False memories when viewing overlapping scenes
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35411252
PubMed Central
PMC8994494
DOI
10.7717/peerj.13187
PII: 13187
Knihovny.cz E-zdroje
- Klíčová slova
- False alarms, Overlapping content, Visual memory, Visual scenes,
- MeSH
- lidé MeSH
- paměť * MeSH
- pohyby očí MeSH
- rozpomínání MeSH
- rozpoznávání (psychologie) * MeSH
- sémantika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Humans can memorize and later recognize many objects and complex scenes. In this study, we prepared large photographs and presented participants with only partial views to test the fidelity of their memories. The unpresented parts of the photographs were used as a source of distractors with similar semantic and perceptual information. Additionally, we presented overlapping views to determine whether the second presentation provided a memory advantage for later recognition tests. Experiment 1 (N = 28) showed that while people were good at recognizing presented content and identifying new foils, they showed a remarkable level of uncertainty about foils selected from the unseen parts of presented photographs (false alarm, 59%). The recognition accuracy was higher for the parts that were shown twice, irrespective of whether the same identical photograph was viewed twice or whether two photographs with overlapping content were observed. In Experiment 2 (N = 28), the memorability of the large image was estimated by a pre-trained deep neural network. Neither the recognition accuracy for an image part nor the tendency for false alarms correlated with the memorability. Finally, in Experiment 3 (N = 21), we repeated the experiment while measuring eye movements. Fixations were biased toward the center of the original large photograph in the first presentation, and this bias was repeated during the second presentation in both identical and overlapping views. Altogether, our experiments show that people recognize parts of remembered photographs, but they find it difficult to reject foils from unseen parts, suggesting that their memory representation is not sufficiently detailed to rule them out as distractors.
Zobrazit více v PubMed
Andermane N, Bowers JS. Detailed and gist-like visual memories are forgotten at similar rates over the course of a week. Psychonomic Bulletin & Review. 2015;22(5):1358–1363. doi: 10.3758/s13423-015-0800-0. PubMed DOI
Bainbridge WA, Hall EH, Baker CI. Drawings of real-world scenes during free recall reveal detailed object and spatial information in memory. Nature Communications. 2019;10(1):1–13. doi: 10.1038/s41467-018-07830-6. PubMed DOI PMC
Bainbridge WA, Dilks DD, Oliva A. Memorability: a stimulus-driven perceptual neural signature distinctive from memory. NeuroImage. 2017;149:141–152. doi: 10.1016/j.neuroimage.2017.01.063. PubMed DOI
Bainbridge WA, Rissman J. Dissociating neural markers of stimulus memorability and subjective recognition during episodic retrieval. Scientific Reports. 2018;8:8679. doi: 10.1038/s41598-018-26467-5. PubMed DOI PMC
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. Journal of Statistical Software. 2015;67(1):1–48. doi: 10.18637/jss.v067.i01. DOI
Brady TF, Konkle T, Alvarez GA, Oliva A. Visual long-term memory has a massive storage capacity for object details. Proceedings of the National Academy of Sciences. 2008;105(38):14325–14329. PubMed PMC
Brainard DH, Vision S. The psychophysics toolbox. Spatial Vision. 1997;10(4):433–436. PubMed
Broers N, Busch N. The effect of intrinsic image memorability on recollection and familiarity. PsyArXiv. 2019 doi: 10.31234/osf.io/hvzyw. PubMed DOI PMC
Bylinskii Z, Isola P, Bainbridge C, Torralba A, Oliva A. Intrinsic and extrinsic effects on image memorability. Vision Research. 2015;116(March):165–178. doi: 10.1016/j.visres.2015.03.005. PubMed DOI
Cornelissen FW, Peters EM, Palmer J. The Eyelink Toolbox: eye tracking with MATLAB and the Psychophysics Toolbox. Behavior Research Methods, Instruments, & Computers. 2002;34(4):613–617. PubMed
Cunningham CA, Yassa MA, Egeth HE. Massive memory revisited: limitations on storage capacity for object details in visual long-term memory. Learning & Memory. 2015;22(11):563–566. doi: 10.1101/lm.039404.115. PubMed DOI PMC
Draschkow D, Reinecke S, Cunningham CA, Võ ML-H. The lower bounds of massive memory: investigating memory for object details after incidental encoding. Quarterly Journal of Experimental Psychology. 2019;72(5):1176–1182. doi: 10.1177/1747021818783722. PubMed DOI
Dosher BA. Discriminating preexperimental (semantic) from learned (episodic) associations: a speed-accuracy study. Cognitive Psychology. 1984;16(4):519–555. doi: 10.1016/0010-0285(84)90019-7. DOI
Giesbrecht FG, Burns JC. Two-stage analysis based on a mixed model: large-sample asymptotic theory and small-sample simulation results. Biometrics. 1985;41(2):477–486. doi: 10.2307/2530872. DOI
Gottesman CV. Mental layout extrapolations prime spatial processing of scenes. Journal of Experimental Psychology. Human Perception and Performance. 2011;37(2):382–395. doi: 10.1037/a0021434. PubMed DOI
Goetschalckx L, Moors P, Vanmarcke S, Wagemans J. Get the picture? Goodness of image organization contributes to image memorability. Journal of Cognition. 2019;2(1):22. doi: 10.5334/joc.80. PubMed DOI PMC
Green DM, Swets JA. Signal detection theory and psychophysics. New York: John Wiley and Sons; 1966.
Hock HS, Schmelzkopf KF. The abstraction of schematic representations from photographs of real-world scenes. Memory & Cognition. 1980;8(6):543–554. doi: 10.3758/BF03213774. PubMed DOI
Intraub H, Richardson M. Wide-angle memories of close-up scenes. Journal of Experimental Psychology: Learning, Memory, and Cognition. 1989;15(2):179–187. doi: 10.1037/0278-7393.15.2.179. PubMed DOI
Intraub H. Rethinking visual scene perception. Wiley Interdisciplinary Reviews: Cognitive Science. 2012;3(1):117–127. doi: 10.1002/wcs.149. PubMed DOI
Isola P, Xiao J, Torralba A, Oliva A. What makes an image memorable?. 2011 Computer Vision and Pattern Recognition; Piscataway: IEEE; 2011. pp. 145–152.
Khosla A, Raju AS, Torralba A, Oliva A. Understanding and predicting image memorability at a large scale. Proceedings of the IEEE International Conference on Computer Vision; Piscataway: IEEE; 2015. pp. 2390–2398.
Khosla A, Xiao J, Torralba A, Oliva A. Memorability of image regions. Advances in Neural Information Processing Systems; 2012. pp. 296–304. PubMed
Kleiner M, Brainard D, Pelli D. What’s new in Psychtoolbox-3? Perception. 2007;36(ECVP Abstract Suppl):14.
Konkle T, Brady TF, Alvarez GA. Scene memory is more detailed than you think. Psychological Science. 2010;21(11):1551–1556. doi: 10.1177/0956797610385359. PubMed DOI PMC
Kuznetsova A, Brockhoff PB, Christensen RH. lmerTest package: tests in linear mixed effects models. Journal of Statistical Software. 2017;82(13):1–26. doi: 10.18637/jss.v082.i13. DOI
Lukavský J, Děchtěrenko F. Visual properties and memorising scenes: effects of image-space sparseness and uniformity. Attention, Perception, & Psychophysics. 2017;79(7):2044–2054. doi: 10.3758/s13414-017-1375-9. PubMed DOI
Macmillan NA, Creelman CD. Detection theory: a user’s guide. East Sussex: Psychology Press; 2004.
Olejarczyk JH, Luke SG, Henderson JM. Incidental memory for parts of scenes from eye movements. Visual Cognition. 2014;22(7):975–995. doi: 10.1080/13506285.2014.941433. DOI
Peirce JW. PsychoPy–psychophysics software in Python. Journal of Neuroscience Methods. 2007;162(1–2):8–13. PubMed PMC
Pelli DG. The VideoToolbox software for visual psychophysics: transforming numbers into movies. Spatial Vision. 1997;10(4):437–442. PubMed
R Core Team R: a language and environment for statistical computing. 2019. https://www.R-project.org/ https://www.R-project.org/
Robertson CE, Hermann KL, Mynick A, Kravitz DJ, Kanwisher N. Neural representations integrate the current field of view with the remembered 360 panorama in scene-selective cortex. Current Biology. 2016;26(18):2463–2468. doi: 10.1016/j.cub.2016.07.002. PubMed DOI
Sanocki T, Epstein W. Priming spatial layout of scenes. Psychological Science. 1997;8(5):374–378. doi: 10.1111/j.1467-9280.1997.tb00428.x. DOI
Standing L. Learning 10000 pictures. The Quarterly Journal of Experimental Psychology. 1973;25(2):207–222. PubMed
Valuch C, Becker SI, Ansorge U. Priming of fixations during recognition of natural scenes. Journal of Vision. 2013;13(3):3. doi: 10.1167/13.3.3. PubMed DOI
Varakin DA, Loschky L. Object appearance and picture-specific viewpoint are not integrated in long-term memory. The Quarterly Journal of Experimental Psychology. 2010;63(6):1181–1200. doi: 10.1080/17470210903254639. PubMed DOI
Vogt S, Magnussen S. Long-term memory for 400 pictures on a common theme. Experimental Psychology. 2007;54(4):298–303. doi: 10.1027/1618-3169.54.4.298. PubMed DOI
Xiao J, Hays J, Ehinger KA, Oliva A, Torralba A. Sun database: Large-scale scene recognition from abbey to zoo. IEEE Computer Society Conference on Computer Vision and Pattern Recognition; Piscataway: IEEE; 2010. pp. 3485–3492.
Visual free recall and recognition in art students and laypeople