Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer's Disease Patients
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
26441643
PubMed Central
PMC4585346
DOI
10.3389/fnagi.2015.00185
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, MRI, basal forebrain, cognitive impairment, navigation,
- Publication type
- Journal Article MeSH
The basal forebrain degenerates in Alzheimer's disease (AD) and this process is believed to contribute to the cognitive decline observed in AD patients. Impairment in spatial navigation is an early feature of the disease but whether basal forebrain dysfunction in AD is responsible for the impaired navigation skills of AD patients is not known. Our objective was to investigate the relationship between basal forebrain volume and performance in real space as well as computer-based navigation paradigms in an elderly cohort comprising cognitively normal controls, subjects with amnestic mild cognitive impairment and those with AD. We also tested whether basal forebrain volume could predict the participants' ability to perform allocentric- vs. egocentric-based navigation tasks. The basal forebrain volume was calculated from 1.5 T magnetic resonance imaging (MRI) scans, and navigation skills were assessed using the human analog of the Morris water maze employing allocentric, egocentric, and mixed allo/egocentric real space as well as computerized tests. When considering the entire sample, we found that basal forebrain volume correlated with spatial accuracy in allocentric (cued) and mixed allo/egocentric navigation tasks but not the egocentric (uncued) task, demonstrating an important role of the basal forebrain in mediating cue-based spatial navigation capacity. Regression analysis revealed that, although hippocampal volume reflected navigation performance across the entire sample, basal forebrain volume contributed to mixed allo/egocentric navigation performance in the AD group, whereas hippocampal volume did not. This suggests that atrophy of the basal forebrain contributes to aspects of navigation impairment in AD that are independent of hippocampal atrophy.
See more in PubMed
Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132, 77–84.10.1016/S0166-4328(01)00399-0 PubMed DOI
Avants B. B., Epstein C. L., Grossman M., Gee J. C. (2008). Symmetric diffeomorphic image registration with cross-correlation: evaluating automated labeling of elderly and neurodegenerative brain. Med. Image Anal. 12, 26–41.10.1016/j.media.2007.06.004 PubMed DOI PMC
Avants B. B., Yushkevich P., Pluta J., Minkoff D., Korczykowski M., Detre J., et al. (2010). The optimal template effect in hippocampus studies of diseased populations. Neuroimage 49, 2457–2466.10.1016/j.neuroimage.2009.09.062 PubMed DOI PMC
Berger-Sweeney J., Stearns N. A., Murg S., Floerke-Nashner L. R., Lappi D. A., Baxter M. G. (2001). Selective immunolesions of cholinergic neurons in mice: effects on neuroanatomy, neurochemistry, and behavior. J Neurosci 21, 8164–8173. PubMed PMC
Botly L. C., De Rosa E. (2009). Cholinergic deafferentation of the neocortex using 192 IgG-saporin impairs feature binding in rats. J. Neurosci. 29, 4120–4130.10.1523/JNEUROSCI.0654-09.2009 PubMed DOI PMC
Botly L. C., De Rosa E. (2012). Impaired visual search in rats reveals cholinergic contributions to feature binding in visuospatial attention. Cereb. Cortex 22, 2441–2453.10.1093/cercor/bhr331 PubMed DOI
Bourgeat P., Chetelat G., Villemagne V. L., Fripp J., Raniga P., Pike K., et al. (2010). Beta-amyloid burden in the temporal neocortex is related to hippocampal atrophy in elderly subjects without dementia. Neurology 74, 121–127.10.1212/WNL.0b013e3181c918b5 PubMed DOI
Butler T., Blackmon K., Zaborszky L., Wang X., Dubois J., Carlson C., et al. (2012). Volume of the human septal forebrain region is a predictor of source memory accuracy. J. Int. Neuropsychol. Soc. 18, 157–161.10.1017/S1355617711001421 PubMed DOI PMC
Contestabile A. (2011). The history of the cholinergic hypothesis. Behav. Brain Res. 221, 334–340.10.1016/j.bbr.2009.12.044 PubMed DOI
DeKosky S. T., Ikonomovic M. D., Styren S. D., Beckett L., Wisniewski S., Bennett D. A., et al. (2002). Upregulation of choline acetyltransferase activity in hippocampus and frontal cortex of elderly subjects with mild cognitive impairment. Ann. Neurol. 51, 145–155.10.1002/ana.10069 PubMed DOI
Furey M. L., Pietrini P., Haxby J. V. (2000). Cholinergic enhancement and increased selectivity of perceptual processing during working memory. Science 290, 2315–2319.10.1126/science.290.5500.2315 PubMed DOI
George S., Mufson E. J., Leurgans S., Shah R. C., Ferrari C., Detoledo-Morrell L. (2011). MRI-based volumetric measurement of the substantia innominata in amnestic MCI and mild AD. Neurobiol. Aging 32, 1756–1764.10.1016/j.neurobiolaging.2009.11.006 PubMed DOI PMC
Grothe M., Heinsen H., Teipel S. (2012). Longitudinal measures of cholinergic forebrain atrophy in the transition from healthy aging to Alzheimer’s disease. Neurobiol. Aging 43, 1210–1220.10.1016/j.neurobiolaging.2012.10.018 PubMed DOI PMC
Grothe M., Heinsen H., Teipel S. J. (2011). Atrophy of the cholinergic basal forebrain over the adult age range and in early stages of Alzheimer’s disease. Biol. Psychiatry 71, 805–813.10.1016/j.biopsych.2011.06.019 PubMed DOI PMC
Hamlin A. S., Windels F., Boskovic Z., Sah P., Coulson E. J. (2013). Lesions of the basal forebrain cholinergic system in mice disrupt idiothetic navigation. PLoS ONE 8:e53472.10.1371/journal.pone.0053472 PubMed DOI PMC
Hasselmo M. E., McGaughy J. (2004). High acetylcholine levels set circuit dynamics for attention and encoding and low acetylcholine levels set dynamics for consolidation. Prog. Brain Res. 145, 207–231.10.1016/S0079-6123(03)45015-2 PubMed DOI
Hort J., Andel R., Mokrisova I., Gazova I., Amlerova J., Valis M., et al. (2014). Effect of donepezil in Alzheimer disease can be measured by a computerized human analog of the Morris water maze. Neurodegener. Dis. 13, 192–196.10.1159/000355517 PubMed DOI
Hort J., Laczo J., Vyhnalek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U.S.A. 104, 4042–4047.10.1073/pnas.0611314104 PubMed DOI PMC
Ikonen S., Mcmahan R., Gallagher M., Eichenbaum H., Tanila H. (2002). Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12, 386–397.10.1002/hipo.1109 PubMed DOI
Ikonomovic M. D., Mufson E. J., Wuu J., Cochran E. J., Bennett D. A., Dekosky S. T. (2003). Cholinergic plasticity in hippocampus of individuals with mild cognitive impairment: correlation with Alzheimer’s neuropathology. J. Alzheimers Dis. 5, 39–48. PubMed
Kerbler G. M., Fripp J., Rowe C., Villemagne V. L., Salvado O., Rose S., et al. (2014). Basal forebrain atrophy correlates with amyloid β burden in Alzheimer’s disease. Neuroimage Clin. 7, 105–113.10.1016/j.nicl.2014.11.015 PubMed DOI PMC
Kim M. J., Lee K. M., Son Y. D., Jeon H. A., Kim Y. B., Cho Z. H. (2012). Increased basal forebrain metabolism in mild cognitive impairment: an evidence for brain reserve in incipient dementia. J. Alzheimers Dis. 32, 927–938.10.3233/JAD-2012-120133 PubMed DOI
Laczo J., Andel R., Vlcek K., Macoska V., Vyhnalek M., Tolar M., et al. (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener. Dis. 8, 169–177.10.1159/000321581 PubMed DOI
McKhann G., Drachman D., Folstein M., Katzman R., Price D., Stadlan E. M. (1984). Clinical diagnosis of Alzheimer’s disease: report of the NINCDS-ADRDA Work Group under the auspices of Department of Health and Human Services Task Force on Alzheimer’s Disease. Neurology 34, 939–944.10.1212/WNL.34.7.939 PubMed DOI
Morris J. C. (1993). The clinical dementia rating (CDR): current version and scoring rules. Neurology 43, 2412–2414.10.1212/WNL.43.11.2412-a PubMed DOI
Mufson E. (2003). Human cholinergic basal forebrain: chemoanatomy and neurologic dysfunction. J. Chem. Neuroanat. 26, 233–242.10.1016/s0891-0618(03)00068-1 PubMed DOI
Nedelska Z., Andel R., Laczo J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109, 2590–2594.10.1073/pnas.1121588109 PubMed DOI PMC
Parikh V., Kozak R., Martinez V., Sarter M. (2007). Prefrontal acetylcholine release controls cue detection on multiple timescales. Neuron 56, 141–154.10.1016/j.neuron.2007.08.025 PubMed DOI PMC
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256, 183–194.10.1111/j.1365-2796.2004.01388.x PubMed DOI
Petrou M., Frey K. A., Kilbourn M. R., Scott P. J., Raffel D. M., Bohnen N. I., et al. (2014). In vivo imaging of human cholinergic nerve terminals with (-)-5-(18)F-fluoroethoxybenzovesamicol: biodistribution, dosimetry, and tracer kinetic analyses. J. Nucl. Med. 55, 396–404.10.2967/jnumed.113.124792 PubMed DOI
Sarter M., Gehring W. J., Kozak R. (2006). More attention must be paid: the neurobiology of attentional effort. Brain Res. Rev. 51, 145–160.10.1016/j.brainresrev.2005.11.002 PubMed DOI
Schliebs R., Arendt T. (2006). The significance of the cholinergic system in the brain during aging and in Alzheimer’s disease. J. Neural Transm. 113, 1625–1644.10.1007/s00702-006-0579-2 PubMed DOI
Stanfield B. B., Cowan W. M. (1982). The sprouting of septal afferents to the dentate gyrus after lesions of the entorhinal cortex in adult rats. Brain Res. 232, 162–170.10.1016/0006-8993(82)90619-9 PubMed DOI
Tai S. K., Leung L. S. (2012). Vestibular stimulation enhances hippocampal long-term potentiation via activation of cholinergic septohippocampal cells. Behav. Brain Res. 232, 174–182.10.1016/j.bbr.2012.04.013 PubMed DOI
Weniger G., Ruhleder M., Wolf S., Lange C., Irle E. (2009). Egocentric memory impaired and allocentric memory intact as assessed by virtual reality in subjects with unilateral parietal cortex lesions. Neuropsychologia 47, 59–69.10.1016/j.neuropsychologia.2008.08.018 PubMed DOI
Zaborszky L., Hoemke L., Mohlberg H., Schleicher A., Amunts K., Zilles K. (2008). Stereotaxic probabilistic maps of the magnocellular cell groups in human basal forebrain.NeuroImage 42, 1127-1141.10.1016/j.neuroimage.2008.05.055 PubMed DOI PMC
Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease
Moderating effect of cognitive reserve on brain integrity and cognitive performance
Emotional prosody recognition is impaired in Alzheimer's disease
Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging