Moderating effect of cognitive reserve on brain integrity and cognitive performance

. 2022 ; 14 () : 1018071. [epub] 20221103

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36408097

BACKGROUND: Dementia syndrome is one of the most devastating conditions in older adults. As treatments to stop neurodegeneration become available, accurate and timely diagnosis will increase in importance. One issue is that cognitive performance sometimes does not match the corresponding level of neuropathology, affecting diagnostic accuracy. Cognitive reserve (CR), which can preserve cognitive function despite underlying neuropathology, explains at least some variability in cognitive performance. We examined the influence of CR proxies (education and occupational position) on the relationship between hippocampal or total gray matter volume and cognition. METHODS: We used data from the Czech Brain Aging Study. Participants were clinically confirmed to be without dementia (n = 457, including subjective cognitive decline and amnestic mild cognitive impairment) or with dementia syndrome (n = 113). RESULTS: For participants without dementia, higher education magnified the associations between (a) hippocampal volume and executive control (b = 0.09, p = 0.033), (b) total gray matter volume and language (b = 0.12, p < 0.001), and (c) total gray matter volume and memory (b = 0.08, p = 0.018). Similarly, higher occupational position magnified the association between total gray matter volume and (a) attention/working memory (b = 0.09, p = 0.009), (b) language (b = 0.13, p = 0.002), and (c) memory (b = 0.10, p = 0.013). For participants with dementia, the associations between hippocampal (b = -0.26, p = 0.024) and total gray matter (b = -0.28, p = 0.024) volume and visuospatial skills decreased in magnitude with higher education. CONCLUSION: We found that the association between brain volume and cognitive performance varies based on CR, with greater CR related to a stronger link between brain volume and cognition before, and a weaker link after, dementia diagnosis.

Zobrazit více v PubMed

Albert M. S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. PubMed DOI PMC

Alzheimer’s Association (2022).

American Psychiatric Association (2000).

Arenaza-Urquijo E. M., Vemuri P. (2018). Resistance vs resilience to Alzheimer disease: Clarifying terminology for preclinical studies. PubMed DOI PMC

Benedict R. H. B., Schretlen D., Groninger L., Dobraski M., Shpritz B. (1996). Revision of the brief visuospatial memory test: Studies of normal performance, reliability, and validity. DOI

Bezdicek O., Motak L., Axelrod B. N., Preiss M., Nikolai T., Vyhnalek M., et al. (2012). Czech version of the trail making test: Normative data and clinical utility. PubMed DOI

Bezdicek O., Stepankova H., Motak L., Axelrod B. N., Woodard J. L., Preiss M., et al. (2014). Czech version of rey auditory verbal learning test: Normative data. PubMed DOI

Butters M. A., Young J. B., Lopez O., Aizenstein H. J., Mulsant B. H., Reynolds C. F., III, et al. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. PubMed DOI PMC

de Rooij S. R. (2022). Are brain and cognitive reserve shaped by early life circumstances? PubMed DOI PMC

Ewers M. (2020). Reserve in Alzheimer’s disease: Update on the concept, functional mechanisms and sex differences. PubMed DOI

Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. PubMed DOI

Fjell A. M., McEvoy L., Holland D., Dale A. M., Walhovd K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. PubMed DOI PMC

Goodglass H., Kaplan E., Weintraub S. (1983).

Gregory S., Long J. D., Klöppel S., Razi A., Scheller E., Minkova L., et al. (2017). Operationalizing compensation over time in neurodegenerative disease. PubMed DOI PMC

Hardy J. A., Higgins G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. PubMed DOI

Hayes A. F., Little T. D. (2018).

Hoenig M. C., Drzezga A. (2022). Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. PubMed DOI

Holm S. (1979). A simple sequentially rejective multiple test procedure.

International Labour Office (2012).

Jack C. R., Jr., Holtzman D. M. (2013). Biomarker modeling of Alzheimer’s disease. PubMed DOI PMC

Jack C. R., Jr., Knopman D. S., Jagust W. J., Petersen R. C., Weiner M. W., Aisen P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. PubMed DOI PMC

Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., Chetelat G., et al. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. PubMed DOI PMC

Joannette M., Bocti C., Dupont P. S., Lavallée M. M., Nikelski J., Vallet G. T., et al. (2020). Education as a moderator of the relationship between episodic memory and amyloid load in normal aging. PubMed DOI PMC

Johnson P. O., Fay L. C. (1950). The Johnson-Neyman technique, its theory and application. PubMed DOI

Kang D. W., Lim H. K., Joo S. H., Lee N. R., Lee C. U. (2019). Differential associations between volumes of atrophic cortical brain regions and memory performances in early and late mild cognitive impairment. PubMed DOI PMC

Karran E., Mercken M., De Strooper B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. PubMed DOI

Kerbler G. M., Nedelska Z., Fripp J., Laczó J., Vyhnalek M., Lisý J., et al. (2015). Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer’s Disease patients. PubMed DOI PMC

Lee D. H., Lee P., Seo S. W., Roh J. H., Oh M., Oh J. S., et al. (2019). Neural substrates of cognitive reserve in Alzheimer’s disease spectrum and normal aging. PubMed DOI

Martyr A., Clare L. (2012). Executive function and activities of daily living in Alzheimer’s disease: A correlational meta-analysis. PubMed DOI

Mazancova A. F., Nikolai T., Stepankova H., Kopecek M., Bezdicek O. (2017). The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. PubMed DOI

McKeith I. G., Boeve B. F., Dickson D. W., Halliday G., Taylor J. P., Weintraub D., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. PubMed DOI PMC

McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. PubMed DOI PMC

Menardi A., Pascual-Leone A., Fried P. J., Santarnecchi E. (2018). The role of cognitive reserve in alzheimer’s disease and aging: A Multi-modal imaging review. PubMed DOI PMC

Meyers J. E., Meyers K. R. (1995).

Michaud T. L., Su D., Siahpush M., Murman D. L. (2017). The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes. PubMed DOI PMC

Mungas D., Gavett B., Fletcher E., Farias S. T., DeCarli C., Reed B. (2018). Education amplifies brain atrophy effect on cognitive decline: Implications for cognitive reserve. PubMed DOI PMC

Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. PubMed DOI PMC

Nikolai T., Stepankova H., Kopecek M., Sulc Z., Vyhnalek M., Bezdicek O. (2018). The uniform data set, czech version: Normative data in older adults from an international perspective. PubMed DOI PMC

Nikolai T., Štěpánková H., Michalec J., Bezdíček O., Horáková K., Marková H., et al. (2015). Testy verbální fluence, èeská normativní studie pro osoby vyššího věku.

O’Shea D. M., Langer K., Woods A. J., Porges E. C., Williamson J. B., O’Shea A., et al. (2018). Educational attainment moderates the association between hippocampal volumes and memory performances in healthy older adults. PubMed DOI PMC

Osterrieth P. (1944). Le test de copie d’une figure complexe [The test of copying a complex figure]. PubMed DOI

Pa J., Aslanyan V., Casaletto K. B., Rentería M. A., Harrati A., Tom S. E., et al. (2022). Effects of sex, APOE4, and lifestyle activities on cognitive reserve in older adults. PubMed DOI PMC

Peltz C. B., Corrada M. M., Berlau D. J., Kawas C. H. (2011). Incidence of dementia in oldest-old with amnestic MCI and other cognitive impairments. PubMed DOI PMC

Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. PubMed DOI

Petersen R. C., Roberts R. O., Knopman D. S., Boeve B. F., Geda Y. E., Ivnik R. J., et al. (2009). Mild cognitive impairment: Ten years later. PubMed DOI PMC

Rascovsky K., Hodges J. R., Knopman D., Mendez M. F., Kramer J. H., Neuhaus J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. PubMed DOI PMC

Rocca W. A. (2017). Time, sex, gender, history, and dementia. PubMed DOI PMC

Román G. C., Tatemichi T. K., Erkinjuntti T., Cummings J. L., Masdeu J. C., Garcia J. H., et al. (1993). Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. PubMed DOI

Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., et al. (2019). Czech Brain Aging Study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. PubMed DOI PMC

Staekenborg S. S., Kelly N., Schuur J., Koster P., Scherder E., Tielkes C. E. M., et al. (2020). Education as proxy for cognitive reserve in a large elderly memory clinic: ‘Window of Benefit’. PubMed DOI

Stern Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. PubMed

Stern Y. (2009). Cognitive reserve. PubMed PMC

Stern Y., Arenaza-Urquijo E. M., Bartrés-Faz D., Belleville S., Cantilon M., Chetelat G., et al. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. PubMed DOI PMC

Subramaniapillai S., Almey A., Natasha Rajah M., Einstein G. (2021). Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. PubMed DOI

Sundermann E. E., Maki P. M., Rubin L. H., Lipton R. B., Landau S., Biegon A. (2016). Female advantage in verbal memory: Evidence of sex-specific cognitive reserve. PubMed DOI PMC

Vaughan L., Giovanello K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. PubMed DOI

Voevodskaya O., Simmons A., Nordenskjöld R., Kullberg J., Ahlström H., Lind L., et al. (2014). The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. PubMed DOI PMC

Wechsler D. (1997).

Yesavage J. A., Brink T. L., Rose T. L., Lum O., Huang V., Adey M., et al. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. PubMed

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Cognitive reserve, neuropathology, and progression towards Alzheimer's disease

. 2023 Jul 14 ; 15 (13) : 5963-5965. [epub] 20230714

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...