• This record comes from PubMed

Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients

. 2015 ; 7 () : 185. [epub] 20150928

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.

See more in PubMed

Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132, 77–84.10.1016/S0166-4328(01)00399-0 PubMed DOI

Avants B. B., Epstein C. L., Grossman M., Gee J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.10.1016/j.media.2007.06.004 PubMed DOI PMC

Avants B. B., Yushkevich P., Pluta J., Minkoff D., Korczykowski M., Detre J., et al. (2010). The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49, 2457–2466.10.1016/j.neuroimage.2009.09.062 PubMed DOI PMC

Berger-Sweeney J., Stearns N. A., Murg S., Floerke-Nashner L. R., Lappi D. A., Baxter M. G. (2001). Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci 21, 8164–8173. PubMed PMC

Botly L. C., De Rosa E. (2009). Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J. Neurosci. 29, 4120–4130.10.1523/JNEUROSCI.0654-09.2009 PubMed DOI PMC

Botly L. C., De Rosa E. (2012). Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453.10.1093/cercor/bhr331 PubMed DOI

Bourgeat P., Chetelat G., Villemagne V. L., Fripp J., Raniga P., Pike K., et al. (2010). Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology 74, 121–127.10.1212/WNL.0b013e3181c918b5 PubMed DOI

Butler T., Blackmon K., Zaborszky L., Wang X., Dubois J., Carlson C., et al. (2012). Volume of the human septal forebrain region is a predictor of source memory accuracy. J. Int. Neuropsychol. Soc. 18, 157–161.10.1017/S1355617711001421 PubMed DOI PMC

Contestabile A. (2011). The history of the cholinergic hypothesis. Behav. Brain Res. 221, 334–340.10.1016/j.bbr.2009.12.044 PubMed DOI

DeKosky S. T., Ikonomovic M. D., Styren S. D., Beckett L., Wisniewski S., Bennett D. A., et al. (2002). Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 51, 145–155.10.1002/ana.10069 PubMed DOI

Furey M. L., Pietrini P., Haxby J. V. (2000). Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290, 2315–2319.10.1126/science.290.5500.2315 PubMed DOI

George S., Mufson E. J., Leurgans S., Shah R. C., Ferrari C., Detoledo-Morrell L. (2011). MRI-based volumetric measurement of the substantia innominata in amnestic MCI and mild AD. Neurobiol. Aging 32, 1756–1764.10.1016/j.neurobiolaging.2009.11.006 PubMed DOI PMC

Grothe M., Heinsen H., Teipel S. (2012). Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease. Neurobiol. Aging 43, 1210–1220.10.1016/j.neurobiolaging.2012.10.018 PubMed DOI PMC

Grothe M., Heinsen H., Teipel S. J. (2011). Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol. Psychiatry 71, 805–813.10.1016/j.biopsych.2011.06.019 PubMed DOI PMC

Hamlin A. S., Windels F., Boskovic Z., Sah P., Coulson E. J. (2013). Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS ONE 8:e53472.10.1371/journal.pone.0053472 PubMed DOI PMC

Hasselmo M. E., McGaughy J. (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231.10.1016/S0079-6123(03)45015-2 PubMed DOI

Hort J., Andel R., Mokrisova I., Gazova I., Amlerova J., Valis M., et al. (2014). Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the Morris water maze. Neurodegener. Dis. 13, 192–196.10.1159/000355517 PubMed DOI

Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U.S.A. 104, 4042–4047.10.1073/pnas.0611314104 PubMed DOI PMC

Ikonen S., Mcmahan R., Gallagher M., Eichenbaum H., Tanila H. (2002). Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12, 386–397.10.1002/hipo.1109 PubMed DOI

Ikonomovic M. D., Mufson E. J., Wuu J., Cochran E. J., Bennett D. A., Dekosky S. T. (2003). Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer’s neuropathology. J. Alzheimers Dis. 5, 39–48. PubMed

Kerbler G. M., Fripp J., Rowe C., Villemagne V. L., Salvado O., Rose S., et al. (2014). Basal forebrain atrophy correlates with amyloid β burden in Alzheimer’s disease. Neuroimage Clin. 7, 105–113.10.1016/j.nicl.2014.11.015 PubMed DOI PMC

Kim M. J., Lee K. M., Son Y. D., Jeon H. A., Kim Y. B., Cho Z. H. (2012). Increased basal forebrain metabolism in mild cognitive impairment: an evidence for brain reserve in incipient dementia. J. Alzheimers Dis. 32, 927–938.10.3233/JAD-2012-120133 PubMed DOI

Laczo J., Andel R., Vlcek K., Macoska V., Vyhnalek M., Tolar M., et al. (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener. Dis. 8, 169–177.10.1159/000321581 PubMed DOI

McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.10.1212/WNL.34.7.939 PubMed DOI

Morris J. C. (1993). The clinical dementia rating (CDR): current version and scoring rules. Neurology 43, 2412–2414.10.1212/WNL.43.11.2412-a PubMed DOI

Mufson E. (2003). Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 26, 233–242.10.1016/s0891-0618(03)00068-1 PubMed DOI

Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109, 2590–2594.10.1073/pnas.1121588109 PubMed DOI PMC

Parikh V., Kozak R., Martinez V., Sarter M. (2007). Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154.10.1016/j.neuron.2007.08.025 PubMed DOI PMC

Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194.10.1111/j.1365-2796.2004.01388.x PubMed DOI

Petrou M., Frey K. A., Kilbourn M. R., Scott P. J., Raffel D. M., Bohnen N. I., et al. (2014). In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J. Nucl. Med. 55, 396–404.10.2967/jnumed.113.124792 PubMed DOI

Sarter M., Gehring W. J., Kozak R. (2006). More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145–160.10.1016/j.brainresrev.2005.11.002 PubMed DOI

Schliebs R., Arendt T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. 113, 1625–1644.10.1007/s00702-006-0579-2 PubMed DOI

Stanfield B. B., Cowan W. M. (1982). The sprouting of septal afferents to the dentate gyrus after lesions of the entorhinal cortex in adult rats. Brain Res. 232, 162–170.10.1016/0006-8993(82)90619-9 PubMed DOI

Tai S. K., Leung L. S. (2012). Vestibular stimulation enhances hippocampal long-term potentiation via activation of cholinergic septohippocampal cells. Behav. Brain Res. 232, 174–182.10.1016/j.bbr.2012.04.013 PubMed DOI

Weniger G., Ruhleder M., Wolf S., Lange C., Irle E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia 47, 59–69.10.1016/j.neuropsychologia.2008.08.018 PubMed DOI

Zaborszky L., Hoemke L., Mohlberg H., Schleicher A., Amunts K., Zilles K. (2008). Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain.NeuroImage 42, 1127-1141.10.1016/j.neuroimage.2008.05.055 PubMed DOI PMC

Newest 20 citations...

See more in
Medvik | PubMed

Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease

. 2024 Jun 21 ; 27 (6) : 109832. [epub] 20240426

Spatial navigation is associated with subcortical alterations and progression risk in subjective cognitive decline

. 2023 Apr 25 ; 15 (1) : 86. [epub] 20230425

Moderating effect of cognitive reserve on brain integrity and cognitive performance

. 2022 ; 14 () : 1018071. [epub] 20221103

Emotional prosody recognition is impaired in Alzheimer's disease

. 2022 Apr 05 ; 14 (1) : 50. [epub] 20220405

Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging

. 2021 Oct 27 ; 11 (11) : . [epub] 20211027

Basal Forebrain Atrophy Is Associated With Allocentric Navigation Deficits in Subjective Cognitive Decline

. 2021 ; 13 () : 596025. [epub] 20210215

Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic

. 2019 Dec 18 ; 9 (12) : e030379. [epub] 20191218

Spatial navigation, aging and Alzheimer's disease

. 2018 Nov 04 ; 10 (11) : 3050-3051.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...