Different Profiles of Spatial Navigation Deficits In Alzheimer's Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
35721017
PubMed Central
PMC9201637
DOI
10.3389/fnagi.2022.886778
Knihovny.cz E-zdroje
- Klíčová slova
- allocentric navigation, egocentric navigation, entorhinal cortex, hippocampus, neurodegeneration, precuneus, retrosplenial cortex, tauopathies,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Spatial navigation impairment is a promising cognitive marker of Alzheimer's disease (AD) that can reflect the underlying pathology. OBJECTIVES: We assessed spatial navigation performance in AD biomarker positive older adults with amnestic mild cognitive impairment (AD aMCI) vs. those AD biomarker negative (non-AD aMCI), and examined associations between navigation performance, MRI measures of brain atrophy, and cerebrospinal fluid (CSF) biomarkers. METHODS: A total of 122 participants with AD aMCI (n = 33), non-AD aMCI (n = 31), mild AD dementia (n = 28), and 30 cognitively normal older adults (CN) underwent cognitive assessment, brain MRI (n = 100 had high-quality images for volumetric analysis) and three virtual navigation tasks focused on route learning (body-centered navigation), wayfinding (world-centered navigation) and perspective taking/wayfinding. Cognitively impaired participants underwent CSF biomarker assessment [amyloid-β1-42, total tau, and phosphorylated tau181 (p-tau181)] and amyloid PET imaging (n = 47 and n = 45, respectively), with a subset having both (n = 19). RESULTS: In route learning, AD aMCI performed worse than non-AD aMCI (p < 0.001), who performed similarly to CN. In wayfinding, aMCI participants performed worse than CN (both p ≤ 0.009) and AD aMCI performed worse than non-AD aMCI in the second task session (p = 0.032). In perspective taking/wayfinding, aMCI participants performed worse than CN (both p ≤ 0.001). AD aMCI and non-AD aMCI did not differ in conventional cognitive tests. Route learning was associated with parietal thickness and amyloid-β1-42, wayfinding was associated with posterior medial temporal lobe (MTL) volume and p-tau181 and perspective taking/wayfinding was correlated with MRI measures of several brain regions and all CSF biomarkers. CONCLUSION: AD biomarker positive and negative older adults with aMCI had different profiles of spatial navigation deficits that were associated with posterior MTL and parietal atrophy and reflected AD pathology.
Zobrazit více v PubMed
Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. . (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7, 270–279. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC
Allison S. L., Fagan A. M., Morris J. C., Head D. (2016). Spatial navigation in preclinical Alzheimer’s disease. J. Alzheimers. Dis. 52, 77–90. 10.3233/JAD-150855 PubMed DOI PMC
Allison S. L., Rodebaugh T. L., Johnston C., Fagan A. M., Morris J. C., Head D. (2019). Developing a spatial navigation screening tool sensitive to the preclinical Alzheimer disease continuum. Arch. Clin. Neuropsychol. 34, 1138–1155. 10.1093/arclin/acz019 PubMed DOI PMC
Ashburner J. (2009). Computational anatomy with the SPM software. Magn. Reson. Imaging 27, 1163–1174. 10.1016/j.mri.2009.01.006 PubMed DOI
Auger S. D., Mullally S. L., Maguire E. A. (2012). Retrosplenial cortex codes for permanent landmarks. PLoS One 7:e43620. 10.1371/journal.pone.0043620 PubMed DOI PMC
Avants B. B., Tustison N. J., Song G., Cook P. A., Klein A., Gee J. C. (2011). A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage 54, 2033–2044. 10.1016/j.neuroimage.2010.09.025 PubMed DOI PMC
Barker W. W., Luis C. A., Kashuba A., Luis M., Harwood D. G., Loewenstein D., et al. . (2002). Relative frequencies of Alzheimer disease, lewy body, vascular and frontotemporal dementia and hippocampal sclerosis in the state of florida brain bank. Alzheimer Dis. Assoc. Disord. 16, 203–212. 10.1097/00002093-200210000-00001 PubMed DOI
Beck A. T., Epstein N., Brown G., Steer R. A. (1988). An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 56, 893–897. 10.1037//0022-006x.56.6.893 PubMed DOI
Belohlavek O., Jaruskova M., Skopalova M., Szarazova G., Simonova K. (2019). Improved beta-amyloid PET reproducibility using two-phase acquisition and grey matter delineation. Eur. J. Nucl. Med. Mol. Imaging 46, 297–303. 10.1007/s00259-018-4140-y PubMed DOI PMC
Berron D., Neumann K., Maass A., Schütze H., Fliessbach K., Kiven V., et al. . (2018). Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiol. Aging 65, 86–97. 10.1016/j.neurobiolaging.2017.12.030 PubMed DOI
Berron D., Vieweg P., Hochkeppler A., Pluta J. B., Ding S. L., Maass A., et al. . (2017). A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. Neuroimage Clin. 15, 466–482. 10.1016/j.nicl.2017.05.022 PubMed DOI PMC
Bezdíček O., Lukavský J., Preiss M. (2011). Functional activities questionnaire, Czech Version—a validation study. Ces. Slov. Neurol. N 74/107, 36–42.
Bezdíček O., Stepankova H., Moták L., Axelrod B. N., Woodard J. L., Preiss M., et al. . (2014). Czech version of rey auditory verbal learning test: normative data. Neuropsychol. Dev. Cogn. B. Aging. Neuropsychol. Cogn. 21, 693–721. 10.1080/13825585.2013.865699 PubMed DOI
Blanch R. J., Brennan D., Condon B., Santosh C., Hadley D. (2004). Are there gender-specific neural substrates of route learning from different perspectives? Cereb. Cortex 14, 1207–1213. 10.1093/cercor/bhh081 PubMed DOI
Braak H., Braak E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82, 239–259. 10.1007/BF00308809 PubMed DOI
Braak H., Braak E. (1995). Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging 16, 271–284. 10.1016/0197-4580(95)00021-6 PubMed DOI
Brunec I. K., Bellana B., Ozubko J. D., Man V., Robin J., Liu Z. X., et al. . (2018). Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr. Biol. 28, 2129–2135.e6. 10.1016/j.cub.2018.05.016 PubMed DOI
Cerman J., Laczó J., Vyhnálek M., Malinovská J., Hanzalová J., Hort J. (2020). Cerebrospinal fluid ratio of phosphorylated tau protein and beta amyloid predicts amyloid PET positivity. Czech Slov. Neurol. Neurosurg. 83, 173–179. 10.14735/amcsnn2020173 DOI
Chadwick M. J., Jolly A. E. J., Amos D. P., Hassabis D., Spiers H. J. (2015). A goal direction signal in the human entorhinal/subicular region. Curr. Biol. 25, 87–92. 10.1016/j.cub.2014.11.001 PubMed DOI PMC
Chan D., Gallaher L. M., Moodley K., Minati L., Burgess N., Hartley T. (2016). The 4 mountains test: a short test of spatial memory with high sensitivity for the diagnosis of pre-dementia Alzheimer’s disease. J. Vis. Exp. 116:54454. 10.3791/54454 PubMed DOI PMC
Chen X., Vieweg P., Wolbers T. (2019). Computing distance information from landmarks and self-motion cues - differential contributions of anterior-lateral vs. posterior-medial entorhinal cortex in humans. Neuroimage 202:116074. 10.1016/j.neuroimage.2019.116074 PubMed DOI
Cholvin T., Hainmueller T., Bartos M. (2021). The hippocampus converts dynamic entorhinal inputs into stable spatial maps. Neuron 109, 3135–3148.e7. 10.1016/j.neuron.2021.09.019 PubMed DOI PMC
Clark B. J., Simmons C. M., Berkowitz L. E., Wilber A. A. (2018). The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behav. Neurosci. 132, 416–429. 10.1037/bne0000260 PubMed DOI PMC
Coughlan G., Laczó J., Hort J., Minihane A. M., Hornberger M. (2018). Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 14, 496–506. 10.1038/s41582-018-0031-x PubMed DOI
Crary J. F., Trojanowski J. Q., Schneider J. A., Abisambra J. F., Abner E. L., Alafuzoff I., et al. . (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128, 755–766. 10.1007/s00401-014-1349-0 PubMed DOI PMC
Cushman L. A., Stein K., Duffy C. J. (2008). Detecting navigational deficits in cognitive aging and Alzheimer disease using virtual reality. Neurology 71, 888–895. 10.1212/01.wnl.0000326262.67613.fe PubMed DOI PMC
Dale A. M., Fischl B., Sereno M. I. (1999). Cortical surface-based analysis. I. Segmentation and surface reconstruction. Neuroimage 9, 179–194. 10.1006/nimg.1998.0395 PubMed DOI
de Condappa O., Wiener J. M. (2016). Human place and response learning: navigation strategy selection, pupil size and gaze behavior. Psychol. Res. 80, 82–93. 10.1007/s00426-014-0642-9 PubMed DOI
DeIpolyi A., Rankin K., Mucke L., Miller B., Gorno-Tempini M. (2007). Spatial cognition and the human navigation network in AD and MCI. Neurology 69, 986–987. 10.1212/01.wnl.0000271376.19515.c6 PubMed DOI
Desikan R. S., Ségonne F., Fischl B., Quinn B. T., Dickerson B. C., Blacker D., et al. . (2006). An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31, 968–980. 10.1016/j.neuroimage.2006.01.021 PubMed DOI
Diersch N., Wolbers T. (2019). The potential of virtual reality for spatial navigation research across the adult lifespan. J. Exp. Biol. 222:jeb187252. 10.1242/jeb.187252 PubMed DOI
Doeller C. F., King J. A., Burgess N. (2008). Parallel striatal and hippocampal systems for landmarks and boundaries in spatial memory. Proc. Natl. Acad. Sci. U S A 105, 5915–5920. 10.1073/pnas.0801489105 PubMed DOI PMC
Drozdova K., Štěpánková H., Lukavský J., Bezdíček M., Kopeček M. (2015). Normativní studie testu Reyovy- Osterriethovy komplexní figury v populaci českých senioru. Ces. Slov. Neurol. N. 78/111, 542–549.
Du A. T., Schuff N., Kramer J. H., Ganzer S., Zhu X. P., Jagust W. J., et al. . (2004). Higher atrophy rate of entorhinal cortex than hippocampus in AD. Neurology 62, 422–427. 10.1212/01.wnl.0000106462.72282.90 PubMed DOI PMC
Evensmoen H. R., Ladstein J., Hansen T. I., Møller J. A., Witter M. P., Nadel L., et al. . (2015). From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. Hippocampus 25, 119–135. 10.1002/hipo.22357 PubMed DOI
Ferrer I., Santpere G., van Leeuwen F. W. (2008). Argyrophilic grain disease. Brain 131, 1416–1432. 10.1093/brain/awm305 PubMed DOI
Fischl B., Salat D. H., Busa E., Albert M., Dieterich M., Haselgrove C., et al. . (2002). Whole brain segmentation: automated labeling of neuroanatomical structures in the human brain. Neuron 33, 341–355. 10.1016/s0896-6273(02)00569-x PubMed DOI
Fischl B., van der Kouwe A., Destrieux C., Halgren E., Ségonne F., Salat D. H., et al. . (2004). Automatically parcellating the human cerebral cortex. Cereb. Cortex 14, 11–22. 10.1093/cercor/bhg087 PubMed DOI
Fu H., Rodriguez G. A., Herman M., Emrani S., Nahmani E., Barrett G., et al. . (2017). Tau pathology induces excitatory neuron loss, grid cell dysfunction and spatial memory deficits reminiscent of early Alzheimer’s disease. Neuron 93, 533–541.e5. 10.1016/j.neuron.2016.12.023 PubMed DOI PMC
Green M. S., Kaye J. A., Ball M. J. (2000). The Oregon brain aging study: neuropathology accompanying healthy aging in the oldest old. Neurology 54, 105–113. 10.1212/wnl.54.1.105 PubMed DOI
Hartley T., Maguire E. A., Spiers H. J., Burgess N. (2003). The well-worn route and the path less traveled: distinct neural bases of route following and wayfinding in humans. Neuron 37, 877–888. 10.1016/s0896-6273(03)00095-3 PubMed DOI
Hayes A. (2013). Introduction to Mediation, Moderation and Conditional Process Analysis: A Regression-Based Approach. New York, NY: The Guilford Press.
Hort J., Laczó J., Vyhnálek M., Bojar M., Bureš J., Vlčk K. (2007). Spatial navigation deficit in amnestic mild cognitive impairment. Proc. Natl. Acad. Sci. U S A 104, 4042–4047. 10.1073/pnas.0611314104 PubMed DOI PMC
Howard L. R., Javadi A. H., Yu Y., Mill R. D., Morrison L. C., Knight R., et al. . (2014). The hippocampus and entorhinal cortex encode the path and euclidean distances to goals during navigation. Curr. Biol. 24, 1331–1340. 10.1016/j.cub.2014.05.001 PubMed DOI PMC
Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., et al. . (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142, 1751–1766. 10.1093/brain/awz116 PubMed DOI PMC
Hyman B. T., Phelps C., Beach T. G., Bigio E. H., Cairns N. J., Carrillo M. C., et al. . (2012). National institute on aging-Alzheimer’s association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8, 1–13. 10.1016/j.jalz.2011.10.007 PubMed DOI PMC
Iglói K., Doeller C. F., Berthoz A., Rondi-Reig L., Burgess N. (2010). Lateralized human hippocampal activity predicts navigation based on sequence or place memory. Proc. Natl. Acad. Sci. U S A 107, 14466–14471. 10.1002/jdn.10189 PubMed DOI PMC
Jack C. R., Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. . (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimer’s Dement. 14, 535–562. 10.1016/j.jalz.2018.02.018 PubMed DOI PMC
Jack C. R., Dickson D. W., Parisi J. E., Xu Y. C., Cha R. H., O’Brien P. C., et al. . (2002). Antemortem MRI findings correlate with hippocampal neuropathology in typical aging and dementia. Neurology 58, 750–757. 10.1212/wnl.58.5.750 PubMed DOI PMC
Jack C. R., Jr., Petersen R. C., O’Brien P. C., Tangalos E. G. (1992). MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42, 183–188. 10.1212/wnl.42.1.183 PubMed DOI
Jacobs H. I. L., Hedden T., Schultz A. P., Sepulcre J., Perea R. D., Amariglio R. E., et al. . (2018). Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat. Neurosci. 21, 424–431. 10.1038/s41593-018-0070-z PubMed DOI PMC
Josephs K. A., Whitwell J. L., Ahmed Z., Shiung M. M., Weigand S. D., Knopman D. S., et al. . (2008). Beta-amyloid burden is not associated with rates of brain atrophy. Ann. Neurol. 63, 204–212. 10.1002/ana.21223 PubMed DOI PMC
Kuruvilla M. V., Ainge J. A. (2017). Lateral entorhinal cortex lesions impair local spatial frameworks. Front. Syst. Neurosci. 11:30. 10.3389/fnsys.2017.00030 PubMed DOI PMC
Kuruvilla M. V., Wilson D. I. G., Ainge J. A. (2020). Lateral entorhinal cortex lesions impair both egocentric and allocentric object-place associations. Brain Neurosci. Adv. 4:2398212820939463. 10.1177/2398212820939463 PubMed DOI PMC
Laczó J., Andel R., Nedelska Z., Vyhnalek M., Vlcek K., Crutch S., et al. . (2017). Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol. Aging 51, 67–70. 10.1016/j.neurobiolaging.2016.12.003 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z., et al. . (2015). The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol. Aging 36, 2024–2033. 10.1016/j.neurobiolaging.2015.03.004 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., et al. . (2010). Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s disease. Neurodegener. Dis. 7, 148–152. 10.1159/000289226 PubMed DOI
Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., et al. . (2012). From morris water maze to computer tests in the prediction of Alzheimer’s disease. Neurodegener. Dis 10, 153–157. 10.1159/000333121 PubMed DOI
Laczó M., Wiener J. M., Kalinova J., Matuskova V., Vyhnalek M., Hort J., et al. . (2021a). Spatial navigation and visuospatial strategies in typical and atypical aging. Brain Sci. 11:1421. 10.3390/brainsci11111421 PubMed DOI PMC
Laczó M., Lerch O., Martinkovic L., Kalinova J., Markova H., Vyhnalek M., et al. . (2021b). Spatial pattern separation testing differentiates Alzheimer’s disease biomarker-positive and biomarker-negative older adults with amnestic mild cognitive impairment. Front. Aging Neurosci. 13:774600. 10.3389/fnagi.2021.774600 PubMed DOI PMC
Laczó J., Vlcek K., Vyhnálek M., Vajnerová O., Ort M., Holmerová I., et al. . (2009). Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 202, 252–259. 10.1016/j.bbr.2009.03.041 PubMed DOI
Lambrey S., Amorim M. A., Samson S., Noulhiane M., Hasboun D., Dupont S., et al. . (2008). Distinct visual perspective-taking strategies involve the left and right medial temporal lobe structures differently. Brain 131, 523–534. 10.1093/brain/awm317 PubMed DOI
Landau S. M., Harvey D., Madison C. M., Koeppe R. A., Reiman E. M., Foster N. L., et al. . (2011). Associations between cognitive, functional and FDG-PET measures of decline in AD and MCI. Neurobiol. Aging 32, 1207–1218. 10.1016/j.neurobiolaging.2009.07.002 PubMed DOI PMC
Levine T. F., Allison S. L., Stojanovic M., Fagan A. M., Morris J. C., Head D. (2020). Spatial navigation ability predicts progression of dementia symptomatology. Alzheimers. Dement. 16, 491–500. 10.1002/alz.12031 PubMed DOI PMC
Lindberg O., Mårtensson G., Stomrud E., Palmqvist S., Wahlund L. O., Westman E., et al. . (2017). Atrophy of the posterior subiculum is associated with memory impairment, tau- and Aβ pathology in non-demented individuals. Front. Aging Neurosci. 9:306. 10.3389/fnagi.2017.00306 PubMed DOI PMC
Lladó A., Tort-Merino A., Sánchez-Valle R., Falgàs N., Balasa M., Bosch B., et al. . (2018). The hippocampal longitudinal axis-relevance for underlying tau and TDP-43 pathology. Neurobiol. Aging 70, 1–9. 10.1016/j.neurobiolaging.2018.05.035 PubMed DOI
Maass A., Berron D., Harrison T. M., Adams J. N., La Joie R., Baker S., et al. . (2019). Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain 142, 2492–2509. 10.1093/brain/awz154 PubMed DOI PMC
Maass A., Lockhart S. N., Harrison T. M., Bell R. K., Mellinger T., Swinnerton K., et al. . (2018). Entorhinal tau pathology, episodic memory decline and neurodegeneration in aging. J. Neurosci. 38, 530–543. 10.1523/JNEUROSCI.2028-17.2017 PubMed DOI PMC
Maguire E. A., Burgess N., Donnett J. G., Frackowiak R. S., Frith C. D., O’Keefe J. (1998). Knowing where and getting there: a human navigation network. Science 280, 921–924. 10.1126/science.280.5365.921 PubMed DOI
Marková H., Laczó J., Andel R., Hort J., Vlček K. (2015). Perspective taking abilities in amnestic mild cognitive impairment and Alzheimer’s disease. Behav. Brain Res. 281, 229–238. 10.1016/j.bbr.2014.12.033 PubMed DOI
Mattsson N., Schöll M., Strandberg O., Smith R., Palmqvist S., Insel P. S., et al. . (2017). 18F-AV-1451 and CSF T-tau and P-tau as biomarkers in Alzheimer’s disease. EMBO Mol. Med. 9, 1212–1223. 10.15252/emmm.201707809 PubMed DOI PMC
Mazancova A. F., Nikolai T., Stepankova H., Kopecek M., Bezdicek O. (2017). The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. Assessment 24, 945–957. 10.1177/1073191116632586 PubMed DOI
Mckhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack Jr C. R., Kawas C. H., et al. . (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the national institute on aging and the Alzheimer’s association workgroup. Alzheimers Dement. 7, 263–269. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC
Miller M. I., Younes L., Ratnanather J. T., Brown T., Trinh H., Postell E., et al. . (2013). The diffeomorphometry of temporal lobe structures in preclinical Alzheimer’s disease. Neuroimage Clin. 3, 352–360. 10.1016/j.nicl.2013.09.001 PubMed DOI PMC
Morganti F., Stefanini S., Riva G. (2013). From allo- to egocentric spatial ability in early Alzheimer’s disease: a study with virtual reality spatial tasks. Cogn. Neurosci. 4, 171–180. 10.1080/17588928.2013.854762 PubMed DOI
Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., et al. . (2012). Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. U S A 109, 2590–2594. 10.1073/pnas.1121588109 PubMed DOI PMC
Nelson P. T., Dickson D. W., Trojanowski J. Q., Jack C. R., Boyle P. A., Arfanakis K., et al. . (2019). Limbic-predominant age-related TDP-43 encephalopathy (LATE): consensus working group report. Brain 142, 1503–1527. 10.1093/brain/awz099 PubMed DOI PMC
Nikolai T., Stepankova H., Kopecek M., Sulc Z., Vyhnalek M., Bezdicek O. (2018). The uniform data set, czech version: normative data in older adults from an international perspective. J. Alzheimers. Dis. 61, 1233–1240. 10.3233/JAD-170595 PubMed DOI PMC
Olsen R. K., Yeung L. K., Noly-Gandon A., D’Angelo M. C., Kacollja A., Smith V. M., et al. . (2017). Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiol. Aging 57, 195–205. 10.1016/j.neurobiolaging.2017.04.025 PubMed DOI
Palmqvist S., Schöll M., Strandberg O., Mattsson N., Stomrud E., Zetterberg H., et al. . (2017). Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8:1214. 10.1038/s41467-017-01150-x PubMed DOI PMC
Palmqvist S., Zetterberg H., Mattsson N., Johansson P., Minthon L., Blennow K., et al. . (2015). Detailed comparison of amyloid PET and CSF biomarkers for identifying early Alzheimer disease. Neurology 85, 1240–1249. 10.1212/WNL.0000000000001991 PubMed DOI PMC
Parizkova M., Lerch O., Andel R., Kalinova J., Markova H., Vyhnalek M., et al. . (2020). Spatial pattern separation in early Alzheimer’s disease. J. Alzheimers Dis. 76, 121–138. 10.3233/JAD-200093 PubMed DOI
Parizkova M., Lerch O., Moffat S. D., Andel R., Mazancova A. F., Nedelska Z., et al. . (2018). The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiol. Aging 64, 107–115. 10.1016/j.neurobiolaging.2017.12.019 PubMed DOI
Reagh Z. M., Yassa M. A. (2014). Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proc. Natl. Acad. Sci. U S A 111, E4264–E4273. 10.1073/pnas.1411250111 PubMed DOI PMC
Reagh Z. M., Noche J. A., Tustison N. J., Delisle D., Murray E. A., Yassa M. A. (2018). Functional imbalance of anterolateral entorhinal cortex and hippocampal dentate/CA3 underlies age-related object pattern separation deficits. Neuron 97, 1187–1198.e4. 10.1016/j.neuron.2018.01.039 PubMed DOI PMC
Ruotolo F., Ruggiero G., Raemaekers M., Iachini T., van der Ham I. J. M., Fracasso A., et al. . (2019). Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience 409, 235–252. 10.1016/j.neuroscience.2019.04.021 PubMed DOI
Saj A., Cojan Y., Musel B., Honoré J., Borel L., Vuilleumier P. (2014). Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol. Clin. 44, 33–40. 10.1016/j.neucli.2013.10.135 PubMed DOI
Scahill R. I., Schott J. M., Stevens J. M., Rossor M. N., Fox N. C. (2002). Mapping the evolution of regional atrophy in Alzheimer’s disease: unbiased analysis of fluid-registered serial MRI. Proc. Natl. Acad. Sci. U S A 99, 4703–4707. 10.1073/pnas.052587399 PubMed DOI PMC
Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H. C., Vermersch P., et al. . (1992). Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry 55, 967–972. 10.1136/jnnp.55.10.967 PubMed DOI PMC
Schinazi V. R., Nardi D., Newcombe N. S., Shipley T. F., Epstein R. A. (2013). Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23, 515–528. 10.1002/hipo.22111 PubMed DOI PMC
Schöberl F., Pradhan C., Irving S., Buerger K., Xiong G., Kugler G., et al. . (2020). Real-space navigation testing differentiates between amyloid-positive and -negative aMCI. Neurology 94, e861–e873. 10.1212/WNL.0000000000008758 PubMed DOI
Schöll M., Maass A., Mattsson N., Ashton N. J., Blennow K., Zetterberg H., et al. . (2019). Biomarkers for tau pathology. Mol. Cell. Neurosci. 97, 18–33. 10.1016/j.mcn.2018.12.001 PubMed DOI PMC
Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., et al. . (2019). Czech brain aging study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech republic. BMJ Open 9:e030379. 10.1136/bmjopen-2019-030379 PubMed DOI PMC
Sojkova J., Zhou Y., An Y., Kraut M. A., Ferrucci L., Wong D. F., et al. . (2011). Longitudinal patterns of β-amyloid deposition in nondemented older adults. Arch. Neurol. 68, 644–649. 10.1001/archneurol.2011.77 PubMed DOI PMC
Štěpánková H., Nikolai T., Lukavský J., Bezdíček M., Vrajová M., Kopeček M. (2015). Mini-mental state examination - Czech normative study. Ces. Slov. Neurol. N 78/111, 57–63.
Tapiola T., Pennanen C., Tapiola M., Tervo S., Kivipelto M., Hänninen T., et al. . (2008). MRI of hippocampus and entorhinal cortex in mild cognitive impairment: a follow-up study. Neurobiol. Aging 29, 31–38. 10.1016/j.neurobiolaging.2006.09.007 PubMed DOI
Teng E., Becker B. W., Woo E., Knopman D. S., Cummings J. L., Lu P. H. (2010). Utility of the functional activities questionnaire for distinguishing mild cognitive impairment from very mild Alzheimer’s disease. Alzheimer Dis. Assoc. Disord. 24, 348–353. 10.1097/WAD.0b013e3181e2fc84 PubMed DOI PMC
Thal D. R., Rüb U., Orantes M., Braak H. (2002). Phases of A beta-deposition in the human brain and its relevance for the development of AD. Neurology 58, 1791–1800. 10.1212/wnl.58.12.1791 PubMed DOI
Tu S., Spiers H. J., Hodges J. R., Piguet O., Hornberger M. (2017). Egocentric versus allocentric spatial memory in behavioral variant frontotemporal dementia and Alzheimer’s disease. J. Alzheimers Dis. 59, 883–892. 10.3233/JAD-160592 PubMed DOI
Tu S., Wong S., Hodges J. R., Irish M., Piguet O., Hornberger M. (2015). Lost in spatial translation – A novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex 67, 83–94. 10.1016/j.cortex.2015.03.016 PubMed DOI
Vanderstichele H., Bibl M., Engelborghs S., Le Bastard N., Lewczuk P., Molinuevo J. L., et al. . (2012). Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s biomarkers standardization initiative. Alzheimers Dement. 8, 65–73. 10.1016/j.jalz.2011.07.004 PubMed DOI
Villain N., Chételat G., Grassiot B., Bourgeat P., Jones G., Ellis K. A., et al. . (2012). Regional dynamics of amyloid-β deposition in healthy elderly, mild cognitive impairment and Alzheimer’s disease: a voxelwise PiB-PET longitudinal study. Brain 135, 2126–2139. 10.1093/brain/aws125 PubMed DOI
Villemagne V. L., Pike K. E., Chételat G., Ellis K. A., Mulligan R. S., Bourgeat P., et al. . (2011). Longitudinal assessment of Aβ and cognition in aging and Alzheimer disease. Ann. Neurol. 69, 181–192. 10.1002/ana.22248 PubMed DOI PMC
Waller D., Lippa Y. (2007). Landmarks as beacons and associative cues: their role in route learning. Mem. Cognit. 35, 910–924. 10.3758/bf03193465 PubMed DOI
Wang C., Chen X., Lee H., Deshmukh S. S., Yoganarasimha D., Savelli F., et al. . (2018). Egocentric coding of external items in the lateral entorhinal cortex. Science 362, 945–949. 10.1126/science.aau4940 PubMed DOI PMC
Weniger G., Ruhleder M., Lange C., Wolf S., Irle E. (2011). Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49, 518–527. 10.1016/j.neuropsychologia.2010.12.031 PubMed DOI
Whitwell J. L., Przybelski S. A., Weigand S. D., Knopman D. S., Boeve B. F., Petersen R. C., et al. . (2007). 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130, 1777–1786. 10.1093/brain/awm112 PubMed DOI PMC
Wiener J. M., Caroll D., Moeller S., Bibi I., Ivanova D., Allen P., et al. . (2020). A novel virtual-reality-based route-learning test suite: assessing the effects of cognitive aging on navigation. Behav. Res. Methods 52, 630–640. 10.3758/s13428-019-01264-8 PubMed DOI PMC
Wiener J. M., de Condappa O., Harris M. A., Wolbers T. (2013). Maladaptive bias for extrahippocampal navigation strategies in aging humans. J. Neurosci. 33, 6012–6017. 10.1523/JNEUROSCI.0717-12.2013 PubMed DOI PMC
Wolbers T., Hegarty M. (2010). What determines our navigational abilities? Trends Cogn. Sci. 14, 138–146. 10.1016/j.tics.2010.01.001 PubMed DOI
Wolbers T., Weiller C., Büchel C. (2004). Neural foundations of emerging route knowledge in complex spatial environments. Brain Res. Cogn. Brain Res. 21, 401–411. 10.1016/j.cogbrainres.2004.06.013 PubMed DOI
Wood R. A., Moodley K. K., Lever C., Minati L., Chan D. (2016). Allocentric spatial memory testing predicts conversion from mild cognitive impairment to dementia: an initial proof-of-concept study. Front. Neurol. 7:215. 10.3389/fneur.2016.00215 PubMed DOI PMC
Xu J., Evensmoen H. R., Lehn H., Pintzka C. W. S., Håberg A. K. (2010). Persistent posterior and transient anterior medial temporal lobe activity during navigation. Neuroimage 52, 1654–1666. 10.1016/j.neuroimage.2010.05.074 PubMed DOI
Ye B. S., Kim H. J., Kim Y. J., Jung N. Y., Lee J. S., Lee J., et al. . (2018). Longitudinal outcomes of amyloid positive versus negative amnestic mild cognitive impairments: a three-year longitudinal study. Sci. Rep. 8:5557. 10.1038/s41598-018-23676-w PubMed DOI PMC
Yesavage J. A., Sheikh J. I. (1986). Geriatric depression scale (GDS). Clin. Gerontol. 5, 165–173. 10.1300/J018v05n01_09 DOI
Zacks J. M., Michelon P. (2005). Transformations of visuospatial images. Behav. Cogn. Neurosci. Rev. 4, 96–118. 10.1177/1534582305281085 PubMed DOI