Spatial navigation in young versus older adults
Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection
Document type Journal Article
PubMed
24391585
PubMed Central
PMC3867661
DOI
10.3389/fnagi.2013.00094
Knihovny.cz E-resources
- Keywords
- Alzheimer’s disease, aging, allocentric navigation, egocentric navigation, gender, hippocampus, spatial learning, spatial navigation,
- Publication type
- Journal Article MeSH
Older age is associated with changes in the brain, including the medial temporal lobe, which may result in mild spatial navigation deficits, especially in allocentric navigation. The aim of the study was to characterize the profile of real-space allocentric (world-centered, hippocampus-dependent) and egocentric (body-centered, parietal lobe dependent) navigation and learning in young vs. older adults, and to assess a possible influence of gender. We recruited healthy participants without cognitive deficits on standard neuropsychological testing, white matter lesions or pronounced hippocampal atrophy: 24 young participants (18-26 years old) and 44 older participants stratified as participants 60-70 years old (n = 24) and participants 71-84 years old (n = 20). All underwent spatial navigation testing in the real-space human analog of the Morris Water Maze, which has the advantage of assessing separately allocentric and egocentric navigation and learning. Of the eight consecutive trials, trials 2-8 were used to reduce bias by a rebound effect (more dramatic changes in performance between trials 1 and 2 relative to subsequent trials). The participants who were 71-84 years old (p < 0.001), but not those 60-70 years old, showed deficits in allocentric navigation compared to the young participants. There were no differences in egocentric navigation. All three groups showed spatial learning effect (p' s ≤ 0.01). There were no gender differences in spatial navigation and learning. Linear regression limited to older participants showed linear (β = 0.30, p = 0.045) and quadratic (β = 0.30, p = 0.046) effect of age on allocentric navigation. There was no effect of age on egocentric navigation. These results demonstrate that navigation deficits in older age may be limited to allocentric navigation, whereas egocentric navigation and learning may remain preserved. This specific pattern of spatial navigation impairment may help differentiate normal aging from prodromal Alzheimer's disease.
International Clinical Research Center St Anne's University Hospital Brno Brno Czech Republic
Queensland Brain Institute The University of Queensland Brisbane QLD Australia
See more in PubMed
Antonova E., Parslow D., Brammer M., Dawson G. R., Jackson S. H., Morris R. G. (2009). Age-related neural activity during allocentric spatial memory. Memory 17 125–14310.1080/09658210802077348 PubMed DOI
Astur R. S., Ortiz M. L., Sutherland R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: a large and reliable sex difference. Behav. Brain Res. 93 185–19010.1016/S0166-4328(98)00019-9 PubMed DOI
Astur R. S., Taylor L. B., Mamelak A. N., Philpott L., Sutherland R. J. (2002). Humans with hippocampus damage display severe spatial memory impairments in a virtual Morris water task. Behav. Brain Res. 132 77–8410.1016/S0166-4328(01)00399-0 PubMed DOI
Barrash J. (1994). Age-related decline in route learning ability. Dev. Neuropsychol. 10 189–20110.1080/87565649409540578 DOI
Bowen R. L., Atwood C. S. (2004). Living and dying for sex. a theory of aging based on the modulation of cell cycle signaling by reproductive hormones. Gerontology 50 265–29010.1159/000079125 PubMed DOI
Braak H., Braak E. (1991). Neuropathological staging of Alzheimer-related changes. Acta Neuropathol. 82 239–25910.1007/BF00308809 PubMed DOI
Burke A., Kandler A., Good D. (2012). Women who know their place: sex-based differences in spatial abilities and their evolutionary significance. Hum. Nat. 23 133–14810.1007/s12110-012-9140-1 PubMed DOI
Burke S. N., Barnes CA. (2006). Neural plasticity in the ageing brain. Nat. Rev. Neurosci. 7 30–4010.1038/nrn1809 PubMed DOI
Burns P. C. (1999). Navigation and the mobility of older drivers. J. Gerontol. B Psychol. Sci. Soc. Sci. 54 49–5510.1093/geronb/54B.1.S49 PubMed DOI
Chai X. J., Jacobs L. F. (2009). Sex differences in directional cue use in a virtual landscape. Behav. Neurosci. 123 276–283 10.1037/a0014722 PubMed DOI
deIpolyi A. R., Rankin K. P., Mucke L., Miller B. L., Gorno-Tempini M. L. (2007). Spatial cognition and the human navigation network in AD and MCI. Neurology 69 986–99710.1212/01.wnl.0000271376.19515.c6 PubMed DOI
Driscoll I., Hamilton D. A., Yeo R. A., Brooks W. M., Sutherland R. J. (2005). Virtual navigation in humans: the impact of age, sex, and hormones on place learning. Horm. Behav. 47 326–33510.1016/j.yhbeh.2004.11.013 PubMed DOI
Fazekas F., Kleiner R., Offenbacher H., Payer F., Schmidt R., Kleinert G., et al. (1991). The morphologic correlate of incidental punctate white matter hyperintensities on MR images. AJNR Am. J. Neuroradiol. 12 915–921 PubMed PMC
Gazova I., Vlcek K., Laczó J., Nedelska Z., Hyncicova E., Mokrisova I., et al. (2012). Spatial navigation-a unique window into physiological and pathological aging. Front. Aging Neurosci. 4:16 10.3389/fnagi.2012.00016 PubMed DOI PMC
Grön G., Wunderlich A. P., Spitzer M., Tomczak R., Riepe M. W. (2000). Brain activation during human navigation: gender-different neural networks as substrate of performance. Nat. Neurosci. 3 404–40810.1038/73980 PubMed DOI
Head D., Isom M. (2010). Age effects on wayfinding and route learning skills. Behav. Brain Res. 209 49–5810.1016/j.bbr.2010.01.012 PubMed DOI
Hort J., Laczó J., Vyhnálek M., Bojar M., Bures J., Vlcek K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U.S.A. 104 4042–404710.1073/pnas.0611314104 PubMed DOI PMC
Iaria G., Palermo L., Committeri G, Barton J. (2009). Age differences in the formation and use of cognitive maps. Behav. Brain Res. 196 187–19110.1016/j.bbr.2008.08.040 PubMed DOI
Jansen P., Schmelter A., Heil M. (2010). Spatial knowledge acquisition in younger and elderly adults: a study in a virtual environment. Exp. Psychol. 57 54–6010.1027/1618-3169/a000007 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., et al. (2010). Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease. Neurodegener. Dis. 7 148–152 10.1159/000289226 PubMed DOI
Laczó J., Vlcek K., Vyhnálek M., Vajnerová O., Ort M., Holmerová I., et al. (2009). Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202 252–259 10.1016/j.bbr.2009.03.041 PubMed DOI
Laczó J., Andel R., Vlèek K., Macoška V., Vyhnálek M., Tola M., et al. (2011). Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener. Dis. 8 169-177 10.1159/000321581 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., et al. (2012). From Morris Water Maze to computer tests in prediction of Alzheimers disease. Neurodegener. Dis. 10 153–157 10.1159/000333121 PubMed DOI
Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D, O’Keefe J. (1998). Knowing where and getting there: a human navigation network. Science 280 921–92410.1126/science.280.5365.921 PubMed DOI
Mapstone M., Steffenella T. M., Duffy C. J. (2003). A visuospatial variant of mild cognitive impairment: getting lost between aging and AD. Neurology 60 802–80810.1212/01.WNL.0000049471.76799.DE PubMed DOI
Moffat S. D., Elkins W., Resnick S. M. (2006). Age differences in the neural systems supporting human allocentric spatial navigation. Neurobiol. Aging 27 965–97210.1016/j.neurobiolaging.2005.05.011 PubMed DOI
Moffat S. D., Hampson E., Hatzipantelis M. (1998). Navigation in a virtual maze: sex differences and correlation with psychometric measures of spatial ability in humans. Evol. Hum. Behav. 1973–8710.1016/S1090-5138(97)00104-9 DOI
Moffat S. D., Resnick S. M. (2002). Effects of age on virtual environment place navigation and allocentric cognitive mapping. Behav. Neurosci. 116 851–85910.1037/0735-7044.116.5.851 PubMed DOI
Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., et al. (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U.S.A. 109 2590–259410.1073/pnas.1121588109 PubMed DOI PMC
Newman M. C., Kaszniak A. W. (2000). Spatial memory and aging: performance on a human analog of the Morris water maze. Neuropsychol. Dev. Cogn. 7 86–9310.1076/1382-5585(200006)7:2;1-U;FT086 DOI
Park D., Lautenschlager G., Hedden T., Davidson N. S., Smith A. D., Smith P. K. (2002). Models of visuospatial and verbal memory across the lifespan. Psychol. Aging 17 299–32010.1037/0882-7974.17.2.299 PubMed DOI
Petersen R. C. (2004). Mild cognitive impairment as a diagnostic entity. J. Intern. Med. 256 183–19410.1111/j.1365-2796.2004.01388.x PubMed DOI
Rodgers M. K., Sindone J. A., III, Moffat S. D. (2012). Effects of age on navigation strategy. Neurobiol. Aging 33 202.e15–202 e2210.1016/j.neurobiolaging.2010.07.021 Epub 2010 Sep 15 PubMed DOI PMC
Saucier D. M., Green S. M., Leason J., MacFadden A., Bell S., Elias L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behav. Neurosci. 116 403–410 10.1037/0735-7044.116.3.403 PubMed DOI
Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H. C., Vemersch P., et al. (1992). Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55 967–97210.1136/jnnp.55.10.967 PubMed DOI PMC
Sperling R. A., Aisen P. S., Beckett L. A., Bennett D. A., Craft S., Fagan A. M., et al. (2011). Toward defining the preclinical stages of Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 280–292 10.1016/j.jalz.2011.03.003 PubMed DOI PMC
Treitz F., Heyder K., Daum I. (2007). Differential course of executive control changes during normal aging. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 14 370–39310.1080/13825580600678442 PubMed DOI
Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49 518–52710.1016/j.neuropsychologia.2010.12.031 PubMed DOI
Whelihan W. M., Lesher E. L. (1985). Neuropsychological changes in frontal functions with aging. Dev. Neuropsychol. 1 371–38010.1080/87565648509540321 DOI
Wilkniss S. M., Jones M. G., Korol D. L., Gold P. E., Manning C. A. (1997). Age-related differences in an ecologically based study of route learning. Psychol. Aging 12 372–37510.1037/0882-7974.12.2.372 PubMed DOI
Woolley D. G., Vermaercke B., Op de Beeck H., Wagemans J., Gantois I., D’Hooge R., et al. (2010). Sex differences in human virtual water maze performance: novel measures reveal the relative contribution of directional responding and spatial knowledge. Behav. Brain Res. 208 408–414 10.1016/j.bbr.2009.12.019 PubMed DOI
Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging
The Combined Effect of APOE and BDNF Val66Met Polymorphisms on Spatial Navigation in Older Adults