Spatial Pattern Separation Testing Differentiates Alzheimer's Disease Biomarker-Positive and Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
34899277
PubMed Central
PMC8662816
DOI
10.3389/fnagi.2021.774600
Knihovny.cz E-zdroje
- Klíčová slova
- amyloid-β, basal forebrain, cerebrospinal fluid, entorhinal cortex, hippocampus, magnetic resonance imaging, memory, positron emission tomography,
- Publikační typ
- časopisecké články MeSH
Background: The hippocampus, entorhinal cortex (EC), and basal forebrain (BF) are among the earliest regions affected by Alzheimer's disease (AD) pathology. They play an essential role in spatial pattern separation, a process critical for accurate discrimination between similar locations. Objective: We examined differences in spatial pattern separation performance between older adults with amnestic mild cognitive impairment (aMCI) with AD versus those with non-Alzheimer's pathologic change (non-AD) and interrelations between volumes of the hippocampal, EC subregions and BF nuclei projecting to these subregions (medial septal nuclei and vertical limb of the diagonal band of Broca - Ch1-2 nuclei) with respect to performance. Methods: Hundred and eighteen older adults were recruited from the Czech Brain Aging Study. Participants with AD aMCI (n = 37), non-AD aMCI (n = 26), mild AD dementia (n = 26), and cognitively normal older adults (CN; n = 29) underwent spatial pattern separation testing, cognitive assessment and brain magnetic resonance imaging. Results: The AD aMCI group had less accurate spatial pattern separation performance than the non-AD aMCI (p = 0.039) and CN (p < 0.001) groups. The AD aMCI and non-AD groups did not differ in other cognitive tests. Decreased BF Ch1-2 volume was indirectly associated with worse performance through reduced hippocampal tail volume and reduced posteromedial EC and hippocampal tail or body volumes operating in serial. Conclusion: The study demonstrates that spatial pattern separation testing differentiates AD biomarker positive and negative older adults with aMCI and provides evidence that BF Ch1-2 nuclei influence spatial pattern separation through the posteromedial EC and the posterior hippocampus.
Zobrazit více v PubMed
Aggleton P. J., Wright N. F., Vann S. D., Saunders R. C. (2012). Medial temporal lobe projections to the retrosplenial cortex of the macaque monkey. Hippocampus 22 1883–1900. 10.1002/HIPO.22024 PubMed DOI PMC
Albert M. S., DeKosky S. T., Dickson D., Dubois B., Feldman H. H., Fox N. C., et al. (2011). The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 7 270–279. 10.1016/j.jalz.2011.03.008 PubMed DOI PMC
Ally B. A., Hussey E. P., Ko P. C., Molitor R. J. (2013). Pattern separation and pattern completion in Alzheimer’s disease: evidence of rapid forgetting in amnestic mild cognitive impairment. Hippocampus 23 1246–1258. 10.1002/HIPO.22162 PubMed DOI PMC
Ashburner J. (2007). A fast diffeomorphic image registration algorithm. Neuroimage 38 95–113. 10.1016/j.neuroimage.2007.07.007 PubMed DOI
Berron D., Cardenas-Blanco A., Bittner D., Metzger C. D., Spottke A., Heneka M. T., et al. (2019). Higher CSF tau levels are related to hippocampal hyperactivity and object mnemonic discrimination in older adults. J. Neurosci. 39 8788–8798. 10.1523/JNEUROSCI.1279-19.2019 PubMed DOI PMC
Berron D., Neumann K., Maass A., Schütze H., Fliessbach K., Kiven V., et al. (2018). Age-related functional changes in domain-specific medial temporal lobe pathways. Neurobiol. Aging 65 86–97. 10.1016/J.NEUROBIOLAGING.2017.12.030 PubMed DOI
Berron D., Vieweg P., Hochkeppler A., Pluta J. B., Ding S. L., Maass A., et al. (2017). A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage Clin. 15 466–482. 10.1016/J.NICL.2017.05.022 PubMed DOI PMC
Braak H., Braak E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. 82 239–259. PubMed
Braak H., Braak E. (1997). Frequency of stages of Alzheimer-related lesions in different age categories. Neurobiol. Aging 18 351–357. 10.1016/S0197-4580(97)00056-0 PubMed DOI
Burwell R. D. (2000). The parahippocampal region: corticocortical connectivity. Ann. N. Y. Acad. Sci. 911 25–42. 10.1111/J.1749-6632.2000.TB06717.X PubMed DOI
Cerman J., Laczó J., Vyhnálek M., Malinovská J., Hanzalová J., Hort J. (2020). Cerebrospinal fluid ratio of phosphorylated tau protein and beta amyloid predicts amyloid PET positivity. Cesk. Slov. Neurol. N. 83 173–179. 10.14735/amcsnn2020173 DOI
Coughlan G., Laczó J., Hort J., Minihane A. M., Hornberger M. (2018). Spatial navigation deficits — Overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 14 496–506. 10.1038/s41582-018-0031-x PubMed DOI
Crary J. F., Trojanowski J. Q., Schneider J. A., Abisambra J. F., Abner E. L., Alafuzoff I., et al. (2014). Primary age-related tauopathy (PART): a common pathology associated with human aging. Acta Neuropathol. 128 755–766. 10.1007/S00401-014-1349-0 PubMed DOI PMC
Desikan S., Koser D. E., Neitz A., Monyer H. (2018). Target selectivity of septal cholinergic neurons in the medial and lateral entorhinal cortex. Proc. Natl. Acad. Sci. U.S.A. 115 E2644–E2652. 10.1073/PNAS.1716531115 PubMed DOI PMC
Doan T. P., Lagartos-Donate M. J., Nilssen E. S., Ohara S., Witter M. P. (2019). Convergent projections from perirhinal and postrhinal cortices suggest a multisensory nature of lateral, but not medial, entorhinal cortex. Cell Rep. 29 617.e7–627.e7. 10.1016/J.CELREP.2019.09.005 PubMed DOI
Fernández-Cabello S., Kronbichler M., Van Dijk K. R. A., Goodman J. A., Spreng R. N., Schmitz T. W. (2020). Basal forebrain volume reliably predicts the cortical spread of Alzheimer’s degeneration. Brain 143 993–1009. 10.1093/BRAIN/AWAA012 PubMed DOI PMC
Ferrer I., Santpere G., van Leeuwen F. W. (2008). Argyrophilic grain disease. Brain 131 1416–1432. 10.1093/BRAIN/AWM305 PubMed DOI
Flanagan E. C., Wong S., Dutt A., Tu S., Bertoux M., Irish M., et al. (2016). False recognition in behavioral variant frontotemporal dementia and Alzheimer’s disease-disinhibition or amnesia? Front. Aging Neurosci. 8:177. 10.3389/fnagi.2016.00177 PubMed DOI PMC
Fleisher A. S., Chen K., Liu X., Ayutyanont N., Roontiva A., Thiyyagura P., et al. (2013). Apolipoprotein E ε4 and age effects on florbetapir positron emission tomography in healthy aging and Alzheimer disease. Neurobiol. Aging 34 1–12. 10.1016/J.NEUROBIOLAGING.2012.04.017 PubMed DOI
Geula C., Nagykery N., Nicholas A., Wu C. K. (2008). Cholinergic neuronal and axonal abnormalities are present early in aging and in Alzheimer disease. J. Neuropathol. Exp. Neurol. 67 309–318. 10.1097/NEN.0B013E31816A1DF3 PubMed DOI PMC
Gilbert P. E., Kesner R. P. (2006). The role of the dorsal CA3 hippocampal subregion in spatial working memory and pattern separation. Behav. Brain Res. 169 142–149. 10.1016/j.bbr.2006.01.002 PubMed DOI
Giocomo L. M., Hasselmo M. E. (2007). Neuromodulation by glutamate and acetylcholine can change circuit dynamics by regulating the relative influence of afferent input and excitatory feedback. Mol. Neurobiol. 36 184–200. 10.1007/s12035-007-0032-z PubMed DOI
Grothe M. J., Ewers M., Krause B., Heinsen H., Teipel S. J. (2014). Basal forebrain atrophy and cortical amyloid deposition in nondemented elderly subjects. Alzheimers Dement. 10 S344–S353. 10.1016/J.JALZ.2013.09.011 PubMed DOI PMC
Güsten J., Ziegler G., Düzel E., Berron D. (2021). Age impairs mnemonic discrimination of objects more than scenes: a web-based, large-scale approach across the lifespan. Cortex 137 138–148. 10.1016/J.CORTEX.2020.12.017 PubMed DOI
Hayes A. (2013). Introduction to Mediation, Moderation, and Conditional Process Analysis: A Regression-Based Approach. New York, NY: The Guilford Press.
Holden H. M., Hoebel C., Loftis K., Gilbert P. E. (2012). Spatial pattern separation in cognitively normal young and older adults. Hippocampus 22 1826–1832. 10.1002/hipo.22017 PubMed DOI PMC
Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., et al. (2019). Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain 142 1751–1766. 10.1093/brain/awz116 PubMed DOI PMC
Hunsaker M. R., Kesner R. P. (2008). Evaluating the differential roles of the dorsal dentate gyrus, dorsal CA3, and dorsal CA1 during a temporal ordering for spatial locations task. Hippocampus 18 955–964. 10.1002/hipo.20455 PubMed DOI PMC
Hunsaker M. R., Kesner R. P. (2013). The operation of pattern separation and pattern completion processes associated with different attributes or domains of memory. Neurosci. Biobehav. Rev. 37 36–58. 10.1016/j.neubiorev.2012.09.014 PubMed DOI
Hyman B. T., Phelps C., Beach T. G., Bigio E. H., Cairns N. J., Carrillo M. C., et al. (2012). National Institute on Aging-Alzheimer’s Association guidelines for the neuropathologic assessment of Alzheimer’s disease. Alzheimers Dement. 8 1–13. 10.1016/J.JALZ.2011.10.007 PubMed DOI PMC
Ikonen S., McMahan R., Gallagher M., Eichenbaum H., Tanila H. (2002). Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12 386–397. 10.1002/hipo.1109 PubMed DOI
Jack C. R., Jr., Petersen R. C., O’Brien P. C., Tangalos E. G. (1992). MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42 183–188. PubMed
Jack C. R., Bennett D. A., Blennow K., Carrillo M. C., Dunn B., Haeberlein S. B., et al. (2018). NIA-AA research framework: toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 14 535–562. 10.1016/J.JALZ.2018.02.018 PubMed DOI PMC
Jacobs H. I. L., Hedden T., Schultz A. P., Sepulcre J., Perea R. D., Amariglio R. E., et al. (2018). Structural tract alterations predict downstream tau accumulation in amyloid-positive older individuals. Nat. Neurosci. 21 424–431. 10.1038/S41593-018-0070-Z PubMed DOI PMC
Josephs K. A., Murray M. E., Tosakulwong N., Whitwell J. L., Knopman D. S., Machulda M. M., et al. (2017). Tau aggregation influences cognition and hippocampal atrophy in the absence of beta-amyloid: a clinico-imaging-pathological study of primary age-related tauopathy (PART). Acta Neuropathol. 133 705–715. 10.1007/s00401-017-1681-2 PubMed DOI PMC
Kesner R. P., Hopkins R. O. (2006). Mnemonic functions of the hippocampus: a comparison between animals and humans. Biol. Psychol. 73 3–18. 10.1016/j.biopsycho.2006.01.004 PubMed DOI
Kilimann I., Grothe M., Heinsen H., Alho E. J. L., Grinberg L., Amaro E., Jr., et al. (2014). Subregional basal forebrain atrophy in Alzheimer’s disease: a multicenter Study. J. Alzheimers. Dis. 40 687–700. 10.3233/JAD-132345 PubMed DOI PMC
Kondo H., Zaborszky L. (2016). Topographic organization of the basal forebrain projections to the perirhinal, postrhinal, and entorhinal cortex in rats. J. Comp. Neurol. 524 2503–2515. 10.1002/CNE.23967 PubMed DOI PMC
Kravitz D. J., Saleem K. S., Baker C. I., Mishkin M. (2011). A new neural framework for visuospatial processing. Nat. Rev. Neurosci. 12 217–230. 10.1038/NRN3008 PubMed DOI PMC
Larrabee G. J., Youngjohn J. R., Sudilovsky A., Crook T. H. (1993). Accelerated forgetting in Alzheimer-type dementia. J. Clin. Exp. Neuropsychol. 15 701–712. 10.1080/01688639308402590 PubMed DOI
Leal S. L., Yassa M. A. (2018). Integrating new findings and examining clinical applications of pattern separation. Nat. Neurosci. 21 163–173. 10.1038/S41593-017-0065-1 PubMed DOI PMC
Lee A. C., Scahill V. L., Graham K. S. (2008). Activating the medial temporal lobe during oddity judgment for faces and scenes. Cereb. Cortex 18 683–696. 10.1093/CERCOR/BHM104 PubMed DOI
Lee H., Stirnberg R., Wu S., Wang X., Stöcker T., Jung S., et al. (2020). Genetic Alzheimer’s disease risk affects the neural mechanisms of pattern separation in hippocampal subfields. Curr. Biol. 30 4201.e3–4212.e3. 10.1016/J.CUB.2020.08.042 PubMed DOI
Libby L. A., Ekstrom A. D., Ragland J. D., Ranganath C. (2012). Differential connectivity of perirhinal and parahippocampal cortices within human hippocampal subregions revealed by high-resolution functional imaging. J. Neurosci. 32 6550–6560. 10.1523/JNEUROSCI.3711-11.2012 PubMed DOI PMC
Lindberg O., Mårtensson G., Stomrud E., Palmqvist S., Wahlund L. O., Westman E., et al. (2017). Atrophy of the posterior subiculum is associated with memory impairment, Tau- and Aβ pathology in non-demented individuals. Front. Aging Neurosci. 9:306. 10.3389/FNAGI.2017.00306 PubMed DOI PMC
Lladó A., Tort-Merino A., Sánchez-Valle R., Falgàs N., Balasa M., Bosch B., et al. (2018). The hippocampal longitudinal axis-relevance for underlying tau and TDP-43 pathology. Neurobiol. Aging 70 1–9. 10.1016/J.NEUROBIOLAGING.2018.05.035 PubMed DOI
Maass A., Berron D., Harrison T. M., Adams J. N., La Joie R., Baker S., et al. (2019). Alzheimer’s pathology targets distinct memory networks in the ageing brain. Brain 142 2492–2509. 10.1093/BRAIN/AWZ154 PubMed DOI PMC
Maass A., Berron D., Libby L. A., Ranganath C., Düzel E. (2015). Functional subregions of the human entorhinal cortex. eLife 4:e06426. 10.7554/ELIFE.06426 PubMed DOI PMC
Mckhann G. M., Knopman D. S., Chertkow H., Hyman B. T., Jack C. R., Jr., Kawas C. H., et al. (2011). The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging and the Alzheimer’s Association workgroup. Alzheimers Dement. 7 263–269. 10.1016/j.jalz.2011.03.005 PubMed DOI PMC
McTighe S. M., Mar A. C., Romberg C., Bussey T. J., Saksida L. M. (2009). A new touchscreen test of pattern separation: effect of hippocampal lesions. Neuroreport 20 881–885. 10.1097/WNR.0B013E32832C5EB2 PubMed DOI
Mesulam M. M., Mufson E. J., Wainer B. H., Levey A. I. (1983b). Central cholinergic pathways in the rat: an overview based on an alternative nomenclature (Ch1-Ch6). Neuroscience 10 1185–1201. PubMed
Mesulam M. M., Mufson E. J., Levey A. I., Wainer B. H. (1983a). Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J. Comp. Neurol. 214 170–197. 10.1002/cne.902140206 PubMed DOI
Nadel L., Hoscheidt S., Ryan L. R. (2013). Spatial cognition and the hippocampus: the anterior-posterior axis. J. Cogn. Neurosci. 25 22–28. 10.1162/JOCN_A_00313 PubMed DOI
Navarro Schröder T., Haak K. V., Zaragoza Jimenez N. I., Beckmann C. F., Doeller C. F. (2015). Functional topography of the human entorhinal cortex. eLife 4:e06738. 10.7554/ELIFE.06738 PubMed DOI PMC
Nilssen E. S., Doan T. P., Nigro M. J., Ohara S., Witter M. P. (2019). Neurons and networks in the entorhinal cortex: a reappraisal of the lateral and medial entorhinal subdivisions mediating parallel cortical pathways. Hippocampus 29 1238–1254. 10.1002/HIPO.23145 PubMed DOI
Olsen R. K., Yeung L. K., Noly-Gandon A., D’Angelo M. C., Kacollja A., Smith V. M., et al. (2017). Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiol. Aging 57 195–205. 10.1016/J.NEUROBIOLAGING.2017.04.025 PubMed DOI
Palmqvist S., Schöll M., Strandberg O., Mattsson N., Stomrud E., Zetterberg H., et al. (2017). Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 8:1214. 10.1038/s41467-017-01150-x PubMed DOI PMC
Parizkova M., Lerch O., Andel R., Kalinova J., Markova H., Vyhnalek M., et al. (2020). Spatial pattern separation in early Alzheimer’s disease. J. Alzheimers. Dis. 76 121–138. 10.3233/JAD-200093 PubMed DOI
Parizkova M., Lerch O., Moffat S. D., Andel R., Mazancova A. F., Nedelska Z., et al. (2018). The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiol. Aging 64 107–115. 10.1016/j.neurobiolaging.2017.12.019 PubMed DOI
Pengas G., Patterson K., Arnold R. L., Bird C. M., Burgess N., Nestor P. J. (2010). Lost and found: bespoke memory testing for Alzheimer’s disease and semantic dementia. J. Alzheimers. Dis. 21 1347–1365. 10.3233/JAD-2010-100654 PubMed DOI
Pihlajamäki M., Tanila H., Könönen M., Hänninen T., Hämäläinen A., Soininen H., et al. (2004). Visual presentation of novel objects and new spatial arrangements of objects differentially activates the medial temporal lobe subareas in humans. Eur. J. Neurosci. 19 1939–1949. 10.1111/J.1460-9568.2004.03282.X PubMed DOI
Race E., LaRocque K. F., Keane M. M., Verfaellie M. (2013). Medial temporal lobe contributions to short-term memory for faces. J. Exp. Psychol. Gen. 142 1309–1322. 10.1037/A0033612 PubMed DOI PMC
Reagh Z. M., Ho H. D., Leal S. L., Noche J. A., Chun A., Murray E. A., et al. (2016). Greater loss of object than spatial mnemonic discrimination in aged adults. Hippocampus 26 417–422. 10.1002/HIPO.22562 PubMed DOI PMC
Reagh Z. M., Noche J. A., Tustison N. J., Delisle D., Murray E. A., Yassa M. A. (2018). Functional imbalance of anterolateral entorhinal cortex and hippocampal dentate/CA3 underlies age-related object pattern separation deficits. Neuron 97 1187.e4–1198.e4. 10.1016/J.NEURON.2018.01.039 PubMed DOI PMC
Reagh Z. M., Roberts J. M., Ly M., DiProspero N., Murray E., Yassa M. A. (2014). Spatial discrimination deficits as a function of mnemonic interference in aged adults with and without memory impairment. Hippocampus 24 303–314. 10.1002/hipo.22224 PubMed DOI PMC
Reagh Z. M., Yassa M. A. (2014). Object and spatial mnemonic interference differentially engage lateral and medial entorhinal cortex in humans. Proc. Natl. Acad. Sci. U.S.A. 111 E4264–E4273. 10.1073/PNAS.1411250111 PubMed DOI PMC
Ryan L., Cardoza J. A., Barense M. D., Kawa K. H., Wallentin-Flores J., Arnold W. T., et al. (2012). Age-related impairment in a complex object discrimination task that engages perirhinal cortex. Hippocampus 22 1978–1989. 10.1002/hipo.22069 PubMed DOI PMC
Sassin I., Schultz C., Thal D. R., Rüb U., Arai K., Braak E., et al. (2000). Evolution of Alzheimer’s disease-related cytoskeletal changes in the basal nucleus of Meynert. Acta Neuropathol. 100 259–269. 10.1007/s004019900178 PubMed DOI
Saunders A. M., Hulette C., Welsh-Bohmer K. A., Schmechel D. E., Crain B., Burke J. R., et al. (1996). Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348 90–93. 10.1016/S0140-6736(96)01251-2 PubMed DOI
Schmidt M. F., Storrs J. M., Freeman K. B., Jack C. R., Jr., Turner S. T. (2018). A comparison of manual tracing and FreeSurfer for estimating hippocampal volume over the adult lifespan. Hum. Brain Mapp. 39 2500–2513. 10.1002/HBM.24017 PubMed DOI PMC
Schmitz T. W., Nathan Spreng R. Alzheimer’s Disease Neuroimaging Initiative (2016). Basal forebrain degeneration precedes and predicts the cortical spread of Alzheimer’s pathology. Nat. Commun. 7:13249. 10.1038/ncomms13249 PubMed DOI PMC
Schöberl F., Pradhan C., Irving S., Buerger K., Xiong G., Kugler G., et al. (2020). Real-space navigation testing differentiates between amyloid-positive and -negative aMCI. Neurology 94 e861–e873. 10.1212/wnl.0000000000008758 PubMed DOI
Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., et al. (2019). Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech republic. BMJ Open 9:e030379. 10.1136/bmjopen-2019-030379 PubMed DOI PMC
Sheppard D. P., Graves L. V., Holden H. M., Delano-Wood L., Bondi M. W., Gilbert P. E. (2016). Spatial pattern separation differences in older adult carriers and non-carriers for the apolipoprotein E epsilon 4 allele. Neurobiol. Learn. Mem. 129 113–119. 10.1016/j.nlm.2015.04.011 PubMed DOI PMC
Spampinato M. V., Langdon B. R., Patrick K. E., Parker R. O., Collins H., Pravata’ E., et al. (2016). Gender, apolipoprotein E genotype, and mesial temporal atrophy: 2-year follow-up in patients with stable mild cognitive impairment and with progression from mild cognitive impairment to Alzheimer’s disease. Neuroradiology 58 1143–1151. 10.1007/s00234-016-1740-8 PubMed DOI
Stark S. M., Yassa M. A., Lacy J. W., Stark C. E. L. (2013). A task to assess behavioral pattern separation (BPS) in humans: data from healthy aging and mild cognitive impairment. Neuropsychologia 51 2442–2449. 10.1016/j.neuropsychologia.2012.12.014 PubMed DOI PMC
Teipel S. J., Flatz W., Ackl N., Grothe M., Kilimann I., Bokde A. L., et al. (2014). Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus. Psychiatry Res. 221 187–194. 10.1016/J.PSCYCHRESNS.2013.10.003 PubMed DOI PMC
Teipel S. J., Flatz W. H., Heinsen H., Bokde A. L. W., Schoenberg S. O., Stöckel S., et al. (2005). Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128 2626–2644. 10.1093/brain/awh589 PubMed DOI
Tustison N. J., Avants B. B., Cook P. A., Zheng Y., Egan A., Yushkevich P. A., et al. (2010). N4ITK: improved N3 bias correction. IEEE Trans. Med. Imaging 29 1310–1320. 10.1109/TMI.2010.2046908 PubMed DOI PMC
Vanderstichele H., Bibl M., Engelborghs S., Le Bastard N., Lewczuk P., Molinuevo J. L., et al. (2012). Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement. 8 65–73. 10.1016/J.JALZ.2011.07.004 PubMed DOI
Velayudhan L., Proitsi P., Westman E., Muehlboeck J. S., Mecocci P., Vellas B., et al. (2013). Entorhinal cortex thickness predicts cognitive decline in Alzheimer’s disease. J. Alzheimers. Dis. 33 755–766. 10.3233/JAD-2012-121408 PubMed DOI
Webb C. E., Foster C. M., Horn M. M., Kennedy K. M., Rodrigue K. M. (2020). Beta-amyloid burden predicts poorer mnemonic discrimination in cognitively normal older adults. Neuroimage 221:117199. 10.1016/J.NEUROIMAGE.2020.117199 PubMed DOI PMC
Wolf D., Grothe M., Fischer F. U., Heinsen H., Kilimann I., Teipel S., et al. (2014). Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia 53 54–63. 10.1016/J.NEUROPSYCHOLOGIA.2013.11.002 PubMed DOI
Yassa M. A., Mattfeld A. T., Stark S. M., Stark C. E. L. (2011b). Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc. Natl. Acad. Sci. U.S.A. 108 8873–8878. 10.1073/pnas.1101567108 PubMed DOI PMC
Yassa M. A., Lacy J. W., Stark S. M., Albert M. S., Gallagher M., Stark C. E. L. (2011a). Pattern separation deficits associated with increased hippocampal CA3 and dentate gyrus activity in nondemented older adults. Hippocampus 21 968–979. 10.1002/hipo.20808 PubMed DOI PMC
Yassa M. A., Stark C. E. L. (2011). Pattern separation in the hippocampus. Trends Neurosci. 34 515–525. 10.1016/j.tins.2011.06.006 PubMed DOI PMC
Yushkevich P. A., Piven J., Hazlett H. C., Smith R. G., Ho S., Gee J. C., et al. (2006). User-guided 3D active contour segmentation of anatomical structures: significantly improved efficiency and reliability. Neuroimage 31 1116–1128. 10.1016/J.NEUROIMAGE.2006.01.015 PubMed DOI
Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease
Plasminogen activator inhibitor-1 serum levels in frontotemporal lobar degeneration