Classification of pig calls produced from birth to slaughter according to their emotional valence and context of production
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35256620
PubMed Central
PMC8901661
DOI
10.1038/s41598-022-07174-8
PII: 10.1038/s41598-022-07174-8
Knihovny.cz E-zdroje
- MeSH
- diskriminační analýza MeSH
- emoce * MeSH
- farmy MeSH
- porod MeSH
- prasata MeSH
- těhotenství MeSH
- vokalizace zvířat * MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Vocal expression of emotions has been observed across species and could provide a non-invasive and reliable means to assess animal emotions. We investigated if pig vocal indicators of emotions revealed in previous studies are valid across call types and contexts, and could potentially be used to develop an automated emotion monitoring tool. We performed an analysis of an extensive and unique dataset of low (LF) and high frequency (HF) calls emitted by pigs across numerous commercial contexts from birth to slaughter (7414 calls from 411 pigs). Our results revealed that the valence attributed to the contexts of production (positive versus negative) affected all investigated parameters in both LF and HF. Similarly, the context category affected all parameters. We then tested two different automated methods for call classification; a neural network revealed much higher classification accuracy compared to a permuted discriminant function analysis (pDFA), both for the valence (neural network: 91.5%; pDFA analysis weighted average across LF and HF (cross-classified): 61.7% with a chance level at 50.5%) and context (neural network: 81.5%; pDFA analysis weighted average across LF and HF (cross-classified): 19.4% with a chance level at 14.3%). These results suggest that an automated recognition system can be developed to monitor pig welfare on-farm.
Bureau ETRE 63210 Bravant Olby France
Center for Artificial Intelligence Research University of Agder 4604 Kristiansand Norway
Center for Coastal Research University of Agder 4604 Kristiansand Norway
Department of Agricultural and Environmental Sciences Università Degli Studi Di Milano Milano Italy
Department of Ethology Institute of Animal Science 104 01 Prague Czechia
Department of Zoology Faculty of Science University of South Bohemia 370 05 Č Budějovice Czechia
Institute of Agricultural Sciences ETH Zurich Universitätsstrasse 2 8092 Zürich Switzerland
PEGASE INRAE Institut Agro 35590 Saint Gilles France
School of Engineering and Applied Sciences Harvard University Cambridge MA USA
Zobrazit více v PubMed
Fraser D. Animal behaviour, animal welfare and the scientific study of affect. Appl. Anim. Behav. Sci. 2009;118:108–117. doi: 10.1016/j.applanim.2009.02.020. DOI
Boissy A, Lee C. How assessing relationships between emotions and cognition can improve farm animal welfare. Rev. Sci. Tech. 2014;33:103–110. doi: 10.20506/rst.33.1.2260. PubMed DOI
Scherer, K. R. Appraisal considered as a process of multilevel sequential checking in Appraisal processes in emotion: Theory, methods, research (eds. Scherer, K. R., Schorr, A., & Johnstone T.) 92–120 (Oxford University Press, Oxford, 2001).
Mendl M, Burman OHP, Paul ES. An integrative and functional framework for the study of animal emotion and mood. Proc. R. Soc. B. 2010;277:2895–2904. doi: 10.1098/rspb.2010.0303. PubMed DOI PMC
Špinka M. Social dimension of emotions and its implication for animal welfare. Appl. Anim. Behav. Sci. 2012;138:170–181. doi: 10.1016/j.applanim.2012.02.005. DOI
Briefer EF. Vocal contagion of emotions in non-human animals. Proc. R. Soc. B. 2018;258:20172783. doi: 10.1098/rspb.2017.2783. PubMed DOI PMC
Titze IR. A framework for the study of vocal registers. J. Voice. 1988;2:183–194. doi: 10.1016/S0892-1997(88)80075-4. DOI
Scherer KR. Vocal communication of emotion: a review of research paradigms. Speech Commun. 2003;40:227–256. doi: 10.1016/S0167-6393(02)00084-5. DOI
Manteuffel G, Puppe B, Schön P-C. Vocalization of farm animals as a measure of welfare. Appl. Anim. Behav. Sci. 2004;88:163–182. doi: 10.1016/j.applanim.2004.02.012. DOI
Briefer, E. F. Coding for ‘Dynamic’ Information: Vocal Expression of Emotional Arousal and Valence in Non-human Animals in Coding Strategies in Vertebrate Acoustic Communication (eds. Aubin, T. & Mathevon, N.) 137–162 (Springer, New York, 2020).
Briefer EF. Vocal expression of emotions in mammals: mechanisms of production and evidence. J. Zool. 2012;288:1–20. doi: 10.1111/j.1469-7998.2012.00920.x. DOI
Zimmermann, E., Leliveld, L. M. C. & Schehka, S. Towards the evolutionary roots of affective prosody in human acoustic communication: a comparative approach to mammalian voices in Evolution of emotional communication: from sound in nonhuman mammals to speech and music in man (eds. Altenmüller, E., Schmidt, S. & Zimmermann, E.) 116–132 (Oxford University Press, Oxford, 2013).
Jahns G. Call recognition to identify cow conditions: a call-recogniser translating calls to text. Comput. Electron. Agric. 2008;62:54–58. doi: 10.1016/j.compag.2007.09.005. DOI
Röttgen V, et al. Automatic recording of individual oestrus vocalisation in group-housed dairy cattle: development of a cattle call monitor. Animal. 2020;14:198–205. doi: 10.1017/S1751731119001733. PubMed DOI
Schön P-C, Puppe B, Manteuffel G. Automated recording of stress vocalization as a tool to document impaired welfare in pigs. Anim. Welf. 2004;13:105–110. doi: 10.1017/S096272860002683X. DOI
Mcloughlin MP, Stewart R, McElligott AG. Automated bioacoustics: methods in ecology and conservation and their potential for animal welfare monitoring. J. R. Soc. Interface. 2019;16:20190225. doi: 10.1098/rsif.2019.0225. PubMed DOI PMC
Tallet C, et al. Encoding of situations in the vocal repertoire of piglets (Sus scrofa): A comparison of discrete and graded classifications. PLoS ONE. 2013;8:e71841. doi: 10.1371/journal.pone.0071841. PubMed DOI PMC
Leliveld LMC, Düpjan S, Tuchscherer A, Puppe B. Behavioural and physiological measures indicate subtle variations in the emotional valence of young pigs. Physiol. Behav. 2016;157:116–124. doi: 10.1016/j.physbeh.2016.02.002. PubMed DOI
Linhart P, Ratcliffe VF, Reby D, Špinka M. Expression of emotional arousal in two different piglet call types. PLoS ONE. 2015;10:e0135414. doi: 10.1371/journal.pone.0135414. PubMed DOI PMC
Briefer EF, Vizier E, Gygax L, Hillmann E. Expression of emotional valence in pig closed-mouth grunts: Involvement of both source- and filter-related parameters. J. Acoust. Soc. Am. 2019;145:2895. doi: 10.1121/1.5100612. PubMed DOI
Friel M, Kunc HP, Griffin K, Asher L, Collins LM. Positive and negative contexts predict duration of pig vocalisations. Sci. Rep. 2019;9:2062. doi: 10.1038/s41598-019-38514-w. PubMed DOI PMC
Van der Maaten, L. & Hinton, G. Visualizing data using t-SNE. J. Mach. Learn. Res.9, (2008).
Buda M, Maki A, Mazurowski MA. A systematic study of the class imbalance problem in convolutional neural networks. Neural Netw. 2018;106:249–259. doi: 10.1016/j.neunet.2018.07.011. PubMed DOI
Herborn KA, et al. Spectral entropy of early-life distress calls as an iceberg indicator of chicken welfare. J. R. Soc. Interface. 2020;17:20200086. doi: 10.1098/rsif.2020.0086. PubMed DOI PMC
Gómez Y, et al. A systematic review on validated precision livestock farming technologies for pig production and its potential to assess animal welfare. Front. Vet. Sci. 2021;8:492. doi: 10.3389/fvets.2021.660565. PubMed DOI PMC
Cohen J. Statistical power analysis for the behavioral sciences. Academic Press; 2013.
Villain AS, et al. Piglets vocally express the anticipation of pseudo-social contexts in their grunts. Sci. Rep. 2020;10:18496. doi: 10.1038/s41598-020-75378-x. PubMed DOI PMC
Maigrot A-L, Hillmann E, Briefer EF. Encoding of emotional valence in wild boars (Sus Scrofa) calls. Animals. 2018;8:85. doi: 10.3390/ani8060085. PubMed DOI PMC
Maigrot A, Hillmann E, Callista A, Briefer EF. Vocal expression of emotional valence in Przewalski’s horses. Sci. Rep. 2017;18:8779. doi: 10.1038/s41598-017-09437-1. PubMed DOI PMC
Chan, W. Y. The meaning of barks: vocal communication of fearful and playful affective states in pigs. PhD thesis, Washington State University (2011).
Rasmussen JH, Širović A. Using faster region-based convolutional neural network for automatic detection of baleen whale social calls. J. Acoust. Soc. Am. 2019;146:2985–2985. doi: 10.1121/1.5137333. PubMed DOI
Russell J. A circumplex model of affect. J. Pers. Soc. Psychol. 1980;39:1161–1178. doi: 10.1037/h0077714. DOI
Bradley M, Codispoti M, Cuthbert B, Lang P. Emotion and motivation I: defensive and appetitive reactions in picture processing. Emotion. 2001;1:276–298. doi: 10.1037/1528-3542.1.3.276. PubMed DOI
Boersma, P. & Weenink, D. Praat: doing phonetics by computer v.5.3.57 [Computer program].http://www.praat.org/ (2013).
Beckers, G. J. L. Wiener entropy [Script developed in Praat v. 4.2.06] https://gbeckers.nl/pages/phonetics.html (2004).
Charlton BD, Zhihe Z, Snyder RJ. Vocal cues to identity and relatedness in giant pandas (Ailuropoda melanoleuca) J. Acoust. Soc. Am. 2009;126:2721–2732. doi: 10.1121/1.3224720. PubMed DOI
Garcia M, et al. Structural classification of wild boar (Sus scrofa) vocalizations. Ethology. 2016;122:329–342. doi: 10.1111/eth.12472. PubMed DOI PMC
Schrader L, Todt D. Vocal quality is correlated with levels of stress hormones in domestic pigs. Ethology. 1998;104:859–876. doi: 10.1111/j.1439-0310.1998.tb00036.x. DOI
Leliveld LMC, Düpjan S, Tuchscherer A, Puppe B. Vocal correlates of emotional reactivity within and across contexts in domestic pigs (Sus scrofa) Physiol. Behav. 2017;181:117–126. doi: 10.1016/j.physbeh.2017.09.010. PubMed DOI
Villain AS, Lanthony M, Guérin C, Tallet C. Manipulable object and human contact: preference and modulation of emotional states in weaned pigs. Front. Vet. Sci. 2020;7:930. doi: 10.3389/fvets.2020.577433. PubMed DOI PMC
Puppe B, Schön P-C, Tuchscherer A, Manteuffel G. Castration-induced vocalisation in domestic piglets, Sus scrofa: complex and specific alterations of the vocal quality. Appl. Anim. Behav. Sci. 2005;95:67–78. doi: 10.1016/j.applanim.2005.05.001. DOI
R Development Core Team. R Foundation for Statistical Computing v.3.6.1. [Computer program]. https://cran.r-project.org/bin/windows/base/old/3.6.1/ (2019).
Bates, D., Maechler, M., Bolker, B., Walker, S., Christensen, R. H. B., Singmann, H., Dai, B., Scheipl, F. & Grothendieck, G. lme4: Linear mixed-effects models using S4 classes [R package]. http://CRAN.R-project.org/package=lme4 (2011).
Mundry R, Sommer C. Discriminant function analysis with nonindependent data: consequences and an alternative. Anim. Behav. 2007;74:965–976. doi: 10.1016/j.anbehav.2006.12.028. DOI
Venables R, Ripley BD. Modern applied statistics with S-PLUS. Springer; 2013.
Ruff ZJ, Lesmeister DB, Duchac LS, Padmaraju BK, Sullivan CM. Automated identification of avian vocalizations with deep convolutional neural networks. Remote Sens. Ecol. Conserv. 2020;6:79–92. doi: 10.1002/rse2.125. DOI
Thomas, M., Martin, B., Kowarski, K., Gaudet, B. & Matwin, S. Marine mammal species classification using convolutional neural networks and a novel acoustic representation. in Joint European Conference on Machine Learning and Knowledge Discovery in Databases 290–305 (Springer, New York, 2019).
Anders F, Hlawitschka M, Fuchs M. Automatic classification of infant vocalization sequences with convolutional neural networks. Speech Commun. 2020;119:36–45. doi: 10.1016/j.specom.2020.03.003. DOI
He, K., Zhang, X., Ren, S. & Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition 770–778 (2016).