Moderating effect of cognitive reserve on brain integrity and cognitive performance
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
36408097
PubMed Central
PMC9669428
DOI
10.3389/fnagi.2022.1018071
Knihovny.cz E-resources
- Keywords
- MRI, attention/working memory, executive control, language, visuospatial skills,
- Publication type
- Journal Article MeSH
BACKGROUND: Dementia syndrome is one of the most devastating conditions in older adults. As treatments to stop neurodegeneration become available, accurate and timely diagnosis will increase in importance. One issue is that cognitive performance sometimes does not match the corresponding level of neuropathology, affecting diagnostic accuracy. Cognitive reserve (CR), which can preserve cognitive function despite underlying neuropathology, explains at least some variability in cognitive performance. We examined the influence of CR proxies (education and occupational position) on the relationship between hippocampal or total gray matter volume and cognition. METHODS: We used data from the Czech Brain Aging Study. Participants were clinically confirmed to be without dementia (n = 457, including subjective cognitive decline and amnestic mild cognitive impairment) or with dementia syndrome (n = 113). RESULTS: For participants without dementia, higher education magnified the associations between (a) hippocampal volume and executive control (b = 0.09, p = 0.033), (b) total gray matter volume and language (b = 0.12, p < 0.001), and (c) total gray matter volume and memory (b = 0.08, p = 0.018). Similarly, higher occupational position magnified the association between total gray matter volume and (a) attention/working memory (b = 0.09, p = 0.009), (b) language (b = 0.13, p = 0.002), and (c) memory (b = 0.10, p = 0.013). For participants with dementia, the associations between hippocampal (b = -0.26, p = 0.024) and total gray matter (b = -0.28, p = 0.024) volume and visuospatial skills decreased in magnitude with higher education. CONCLUSION: We found that the association between brain volume and cognitive performance varies based on CR, with greater CR related to a stronger link between brain volume and cognition before, and a weaker link after, dementia diagnosis.
Edson College of Nursing and Health Innovation Arizona State University Phoenix AZ United States
School of Aging Studies University of South Florida Tampa FL United States
See more in PubMed
Albert M. S. (1996). Cognitive and neurobiologic markers of early Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 93 13547–13551. 10.1073/pnas.93.24.13547 PubMed DOI PMC
Alzheimer’s Association (2022). What is Alzheimer’s Disease [Online]. Available online at: https://www.alz.org/alzheimers-dementia/what-is-alzheimers (accessed August 1, 2022).
American Psychiatric Association (2000). Diagnostic and statistical manual of mental disorders: DSM-IV-TR. Washington, DC: American Psychiatric Association.
Arenaza-Urquijo E. M., Vemuri P. (2018). Resistance vs resilience to Alzheimer disease: Clarifying terminology for preclinical studies. Neurology 90 695–703. 10.1212/wnl.0000000000005303 PubMed DOI PMC
Benedict R. H. B., Schretlen D., Groninger L., Dobraski M., Shpritz B. (1996). Revision of the brief visuospatial memory test: Studies of normal performance, reliability, and validity. Psychol. Assess. 8 145–153. 10.1037/1040-3590.8.2.145 DOI
Bezdicek O., Motak L., Axelrod B. N., Preiss M., Nikolai T., Vyhnalek M., et al. (2012). Czech version of the trail making test: Normative data and clinical utility. Arch. Clin. Neuropsychol. 27 906–914. 10.1093/arclin/acs084 PubMed DOI
Bezdicek O., Stepankova H., Motak L., Axelrod B. N., Woodard J. L., Preiss M., et al. (2014). Czech version of rey auditory verbal learning test: Normative data. Aging Neuropsychol. Cogn. 21 693–721. 10.1080/13825585.2013.865699 PubMed DOI
Butters M. A., Young J. B., Lopez O., Aizenstein H. J., Mulsant B. H., Reynolds C. F., III, et al. (2008). Pathways linking late-life depression to persistent cognitive impairment and dementia. Dialogues Clin. Neurosci. 10 345–357. 10.31887/DCNS.2008.10.3/mabutters PubMed DOI PMC
de Rooij S. R. (2022). Are brain and cognitive reserve shaped by early life circumstances? Front. Neurosci. 16:825811. 10.3389/fnins.2022.825811 PubMed DOI PMC
Ewers M. (2020). Reserve in Alzheimer’s disease: Update on the concept, functional mechanisms and sex differences. Curr. Opin. Psychiatry 33 178–184. 10.1097/yco.0000000000000574 PubMed DOI
Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. (2002). Whole brain segmentation: Automated labeling of neuroanatomical structures in the human brain. Neuron 33 341–355. 10.1016/s0896-6273(02)00569-x PubMed DOI
Fjell A. M., McEvoy L., Holland D., Dale A. M., Walhovd K. B. (2014). What is normal in normal aging? Effects of aging, amyloid and Alzheimer’s disease on the cerebral cortex and the hippocampus. Prog. Neurobiol. 117 20–40. 10.1016/j.pneurobio.2014.02.004 PubMed DOI PMC
Goodglass H., Kaplan E., Weintraub S. (1983). Boston naming test. Washington, D.C: Lea & Febiger.
Gregory S., Long J. D., Klöppel S., Razi A., Scheller E., Minkova L., et al. (2017). Operationalizing compensation over time in neurodegenerative disease. Brain 140 1158–1165. 10.1093/brain/awx022 PubMed DOI PMC
Hardy J. A., Higgins G. A. (1992). Alzheimer’s disease: The amyloid cascade hypothesis. Science 256 184–185. 10.1126/science.1566067 PubMed DOI
Hayes A. F., Little T. D. (2018). Introduction to mediation, moderation, and conditional process analysis: A regression-based approach. New York, NY: Guilford Publications.
Hoenig M. C., Drzezga A. (2022). Clear-headed into old age: Resilience and resistance against brain aging-A PET imaging perspective. J. Neurochem. 1–21. 10.1111/jnc.15598 PubMed DOI
Holm S. (1979). A simple sequentially rejective multiple test procedure. Scand. J. Stat. 6 65–70.
International Labour Office (2012). International standard classification of occupations 2008 (ISCO-08): Structure, group definitions and correspondence tables. Geneva: International Labour Office.
Jack C. R., Jr., Holtzman D. M. (2013). Biomarker modeling of Alzheimer’s disease. Neuron 80 1347–1358. 10.1016/j.neuron.2013.12.003 PubMed DOI PMC
Jack C. R., Jr., Knopman D. S., Jagust W. J., Petersen R. C., Weiner M. W., Aisen P. S., et al. (2013). Tracking pathophysiological processes in Alzheimer’s disease: An updated hypothetical model of dynamic biomarkers. Lancet Neurol. 12 207–216. 10.1016/s1474-4422(12)70291-0 PubMed DOI PMC
Jessen F., Amariglio R. E., van Boxtel M., Breteler M., Ceccaldi M., Chetelat G., et al. (2014). A conceptual framework for research on subjective cognitive decline in preclinical Alzheimer’s disease. Alzheimers Dement 10 844–852. 10.1016/j.jalz.2014.01.001 PubMed DOI PMC
Joannette M., Bocti C., Dupont P. S., Lavallée M. M., Nikelski J., Vallet G. T., et al. (2020). Education as a moderator of the relationship between episodic memory and amyloid load in normal aging. J Gerontol. A Biol. Sci. Med. Sci. 75 1820–1826. 10.1093/gerona/glz235 PubMed DOI PMC
Johnson P. O., Fay L. C. (1950). The Johnson-Neyman technique, its theory and application. Psychometrika 15 349–367. 10.1007/bf02288864 PubMed DOI
Kang D. W., Lim H. K., Joo S. H., Lee N. R., Lee C. U. (2019). Differential associations between volumes of atrophic cortical brain regions and memory performances in early and late mild cognitive impairment. Front. Aging Neurosci. 11:245. 10.3389/fnagi.2019.00245 PubMed DOI PMC
Karran E., Mercken M., De Strooper B. (2011). The amyloid cascade hypothesis for Alzheimer’s disease: An appraisal for the development of therapeutics. Nat .Rev. Drug. Discov. 10 698–712. 10.1038/nrd3505 PubMed DOI
Kerbler G. M., Nedelska Z., Fripp J., Laczó J., Vyhnalek M., Lisý J., et al. (2015). Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer’s Disease patients. Front. Aging Neurosci. 7:185. 10.3389/fnagi.2015.00185 PubMed DOI PMC
Lee D. H., Lee P., Seo S. W., Roh J. H., Oh M., Oh J. S., et al. (2019). Neural substrates of cognitive reserve in Alzheimer’s disease spectrum and normal aging. Neuroimage 186 690–702. 10.1016/j.neuroimage.2018.11.053 PubMed DOI
Martyr A., Clare L. (2012). Executive function and activities of daily living in Alzheimer’s disease: A correlational meta-analysis. Dement Geriatr. Cogn. Disord. 33 189–203. 10.1159/000338233 PubMed DOI
Mazancova A. F., Nikolai T., Stepankova H., Kopecek M., Bezdicek O. (2017). The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. Assessment 24 945–957. 10.1177/1073191116632586 PubMed DOI
McKeith I. G., Boeve B. F., Dickson D. W., Halliday G., Taylor J. P., Weintraub D., et al. (2017). Diagnosis and management of dementia with Lewy bodies: Fourth consensus report of the DLB Consortium. Neurology 89 88–100. 10.1212/wnl.0000000000004058 PubMed DOI PMC
McKhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7 263–269. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Menardi A., Pascual-Leone A., Fried P. J., Santarnecchi E. (2018). The role of cognitive reserve in alzheimer’s disease and aging: A Multi-modal imaging review. J. Alzheimers Dis. 66 1341–1362. 10.3233/jad-180549 PubMed DOI PMC
Meyers J. E., Meyers K. R. (1995). Rey complex figure test and recognition trial (RCFT). Odessa, FL: Psychological Assessment Resources.
Michaud T. L., Su D., Siahpush M., Murman D. L. (2017). The risk of incident mild cognitive impairment and progression to dementia considering mild cognitive impairment subtypes. Dement Geriatr. Cogn. Dis. Extra. 7 15–29. 10.1159/000452486 PubMed DOI PMC
Mungas D., Gavett B., Fletcher E., Farias S. T., DeCarli C., Reed B. (2018). Education amplifies brain atrophy effect on cognitive decline: Implications for cognitive reserve. Neurobiol. Aging 68 142–150. 10.1016/j.neurobiolaging.2018.04.002 PubMed DOI PMC
Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109 2590–2594. 10.1073/pnas.1121588109 PubMed DOI PMC
Nikolai T., Stepankova H., Kopecek M., Sulc Z., Vyhnalek M., Bezdicek O. (2018). The uniform data set, czech version: Normative data in older adults from an international perspective. J. Alzheimers Dis. 61 1233–1240. 10.3233/JAD-170595 PubMed DOI PMC
Nikolai T., Štěpánková H., Michalec J., Bezdíček O., Horáková K., Marková H., et al. (2015). Testy verbální fluence, èeská normativní studie pro osoby vyššího věku. Česká a slovenská neurologie a neurochirurgie 111 292–299.
O’Shea D. M., Langer K., Woods A. J., Porges E. C., Williamson J. B., O’Shea A., et al. (2018). Educational attainment moderates the association between hippocampal volumes and memory performances in healthy older adults. Front. Aging Neurosci. 10:361. 10.3389/fnagi.2018.00361 PubMed DOI PMC
Osterrieth P. (1944). Le test de copie d’une figure complexe [The test of copying a complex figure]. Arch. Psychol. 30 206–356. 10.1016/j.psychres.2005.10.012 PubMed DOI
Pa J., Aslanyan V., Casaletto K. B., Rentería M. A., Harrati A., Tom S. E., et al. (2022). Effects of sex, APOE4, and lifestyle activities on cognitive reserve in older adults. Neurology 99:e789. 10.1212/WNL.0000000000200675 PubMed DOI PMC
Peltz C. B., Corrada M. M., Berlau D. J., Kawas C. H. (2011). Incidence of dementia in oldest-old with amnestic MCI and other cognitive impairments. Neurology 77 1906–1912. 10.1212/WNL.0b013e318238ee89 PubMed DOI PMC
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256 183–194. 10.1111/j.1365-2796.2004.01388.x PubMed DOI
Petersen R. C., Roberts R. O., Knopman D. S., Boeve B. F., Geda Y. E., Ivnik R. J., et al. (2009). Mild cognitive impairment: Ten years later. Arch. Neurol. 66 1447–1455. 10.1001/archneurol.2009.266 PubMed DOI PMC
Rascovsky K., Hodges J. R., Knopman D., Mendez M. F., Kramer J. H., Neuhaus J., et al. (2011). Sensitivity of revised diagnostic criteria for the behavioural variant of frontotemporal dementia. Brain 134(Pt 9) 2456–2477. 10.1093/brain/awr179 PubMed DOI PMC
Rocca W. A. (2017). Time, sex, gender, history, and dementia. Alzheimer Dis. Assoc. Disord. 31 76–79. 10.1097/wad.0000000000000187 PubMed DOI PMC
Román G. C., Tatemichi T. K., Erkinjuntti T., Cummings J. L., Masdeu J. C., Garcia J. H., et al. (1993). Vascular dementia: Diagnostic criteria for research studies. Report of the NINDS-AIREN International Workshop. Neurology 43 250–260. 10.1212/wnl.43.2.250 PubMed DOI
Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., et al. (2019). Czech Brain Aging Study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open 9:e030379. 10.1136/bmjopen-2019-030379 PubMed DOI PMC
Staekenborg S. S., Kelly N., Schuur J., Koster P., Scherder E., Tielkes C. E. M., et al. (2020). Education as proxy for cognitive reserve in a large elderly memory clinic: ‘Window of Benefit’. J. Alzheimers Dis. 76 671–679. 10.3233/jad-191332 PubMed DOI
Stern Y. (2002). What is cognitive reserve? Theory and research application of the reserve concept. J. Intl. Neuropsychol. Soc. 8 448–460. PubMed
Stern Y. (2009). Cognitive reserve. Neuropsychologia 47 2015–2028. PubMed PMC
Stern Y., Arenaza-Urquijo E. M., Bartrés-Faz D., Belleville S., Cantilon M., Chetelat G., et al. (2020). Whitepaper: Defining and investigating cognitive reserve, brain reserve, and brain maintenance. Alzheimers Dement 16 1305–1311. 10.1016/j.jalz.2018.07.219 PubMed DOI PMC
Subramaniapillai S., Almey A., Natasha Rajah M., Einstein G. (2021). Sex and gender differences in cognitive and brain reserve: Implications for Alzheimer’s disease in women. Front. Neuroendocrinol. 60:100879. 10.1016/j.yfrne.2020.100879 PubMed DOI
Sundermann E. E., Maki P. M., Rubin L. H., Lipton R. B., Landau S., Biegon A. (2016). Female advantage in verbal memory: Evidence of sex-specific cognitive reserve. Neurology 87 1916–1924. 10.1212/wnl.0000000000003288 PubMed DOI PMC
Vaughan L., Giovanello K. (2010). Executive function in daily life: Age-related influences of executive processes on instrumental activities of daily living. Psychol. Aging 25 343–355. 10.1037/a0017729 PubMed DOI
Voevodskaya O., Simmons A., Nordenskjöld R., Kullberg J., Ahlström H., Lind L., et al. (2014). The effects of intracranial volume adjustment approaches on multiple regional MRI volumes in healthy aging and Alzheimer’s disease. Front. Aging Neurosci. 6:264. 10.3389/fnagi.2014.00264 PubMed DOI PMC
Wechsler D. (1997). WAiS-iii. San Antonio, TX: Psychological Corporation.
Yesavage J. A., Brink T. L., Rose T. L., Lum O., Huang V., Adey M., et al. (1982). Development and validation of a geriatric depression screening scale: A preliminary report. J. Psychiatr. Res. 17 37–49. PubMed