049836v. PubMed DOI

Anderson S.; Dragnea V.; Masuda S.; Ybe J.; Moffat K.; Bauer C. Structure of a Novel Photoreceptor, the BLUF Domain of AppA from Rhodobacter sphaeroides. Biochemistry 2005, 44, 7998–8005. 10.1021/bi0502691. PubMed DOI PMC

Mathes T.; van Stokkum I. H.; Kennis J. T. Photoactivation mechanisms of flavin-binding photoreceptors revealed through ultrafast spectroscopy and global analysis methods. Methods Mol. Biol. 2014, 1146, 401–442. 10.1007/978-1-4939-0452-5_16. PubMed DOI

Yuan H.; Anderson S.; Masuda S.; Dragnea V.; Moffat K.; Bauer C. Crystal Structures of the Synechocystis Photoreceptor Slr1694 Reveal Distinct Structural States Related to Signaling,. Biochemistry 2006, 45, 12687–12694. 10.1021/bi061435n. PubMed DOI PMC

Li J.; Uchida T.; Todo T.; Kitagawa T. Similarities and differences between cyclobutane pyrimidine dimer photolyase and (6-4) photolyase as revealed by resonance Raman spectroscopy - Electron transfer from the FAD cofactor to ultraviolet-damaged DNA. J. Biol. Chem. 2006, 281, 25551–25559. 10.1074/jbc.m604483200. PubMed DOI

Kennis J. T.; Mathes T. Molecular eyes: proteins that transform light into biological information. Interface Focus 2013, 3, 20130005.10.1098/rsfs.2013.0005. PubMed DOI PMC

Bonetti C.; Mathes T.; van Stokkum I. H.; Mullen K. M.; Groot M. L.; van Grondelle R.; Hegemann P.; Kennis J. T. Hydrogen bond switching among flavin and amino acid side chains in the BLUF photoreceptor observed by ultrafast infrared spectroscopy. Biophys. J. 2008, 95, 4790–4802. 10.1529/biophysj.108.139246. PubMed DOI PMC

Fujisawa T.; Takeuchi S.; Masuda S.; Tahara T. Signaling-State Formation Mechanism of a BLUF Protein PapB from the Purple Bacterium Rhodopseudomonas palustris Studied by Femtosecond Time-Resolved Absorption Spectroscopy. J. Phys. Chem. B 2014, 118, 14761–14773. 10.1021/jp5076252. PubMed DOI

Zhou Z.; Chen Z.; Kang X.-W.; Zhou Y.; Wang B.; Tang S.; Zou S.; Zhang Y.; Hu Q.; Bai F.; Ding B.; Zhong D. The nature of proton-coupled electron transfer in a blue light using flavin domain. Proc. Natl. Acad. Sci. U.S.A. 2022, 119, e220399611910.1073/pnas.2203996119. PubMed DOI PMC

Gauden M.; Yeremenko S.; Laan W.; van Stokkum I. H. M.; Ihalainen J. A.; van Grondelle R.; Hellingwerf K. J.; Kennis J. T. M. Photocycle of the flavin-binding photoreceptor AppA, a bacterial transcriptional antirepressor of photosynthesis genes. Biochemistry 2005, 44, 3653–3662. 10.1021/bi047359a. PubMed DOI

Laan W.; Gauden M.; Yeremenko S.; van Grondelle R.; Kennis J. T. M.; Hellingwerf K. J. On the mechanism of activation of the BLUF domain of AppA. Biochemistry 2006, 45, 51–60. 10.1021/bi051367p. PubMed DOI

Gauden M.; Grinstead J. S.; Laan W.; van Stokkum I. H. M.; Avila-Perez M.; Toh K. C.; Boelens R.; Kaptein R.; van Grondelle R.; Hellingwerf K. J.; Kennis J. T. M. On the role of aromatic side chains in the photoactivation of BLUF domains. Biochemistry 2007, 46, 7405–7415. 10.1021/bi7006433. PubMed DOI

Stelling A. L.; Ronayne K. L.; Nappa J.; Tonge P. J.; Meech S. R. Ultrafast structural dynamics in BLUF domains: Transient infrared spectroscopy of AppA and its mutants. J. Am. Chem. Soc. 2007, 129, 15556–15564. 10.1021/ja074074n. PubMed DOI

Mathes T.; van Stokkum I. H. M.; Bonetti C.; Hegemann P.; Kennis J. T. M. The Hydrogen-Bond Switch Reaction of the Blrb Bluf Domain of Rhodobacter sphaeroides. J. Phys. Chem. B 2011, 115, 7963–7971. 10.1021/jp201296m. PubMed DOI

Brust R.; Lukacs A.; Haigney A.; Addison K.; Gil A.; Towrie M.; Clark I. P.; Greetham G. M.; Tonge P. J.; Meech S. R. Proteins in Action: Femtosecond to Millisecond Structural Dynamics of a Photoactive Flavoprotein. J. Am. Chem. Soc. 2013, 135, 16168–16174. 10.1021/ja407265p. PubMed DOI PMC

Majerus T.; Kottke T.; Laan W.; Hellingwerf K.; Heberle J. Time-Resolved FT-IR Spectroscopy Traces Signal Relay within the Blue-Light Receptor AppA. ChemPhysChem 2007, 8, 1787–1789. 10.1002/cphc.200700248. PubMed DOI

Masuda S.; Hasegawa K.; Ohta H.; Ono T. Crucial Role in Light Signal Transduction for the Conserved Met93 of the BLUF Protein PixD/Slr1694. Plant Cell Physiol. 2008, 49, 1600–1606. 10.1093/pcp/pcn132. PubMed DOI

Mehlhorn J.; Lindtner T.; Richter F.; Glaß K.; Steinocher H.; Beck S.; Hegemann P.; Kennis J. T. M.; Mathes T. Light-Induced Rearrangement of the β5 Strand in the BLUF Photoreceptor SyPixD (Slr1694). J. Phys. Chem. Lett. 2015, 6, 4749–4753. 10.1021/acs.jpclett.5b02245. PubMed DOI

Bonetti C.; Stierl M.; Mathes T.; van Stokkum I. H.; Mullen K. M.; Cohen-Stuart T. A.; van Grondelle R.; Hegemann P.; Kennis J. T. The role of key amino acids in the photoactivation pathway of the Synechocystis Slr1694 BLUF domain. Biochemistry 2009, 48, 11458–11469. 10.1021/bi901196x. PubMed DOI

Mathes T.; Zhu J.; van Stokkum I. H. M.; Groot M. L.; Hegemann P.; Kennis J. T. M. Hydrogen Bond Switching among Flavin and Amino Acids Determines the Nature of Proton-Coupled Electron Transfer in BLUF Photoreceptors. J. Phys. Chem. Lett. 2012, 3, 203–208. 10.1021/jz201579y. DOI

Kita A.; Okajima K.; Morimoto Y.; Ikeuchi M.; Miki K. Structure of a cyanobacterial BLUF protein, Tll0078, containing a novel FAD-binding blue light sensor domain. J. Mol. Biol. 2005, 349, 1–9. 10.1016/j.jmb.2005.03.067. PubMed DOI

Jung A.; Reinstein J.; Domratcheva T.; Shoeman R. L.; Schlichting I. Crystal structures of the AppA BLUF domain photoreceptor provide insights into blue light-mediated signal transduction. J. Mol. Biol. 2006, 362, 717–732. 10.1016/j.jmb.2006.07.024. PubMed DOI

Jung A.; Domratcheva T.; Tarutina M.; Wu Q.; Ko W. H.; Shoeman R. L.; Gomelsky M.; Gardner K. H.; Schlichting L. Structure of a bacterial BLUF photoreceptor: Insights into blue light-mediated signal transduction. Proc. Natl. Acad. Sci. U.S.A. 2005, 102, 12350–12355. 10.1073/pnas.0500722102. PubMed DOI PMC

Ohki M.; Sugiyama K.; Kawai F.; Tanaka H.; Nihei Y.; Unzai S.; Takebe M.; Matsunaga S.; Adachi S.; Shibayama N.; Zhou Z. W.; Koyama R.; Ikegaya Y.; Takahashi T.; Tame J. R. H.; Iseki M.; Park S. Y. Structural insight into photoactivation of an adenylate cyclase from a photosynthetic cyanobacterium. Proc. Natl. Acad. Sci. U.S.A. 2016, 113, 6659–6664. 10.1073/pnas.1517520113. PubMed DOI PMC

Grinstead J. S.; Avila-Perez M.; Hellingwerf K. J.; Boelens R.; Kaptein R. Light-induced flipping of a conserved glutamine sidechain and its orientation in the AppA BLUF domain. J. Am. Chem. Soc. 2006, 128, 15066–15067. 10.1021/ja0660103. PubMed DOI

Grinstead J. S.; Hsu S. T. D.; Laan W.; Bonvin A.; Hellingwerf K. J.; Boelens R.; Kaptein R. The solution structure of the AppA BLUF domain: Insight into the mechanism of light-induced signaling. Chembiochem 2006, 7, 187–193. 10.1002/cbic.200500270. PubMed DOI

Wu Q.; Ko W. H.; Gardner K. H. Structural requirements for key residues and auxiliary portions of a BLUF domain. Biochemistry 2008, 47, 10271–10280. 10.1021/bi8011687. PubMed DOI

Wu Q.; Gardner K. H. Structure and Insight into Blue Light-Induced Changes in the BlrP1 BLUF Domain,. Biochemistry 2009, 48, 2620–2629. 10.1021/bi802237r. PubMed DOI

Domratcheva T.; Hartmann E.; Schlichting I.; Kottke T. Evidence for Tautomerisation of Glutamine in BLUF Blue Light Receptors by Vibrational Spectroscopy and Computational Chemistry. Sci. Rep. 2016, 6, 22669.10.1038/srep22669. PubMed DOI PMC

Unno M.; Masuda S.; Ono T. A.; Yamauchi S. Orientation of a key glutamine residue in the BLUF domain from AppA revealed by mutagenesis, spectroscopy, and quantum chemical calculations. J. Am. Chem. Soc. 2006, 128, 5638–5639. 10.1021/ja060633z. PubMed DOI

Iwata T.; Watanabe A.; Iseki M.; Watanabe M.; Kandori H. Strong Donation of the Hydrogen Bond of Tyrosine during Photoactivation of the BLUF Domain. J. Phys. Chem. Lett. 2011, 2, 1015–1019. 10.1021/jz2003974. DOI

Iwata T.; Nagai T.; Ito S.; Osoegawa S.; Iseki M.; Watanabe M.; Unno M.; Kitagawa S.; Kandori H. Hydrogen Bonding Environments in the Photocycle Process around the Flavin Chromophore of the AppA-BLUF domain. J. Am. Chem. Soc. 2018, 140, 11982–11991. 10.1021/jacs.8b05123. PubMed DOI

Domratcheva T.; Grigorenko B. L.; Schlichting I.; Nemukhin A. V. Molecular models predict light-induced glutamine tautomerization in BLUF photoreceptors. Biophys. J. 2008, 94, 3872–3879. 10.1529/biophysj.107.124172. PubMed DOI PMC

Sadeghian K.; Bocola M.; Schütz M. A QM/MM study on the fast photocycle of blue light using flavin photoreceptors in their light-adapted/active form. Phys. Chem. Chem. Phys. 2010, 12, 8840–8846. 10.1039/b925908b. PubMed DOI

Goyal P.; Hammes-Schiffer S. Role of active site conformational changes in photocycle activation of the AppA BLUF photoreceptor. Proc. Natl. Acad. Sci. U.S.A. 2017, 114, 1480–1485. 10.1073/pnas.1621393114. PubMed DOI PMC

Meier K.; van Gunsteren W. F. On the use of advanced modelling techniques to investigate the conformational discrepancy between two X-ray structures of the AppA BLUF domain. Mol. Simul. 2013, 39, 472–486. 10.1080/08927022.2012.743659. DOI

Rieff B.; Bauer S.; Mathias G.; Tavan P. DFT/MM Description of Flavin IR Spectra in BLUF Domains. J. Phys. Chem. B 2011, 115, 11239–11253. 10.1021/jp2043637. PubMed DOI

Sadeghian K.; Bocola M.; Schütz M. A conclusive mechanism of the photoinduced reaction cascade in blue light using flavin photoreceptors. J. Am. Chem. Soc. 2008, 130, 12501–12513. 10.1021/ja803726a. PubMed DOI

Hashem S.; Cupellini L.; Lipparini F.; Mennucci B. A polarisable QM/MM description of NMR chemical shifts of a photoreceptor protein. Mol. Phys. 2020, 118, e177144910.1080/00268976.2020.1771449. DOI

Khrenova M. G.; Nemukhin A. V.; Domratcheva T. Photoinduced Electron Transfer Facilitates Tautomerization of the Conserved Signaling Glutamine Side Chain in BLUF Protein Light Sensors. J. Phys. Chem. B 2013, 117, 2369–2377. 10.1021/jp312775x. PubMed DOI

Khrenova M. G.; Nemukhin A. V.; Grigorenko B. L.; Krylov A. I.; Domratcheva T. M. Quantum Chemistry Calculations Provide Support to the Mechanism of the Light-Induced Structural Changes in the Flavin-Binding Photoreceptor Proteins. J. Chem. Theory Comput. 2010, 6, 2293–2302. 10.1021/ct100179p. PubMed DOI

Toh K. C.; van Stokkum I. H.; Hendriks J.; Alexandre M. T.; Arents J. C.; Perez M. A.; van Grondelle R.; Hellingwerf K. J.; Kennis J. T. On the signaling mechanism and the absence of photoreversibility in the AppA BLUF domain. Biophys. J. 2008, 95, 312–321. 10.1529/biophysj.107.117788. PubMed DOI PMC

Lukacs A.; Haigney A.; Brust R.; Zhao R. K.; Stelling A. L.; Clark I. P.; Towrie M.; Greetham G. M.; Meech S. R.; Tonge P. J. Photoexcitation of the blue light using FAD photoreceptor AppA results in ultrafast changes to the protein matrix. J. Am. Chem. Soc. 2011, 133, 16893–16900. 10.1021/ja2060098. PubMed DOI

Fudim R.; Mehlhorn J.; Berthold T.; Weber S.; Schleicher E.; Kennis J. T. M.; Mathes T. Photoinduced formation of flavin radicals in BLUF domains lacking the central glutamine. FEBS J. 2015, 282, 3161–3174. 10.1111/febs.13297. PubMed DOI

Mathes T.; van Stokkum I. H. M.; Stierl M.; Kennis J. T. M. Redox Modulation of Flavin and Tyrosine Determines Photoinduced Proton-coupled Electron Transfer and Photoactivation of BLUF Photoreceptors. J. Biol. Chem. 2012, 287, 31725–31738. 10.1074/jbc.m112.391896. PubMed DOI PMC

Tolentino Collado J. T.; Iuliano J. N.; Pirisi K.; Jewlikar S.; Adamczyk K.; Greetham G. M.; Towrie M.; Tame J. R. H.; Meech S. R.; Tonge P. J.; Lukacs A. Unraveling the Photoactivation Mechanism of a Light-Activated Adenylyl Cyclase Using Ultrafast Spectroscopy Coupled with Unnatural Amino Acid Mutagenesis. ACS Chem. Biol. 2022, 17, 2643–2654. 10.1021/acschembio.2c00575. PubMed DOI PMC

Khrenova M. G.; Domratcheva T.; Nemukhin A. V. Molecular mechanism of the dark-state recovery in BLUF photoreceptors. Chem. Phys. Lett. 2017, 676, 25–31. 10.1016/j.cplett.2017.03.035. DOI

Kukura P.; McCamant D. W.; Mathies R. A. Femtosecond stimulated Raman spectroscopy. Annu. Rev. Phys. Chem. 2007, 58, 461–488. 10.1146/annurev.physchem.58.032806.104456. PubMed DOI

Kloz M.; Weißenborn J.; Polívka T.; Frank H. A.; Kennis J. T. M. Spectral watermarking in femtosecond stimulated Raman spectroscopy: resolving the nature of the carotenoid S* state. Phys. Chem. Chem. Phys. 2016, 18, 14619–14628. 10.1039/c6cp01464j. PubMed DOI

Hontani Y.; Inoue K.; Kloz M.; Kato Y.; Kandori H.; Kennis J. T. The photochemistry of sodium ion pump rhodopsin observed by watermarked femto- to submillisecond stimulated Raman spectroscopy. Phys. Chem. Chem. Phys. 2016, 18, 24729–24736. 10.1039/c6cp05240a. PubMed DOI

Hontani Y.; Kloz M.; Polívka T.; Shukla M. K.; Sobotka R.; Kennis J. T. M. Molecular Origin of Photoprotection in Cyanobacteria Probed by Watermarked Femtosecond Stimulated Raman Spectroscopy. J. Phys. Chem. Lett. 2018, 9, 1788–1792. 10.1021/acs.jpclett.8b00663. PubMed DOI PMC

Hontani Y.; Broser M.; Luck M.; Weißenborn J.; Kloz M.; Hegemann P.; Kennis J. T. M. Dual Photoisomerization on Distinct Potential Energy Surfaces in a UV-Absorbing Rhodopsin. J. Am. Chem. Soc. 2020, 142, 11464–11473. 10.1021/jacs.0c03229. PubMed DOI PMC

Andrikopoulos P. C.; Liu Y. L.; Picchiotti A.; Lenngren N.; Kloz M.; Chaudhari A. S.; Precek M.; Rebarz M.; Andreasson J.; Hajdu J.; Schneider B.; Fuertes G. Femtosecond-to-nanosecond dynamics of flavin mononucleotide monitored by stimulated Raman spectroscopy and simulations. Phys. Chem. Chem. Phys. 2020, 22, 6538–6552. 10.1039/c9cp04918e. PubMed DOI

Artes Vivancos J. M. A.; van Stokkum I. H. M.; Saccon F.; Hontani Y.; Kloz M.; Ruban A.; van Grondelle R.; Kennis J. T. M. Unraveling the Excited-State Dynamics and Light-Harvesting Functions of Xanthophylls in Light-Harvesting Complex II Using Femtosecond Stimulated Raman Spectroscopy. J. Am. Chem. Soc. 2020, 142, 17346–17355. 10.1021/jacs.0c04619. PubMed DOI PMC

Hontani Y.; Baloban M.; Escobar F. V.; Jansen S. A.; Shcherbakova D. M.; Weißenborn J.; Kloz M.; Mroginski M. A.; Verkhusha V. V.; Kennis J. T. M. Real-time observation of tetrapyrrole binding to an engineered bacterial phytochrome. Commun. Chem. 2021, 4, 3.10.1038/s42004-020-00437-3. PubMed DOI PMC

Unno M.; Sano R.; Masuda S.; Ono T. A.; Yamauchi S. Light-induced structural changes in the active site of the BLUF domain in AppA by Raman spectroscopy. J. Phys. Chem. B 2005, 109, 12620–12626. 10.1021/jp0522664. PubMed DOI

van Stokkum I. H. M.; Larsen D. S.; van Grondelle R. Global and target analysis of time-resolved spectra. Biochim. Biophys. Acta, Bioenerg. 2004, 1657, 82–104. 10.1016/j.bbabio.2004.04.011. PubMed DOI

Toh K. C.; Stojković E. A.; Rupenyan A. B.; van Stokkum I. H. M.; Salumbides M.; Groot M. L.; Moffat K.; Kennis J. T. M. Primary Reactions of Bacteriophytochrome Observed with Ultrafast Mid-Infrared Spectroscopy. J. Phys. Chem. A 2011, 115, 3778–3786. 10.1021/jp106891x. PubMed DOI

Weigel A.; Dobryakov A.; Klaumünzer B.; Sajadi M.; Saalfrank P.; Ernsting N. P. Femtosecond stimulated Raman spectroscopy of flavin after optical excitation. J. Phys. Chem. B 2011, 115, 3656–3680. 10.1021/jp1117129. PubMed DOI

Hall C. R.; Heisler I. A.; Jones G. A.; Frost J. E.; Gil A. A.; Tonge P. J.; Meech S. R. Femtosecond stimulated Raman study of the photoactive flavoprotein AppABLUF. Chem. Phys. Lett. 2017, 683, 365–369. 10.1016/j.cplett.2017.03.030. DOI

Murgida D. H.; Schleicher E.; Bacher A.; Richter G.; Hildebrandt P. Resonance Raman spectroscopic study of the neutral flavin radical complex of DNA photolyase from Escherichia coli. J. Raman Spectrosc. 2001, 32, 551–556. 10.1002/jrs.719. DOI

Kodali G.; Siddiqui S. U.; Stanley R. J. Charge Redistribution in Oxidized and Semiquinone E. coli DNA Photolyase upon Photoexcitation: Stark Spectroscopy Reveals a Rationale for the Position of Trp382. J. Am. Chem. Soc. 2009, 131, 4795–4807. 10.1021/ja809214r. PubMed DOI

Udvarhelyi A.; Olivucci M.; Domratcheva T. Role of the Molecular Environment in Flavoprotein Color and Redox Tuning: QM Cluster versus QM/MM Modeling. J. Chem. Theory Comput. 2015, 11, 3878–3894. 10.1021/acs.jctc.5b00197. PubMed DOI

Green D.; Roy P.; Hall C. R.; Iuliano J. N.; Jones G. A.; Lukacs A.; Tonge P. J.; Meech S. R. Excited State Resonance Raman of Flavin Mononucleotide: Comparison of Theory and Experiment. J. Phys. Chem. A 2021, 125, 6171–6179. 10.1021/acs.jpca.1c04063. PubMed DOI PMC

Iuliano J. N.; Hall C. R.; Green D.; Jones G. A.; Lukacs A.; Illarionov B.; Bacher A.; Fischer M.; French J. B.; Tonge P. J.; Meech S. R. Excited State Vibrations of Isotopically Labeled FMN Free and Bound to a Light-Oxygen-Voltage (LOV) Protein. J. Phys. Chem. B 2020, 124, 7152–7165. 10.1021/acs.jpcb.0c04943. PubMed DOI PMC

Alexandre M. T.; Domratcheva T.; Bonetti C.; van Wilderen L. J.; van Grondelle R.; Groot M. L.; Hellingwerf K. J.; Kennis J. T. Primary reactions of the LOV2 domain of phototropin studied with ultrafast mid-infrared spectroscopy and quantum chemistry. Biophys. J. 2009, 97, 227–237. 10.1016/j.bpj.2009.01.066. PubMed DOI PMC

Snellenburg J. J.; Laptenok S. P.; Seger R.; Mullen K. M.; van Stokkum I. H. M. Glotaran: A Java-Based Graphical User Interface for the R Package TIMP. J. Stat. Software 2012, 49, 1–22. 10.18637/jss.v049.i03. DOI

Ravensbergen J.; Abdi F. F.; van Santen J. H.; Frese R. N.; Dam B.; van de Krol R.; Kennis J. T. M. Unraveling the Carrier Dynamics of BiVO4: A Femtosecond to Microsecond Transient Absorption Study. J. Phys. Chem. C 2014, 118, 27793–27800. 10.1021/jp509930s. DOI

Kennis J. T. M.; Groot M. L. Ultrafast spectroscopy of biological photoreceptors. Curr. Opin. Struct. Biol. 2007, 17, 623–630. 10.1016/j.sbi.2007.09.006. PubMed DOI

Toh K. C.; Stojković E. A.; van Stokkum I. H. M.; Moffat K.; Kennis J. T. M. Fluorescence quantum yield and photochemistry of bacteriophytochrome constructs. Phys. Chem. Chem. Phys. 2011, 13, 11985–11997. 10.1039/c1cp00050k. PubMed DOI

Granovsky A. A.Firefly, version 8, 2015.

Schmidt M. W.; Baldridge K. K.; Boatz J. A.; Elbert S. T.; Gordon M. S.; Jensen J. H.; Koseki S.; Matsunaga N.; Nguyen K. A.; Su S. J.; Windus T. L.; Dupuis M.; Montgomery J. A. General atomic and molecular electronic structure system. J. Comput. Chem. 1993, 14, 1347–1363. 10.1002/jcc.540141112. DOI

Mehlhorn J.; Steinocher H.; Beck S.; Kennis J. T. M.; Hegemann P.; Mathes T. A Set of Engineered Escherichia coli Expression Strains for Selective Isotope and Reactivity Labeling of Amino Acid Side Chains and Flavin Cofactors. PLoS One 2013, 8, e7900610.1371/journal.pone.0079006. PubMed DOI PMC

Datsenko K. A.; Wanner B. L. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc. Natl. Acad. Sci. U.S.A. 2000, 97, 6640–6645. 10.1073/pnas.120163297. PubMed DOI PMC

Datta S.; Costantino N.; Court D. L. A set of recombineering plasmids for gram-negative bacteria. Gene 2006, 379, 109–115. 10.1016/j.gene.2006.04.018. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace