Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging

. 2021 Oct 27 ; 11 (11) : . [epub] 20211027

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid34827423

Grantová podpora
CZ.02.1.01/0.0/0.0/16_019/0000868 European Regional Development Fund - Project ENOCH
00064203 Ministry of Health, Czech Republic-conceptual development of research organization, University Hospital Motol, Prague, Czech Republic
6990332 Institutional Support of Excellence 2. LF UK
327821 Grant Agency of Charles University

Age-related spatial navigation decline is more pronounced in patients with mild cognitive impairment (MCI) and Alzheimer's disease (AD) dementia. We used a realistic-looking virtual navigation test suite to analyze different aspects of visuospatial processing in typical and atypical aging. A total of 219 older adults were recruited from the Czech Brain Aging Study cohort. Cognitively normal older adults (CN; n = 78), patients with amnestic MCI (n = 75), and those with mild AD dementia (n = 66) underwent three navigational tasks, cognitive assessment, and brain MRI. Route learning and wayfinding/perspective-taking tasks distinguished the groups as performance and learning declined and specific visuospatial strategies were less utilized with increasing cognitive impairment. Increased perspective shift and utilization of non-specific strategies were associated with worse task performance across the groups. Primacy and recency effects were observed across the groups in the route learning and the wayfinding/perspective-taking task, respectively. In addition, a primacy effect was present in the wayfinding/perspective-taking task in the CN older adults. More effective spatial navigation was associated with better memory and executive functions. The results demonstrate that a realistic and ecologically valid spatial navigation test suite can reveal different aspects of visuospatial processing in typical and atypical aging.

Zobrazit více v PubMed

Waller D., Lippa Y. Landmarks as beacons and associative cues: Their role in route learning. Mem. Cognit. 2007;35:910–924. doi: 10.3758/BF03193465. PubMed DOI

Muffato V., Meneghetti C. Learning a Path from Real Navigation: The Advantage of Initial View, Cardinal North and Visuo-Spatial Ability. Brain Sci. 2020;10:204. doi: 10.3390/brainsci10040204. PubMed DOI PMC

Hartley T., Maguire E.A., Spiers H.J., Burgess N. The well-worn route and the path less traveled: Distinct neural bases of route following and wayfinding in humans. Neuron. 2003;37:877–888. doi: 10.1016/S0896-6273(03)00095-3. PubMed DOI

Maguire E.A., Burgess N., Donnett J.G., Frackowiak R.S., Frith C.D., O’Keefe J. Knowing where and getting there: A human navigation network. Science. 1998;280:921–924. doi: 10.1126/science.280.5365.921. PubMed DOI

Zhang H., Ekstrom A. Human neural systems underlying rigid and flexible forms of allocentric spatial representation. Hum. Brain Mapp. 2013;34:1070–1087. doi: 10.1002/hbm.21494. PubMed DOI PMC

Moffat S.D. Aging and spatial navigation: What do we know and where do we go? Neuropsychol. Rev. 2009;19:478–489. doi: 10.1007/s11065-009-9120-3. PubMed DOI

Lester A.W., Moffat S.D., Wiener J.M., Barnes C.A., Wolbers T. The Aging Navigational System. Neuron. 2017;95:1019–1035. doi: 10.1016/j.neuron.2017.06.037. PubMed DOI PMC

Rodgers M.K., Sindone J.A., Moffat S.D. Effects of age on navigation strategy. Neurobiol. Aging. 2012;33:202.e15–202.e22. doi: 10.1016/j.neurobiolaging.2010.07.021. PubMed DOI PMC

Goeke C., Kornpetpanee S., Köster M., Fernández-Revelles A.B., Gramann K., König P. Cultural background shapes spatial reference frame proclivity. Sci. Rep. 2015;5:11426. doi: 10.1038/srep11426. PubMed DOI PMC

Gazova I., Laczó J., Rubinova E., Mokrisova I., Hyncicova E., Andel R., Vyhnalek M., Sheardova K., Coulson E.J., Hort J. Spatial navigation in young versus older adults. Front. Aging Neurosci. 2013;5 doi: 10.3389/fnagi.2013.00094. PubMed DOI PMC

Guderian S., Dzieciol A.M., Gadian D.G., Jentschke S., Doeller C.F., Burgess N., Mishkin M., Vargha-Khadem F. Hippocampal Volume Reduction in Humans Predicts Impaired Allocentric Spatial Memory in Virtual-Reality Navigation. J. Neurosci. 2015;35:14123–14131. doi: 10.1523/JNEUROSCI.0801-15.2015. PubMed DOI PMC

Urgolites Z.J., Kim S., Hopkins R.O., Squire L.R. Map reading, navigating from maps, and the medial temporal lobe. Proc. Natl. Acad. Sci. USA. 2016;113:14289–14293. doi: 10.1073/pnas.1617786113. PubMed DOI PMC

Iaria G., Palermo L., Committeri G., Barton J.J.S. Age differences in the formation and use of cognitive maps. Behav. Brain Res. 2009;196:187–191. doi: 10.1016/j.bbr.2008.08.040. PubMed DOI

Driscoll I., Davatzikos C., An Y., Wu X., Shen D., Kraut M., Resnick S.M. Longitudinal pattern of regional brain volume change differentiates normal aging from MCI. Neurology. 2009;72:1906. doi: 10.1212/WNL.0b013e3181a82634. PubMed DOI PMC

Braak H., Del Tredici K. The preclinical phase of the pathological process underlying sporadic Alzheimer’s disease. Brain. 2015;138:2814–2833. doi: 10.1093/brain/awv236. PubMed DOI

Jacobs H.I., Van Boxtel M.P., Jolles J., Verhey F.R., Uylings H.B. Parietal cortex matters in Alzheimer’s disease: An overview of structural, functional and metabolic findings. Neurosci. Biobehav. Rev. 2012;36:297–309. doi: 10.1016/j.neubiorev.2011.06.009. PubMed DOI

Cushman L.A., Stein K., Duffy C.J. Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology. 2008;71:888–895. doi: 10.1212/01.wnl.0000326262.67613.fe. PubMed DOI PMC

Laczó J., Vlcek K., Vyhnálek M., Vajnerová O., Ort M., Holmerová I., Tolar M., Andel R., Bojar M., Hort J. Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 2009;202:252–259. doi: 10.1016/j.bbr.2009.03.041. PubMed DOI

Allison S.L., Fagan A.M., Morris J.C., Head D. Spatial Navigation in Preclinical Alzheimer’s Disease. J. Alzheimer’s Dis. 2016;52:77–90. doi: 10.3233/JAD-150855. PubMed DOI PMC

Kerbler G., Nedelska Z., Fripp J., Laczó J., Vyhnalek M., Lisý J., Hamlin A., Rose S., Hort J., Coulson E. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer’s Disease Patients. Front. Aging Neurosci. 2015;7:185. doi: 10.3389/fnagi.2015.00185. PubMed DOI PMC

Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., Sheardova K., Bures J., Hort J. Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. USA. 2012;109:2590–2594. doi: 10.1073/pnas.1121588109. PubMed DOI PMC

Hallab A., Lange C., Apostolova I., Özden C., Gonzalez-Escamilla C., Klutmann S., Brenner W., Grothe M.J., Buchert R. Impairment of Everyday Spatial Navigation Abilities in Mild Cognitive Impairment Is Weakly Associated with Reduced Grey Matter Volume in the Medial Part of the Entorhinal Cortex. J. Alzheimer’s Dis. 2020;78:1149–1159. doi: 10.3233/JAD-200520. PubMed DOI

Benke T., Karner E., Petermichl S., Prantner V., Kemmler G. Neuropsychological deficits associated with route learning in Alzheimer disease, MCI, and normal aging. Alzheimer Dis. Assoc. Disord. 2014;28:162–167. doi: 10.1097/WAD.0000000000000009. PubMed DOI

Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia. 2011;49:518–527. doi: 10.1016/j.neuropsychologia.2010.12.031. PubMed DOI

Iaria G., Petrides M., Dagher A., Pike B. Cognitive strategies dependent on the hippocampus and caudate nucleus in human navigation: Variability and change with practice. J. Neurosci. 2003;23:5945–5952. doi: 10.1523/JNEUROSCI.23-13-05945.2003. PubMed DOI PMC

Parizkova M., Lerch O., Moffat S.D., Andel R., Mazancova A.F., Nedelska Z., Vyhnalek M., Hort J., Laczó J. The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiol. Aging. 2018;64:107–115. doi: 10.1016/j.neurobiolaging.2017.12.019. PubMed DOI

Zancada-Menendez C., Sampedro-Piquero P., Lopez L., McNamara T.P. Age and gender differences in spatial perspective taking. Aging Clin. Exp. Res. 2015;28:289–296. doi: 10.1007/s40520-015-0399-z. PubMed DOI

Marková H., Laczó J., Andel R., Hort J., Vlček K. Perspective taking abilities in amnestic mild cognitive impairment and Alzheimer’s disease. Behav. Brain Res. 2015;281:229–238. doi: 10.1016/j.bbr.2014.12.033. PubMed DOI

Quental N.M.D., Brucki S.M.D., Bueno O.F.A. Visuospatial function in early Alzheimer’s disease: Preliminary study. Dement. Neuropsychol. 2009;3:234–240. doi: 10.1590/S1980-57642009DN30300010. PubMed DOI PMC

Faubert J. Visual perception and aging. Can. J. Exp. Psychol. 2002;56:164–176. doi: 10.1037/h0087394. PubMed DOI

Ramanoël S., Durteste M., Bécu M., Habas C., Arleo A. Differential Brain Activity in Regions Linked to Visuospatial Processing During Landmark-Based Navigation in Young and Healthy Older Adults. Front. Hum. Neurosci. 2020;14 doi: 10.3389/fnhum.2020.552111. PubMed DOI PMC

Uhlhaas P.J., Pantel J., Lanfermann H., Prvulovic D., Haenschel C., Maurer K., Linden D.E. Visual perceptual organization deficits in Alzheimer’s dementia. Dement. Geriatr. Cogn. Disord. 2008;25:465–475. doi: 10.1159/000125671. PubMed DOI

Paxton J.L., Peavy G.M., Jenkins C., Rice V.A.S., Heindel W.C., Salmon D.P. Deterioration of visual-perceptual organization ability in Alzheimer’s disease. Cortex. 2007;43:967–975. doi: 10.1016/S0010-9452(08)70694-4. PubMed DOI

Molitor R.J., Ko P.C., Ally B.A. Eye movements in Alzheimer’s disease. J. Alzheimer’s Dis. 2015;44:1–12. doi: 10.3233/JAD-141173. PubMed DOI PMC

Kimura K., Reichert J.F., Kelly D.M., Moussavi Z. Older Adults Show Less Flexible Spatial Cue Use When Navigating in a Virtual Reality Environment Compared With Younger Adults. Neurosci. Insights. 2019;14 doi: 10.1177/2633105519896803. PubMed DOI PMC

Foo P., Warren W.H., Duchon A., Tarr M.J. Do humans integrate routes into a cognitive map? Map- versus landmark-based navigation of novel shortcuts. J. Exp. Psychol. Learn. Mem. Cogn. 2005;31:195–215. doi: 10.1037/0278-7393.31.2.195. PubMed DOI

Diersch N., Wolbers T., el Jundi B., Kelber A., Webb B. The potential of virtual reality for spatial navigation research across the adult lifespan. J. Exp. Biol. 2019;222 doi: 10.1242/jeb.187252. PubMed DOI

Wiener J.M., Caroll D., Moeller S., Bibi I., Ivanova D., Allen P., Wolbers T. A novel virtual-reality-based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behav. Res. Methods. 2020;52:630–640. doi: 10.3758/s13428-019-01264-8. PubMed DOI PMC

Mitrushina M., Satz P., Chervinsky A., D’Elia L. Performance of four age groups of normal elderly on the Rey Auditory-Verbal Learning Test. J. Clin. Psychol. 1991;47:351–357. doi: 10.1002/1097-4679(199105)47:3<351::AID-JCLP2270470305>3.0.CO;2-S. PubMed DOI

Kasper E., Brueggen K., Grothe M.J., Bruno D., Pomara N., Unterauer E., Duering M., Ewers M., Teipel S., Buerger K. Neuronal correlates of serial position performance in amnestic mild cognitive impairment. Neuropsychology. 2016;30:906–914. doi: 10.1037/neu0000287. PubMed DOI

Hilton C., Wiener J., Johnson A. Serial memory for landmarks encountered during route navigation. Q. J. Exp. Psychol. 2021 doi: 10.1177/17470218211020745. PubMed DOI PMC

Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., Cerman J., Lerch O., Hort J. Czech Brain Aging Study (CBAS): Prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open. 2019;9:e030379. doi: 10.1136/bmjopen-2019-030379. PubMed DOI PMC

Laczó J., Andel R., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z., Lerch O., Gazova I., Moffat S.D., Hort J. The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol. Aging. 2015;36:2024–2033. doi: 10.1016/j.neurobiolaging.2015.03.004. PubMed DOI

Parizkova M., Lerch O., Andel R., Kalinova J., Markova H., Vyhnalek M., Hort J., Laczó J. Spatial Pattern Separation in Early Alzheimer’s Disease. J. Alzheimer’s Dis. 2020;76:121–138. doi: 10.3233/JAD-200093. PubMed DOI

McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: Recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimer’s Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H.C., Vermersch P., Kuiper M., Steinling M., Wolters E.C., Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: Diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry. 1992;55:967–972. doi: 10.1136/jnnp.55.10.967. PubMed DOI PMC

Petersen R.C. Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 2004;256:183–194. doi: 10.1111/j.1365-2796.2004.01388.x. PubMed DOI

de Condappa O., Wiener J.M. Human place and response learning: Navigation strategy selection, pupil size and gaze behavior. Psychol. Res. 2016;80:82–93. doi: 10.1007/s00426-014-0642-9. PubMed DOI

Wiener J.M., de Condappa O., Harris M.A., Wolbers T. Maladaptive bias for extrahippocampal navigation strategies in aging humans. J. Neurosci. 2013;33:6012–6017. doi: 10.1523/JNEUROSCI.0717-12.2013. PubMed DOI PMC

DeIpolyi A., Rankin K., Mucke L., Miller B., Gorno-Tempini M. Spatial cognition and the human navigation network in AD and MCI. Neurology. 2007;69:986–987. doi: 10.1212/01.wnl.0000271376.19515.c6. PubMed DOI

Pengas G., Patterson K., Arnold R.L., Bird C.M., Burgess N., Nestor P.J. Lost and found: Bespoke memory testing for Alzheimer’s disease and semantic dementia. J. Alzheimer’s Dis. 2010;21:1347–1365. doi: 10.3233/JAD-2010-100654. PubMed DOI

Cherrier M., Mendez M.F., Perryman K. Route learning performance in Alzheimer disease patients. Neuropsychiatry. Neuropsychol. Behav. Neurol. 2001;14:159–168. PubMed

Guariglia C.C. Spatial working memory in Alzheimer’s disease: A study using the Corsi block-tapping test. Dement. Neuropsychol. 2007;1:392–395. doi: 10.1590/S1980-57642008DN10400011. PubMed DOI PMC

Wolbers T., Wiener J.M. Challenges for identifying the neural mechanisms that support spatial navigation: The impact of spatial scale. Front. Hum. Neurosci. 2014;8 doi: 10.3389/fnhum.2014.00571. PubMed DOI PMC

Cornell E.H., Heth C.D., Kneubuhler Y., Sehgal S. Serial Position Effects in Children’s Route Reversal Errors: Implications for Police Search Operations. Appl. Cogn. Psychol. 1996;10:301–326. doi: 10.1002/(SICI)1099-0720(199608)10:4<301::AID-ACP383>3.0.CO;2-A. DOI

Helstrup T., Magnussen S. The mental representation of familiar, long-distance journeys. J. Environ. Psychol. 2001;21:411–421. doi: 10.1006/jevp.2001.0230. DOI

Weitzner D.S., Calamia M. Serial position effects on list learning tasks in mild cognitive impairment and Alzheimer’s disease. Neuropsychology. 2020;34:467–478. doi: 10.1037/neu0000620. PubMed DOI

Talamonti D., Koscik R., Johnson S., Bruno D. Predicting Early Mild Cognitive Impairment with Free Recall: The Primacy of Primacy. Arch. Clin. Neuropsychol. 2020;35:133–142. doi: 10.1093/arclin/acz013. PubMed DOI PMC

Burkart M., Heun R., Benkert O. Serial position effects in dementia of the Alzheimer type. Dement. Geriatr. Cogn. Disord. 1998;9:130–136. doi: 10.1159/000017036. PubMed DOI

Hort J., Laczó J., Vyhnálek M., Bojar M., Bureš J., Vlček K. Spatial Navigation Deficit in Amnestic Mild Cognitive Impairment. Proc. Natl. Acad. Sci. USA. 2007;104:4042–4047. doi: 10.1073/pnas.0611314104. PubMed DOI PMC

Visser P.J., Scheltens P., Verhey F.R., Schmand B., Launer J.L., Jolles J., Jonker C. Medial temporal lobe atrophy and memory dysfunction as predictors for dementia in subjects with mild cognitive impairment. J. Neurol. 1999;246:477–485. doi: 10.1007/s004150050387. PubMed DOI

Frankenmolen N.L., Fasotti L., Kessels R.P.C., Oosterman J.M. The influence of cognitive reserve and age on the use of memory strategies. Exp. Aging Res. 2018;44:117–134. doi: 10.1080/0361073X.2017.1422472. PubMed DOI

Moffat S.D., Kennedy K.M., Rodrigue K.M., Raz N. Extrahippocampal contributions to age differences in human spatial navigation. Cereb. Cortex. 2007;17:1274–1282. doi: 10.1093/cercor/bhl036. PubMed DOI

Wei E.X., Anson E.R., Resnick S.M., Agrawal Y. Psychometric Tests and Spatial Navigation: Data From the Baltimore Longitudinal Study of Aging. Front. Neurol. 2020;11 doi: 10.3389/fneur.2020.00484. PubMed DOI PMC

Moffat S.D., Zonderman A.B., Resnick S.M. Age differences in spatial memory in a virtual environment navigation task. Neurobiol. Aging. 2001;22:787–796. doi: 10.1016/S0197-4580(01)00251-2. PubMed DOI

Cogné M., Taillade M., N’Kaoua B., Tarruella A., Klinger E., Larrue F., Sauzéon H., Joseph P.-A., Sorita E. The contribution of virtual reality to the diagnosis of spatial navigation disorders and to the study of the role of navigational aids: A systematic literature review. Ann. Phys. Rehabil. Med. 2016 doi: 10.1016/j.rehab.2015.12.004. PubMed DOI

Taillade M., Sauzéon H., Dejos M., Pala P.A., Larrue F., Wallet G., Gross C., N’Kaoua B. Executive and memory correlates of age-related differences in wayfinding performances using a virtual reality application. Aging Neuropsychol. Cogn. 2013;20:298–319. doi: 10.1080/13825585.2012.706247. PubMed DOI

Laczó J., Andel R., Nedelska Z., Vyhnalek M., Vlcek K., Crutch S., Harrison J., Hort J. Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol. Aging. 2017;51:67–70. doi: 10.1016/j.neurobiolaging.2016.12.003. PubMed DOI

Tangen G.G., Engedal K., Bergland A., Moger T.A., Hansson O., Mengshoel A.M. Spatial navigation measured by the Floor Maze Test in patients with subjective cognitive impairment, mild cognitive impairment, and mild Alzheimer’s disease. Int. Psychogeriatr. 2015;27:1401–1409. doi: 10.1017/S1041610215000022. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...