Spatial navigation deficits in early Alzheimer's disease: the role of biomarkers and APOE genotype

. 2025 Jun 02 ; 272 (6) : 438. [epub] 20250602

Jazyk angličtina Země Německo Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid40456910

Grantová podpora
LX22NPO5107 National Institute for Neurological Research (Programme EXCELES, ID Project No. LX22NPO5107) - Funded by the European Union - Next Generation EU
00064203 Ministry of Health of the Czech Republic-conceptual development of research organization, University Hospital Motol, Prague, Czech Republic
6980382 Institutional Support of Excellence 3 2. LF UK
NW25-04-00337 Ministry of Health of the Czech Republic
40125 Grant Agency of Charles University
PRIMUS 22/MED/011 Grant Agency of Charles University
22-33968S Czech Science Foundation (GACR)

Odkazy

PubMed 40456910
PubMed Central PMC12130088
DOI 10.1007/s00415-025-13151-8
PII: 10.1007/s00415-025-13151-8
Knihovny.cz E-zdroje

BACKGROUND: Spatial navigation deficits are early symptoms of Alzheimer's disease (AD). The apolipoprotein E (APOE) ε4 allele is the most important genetic risk factor for AD. This study investigated effects of APOE genotype on spatial navigation in biomarker-defined individuals with amnestic mild cognitive impairment (aMCI) and associations of AD biomarkers and atrophy of AD-related brain regions with spatial navigation. METHODS: 107 participants, cognitively normal older adults (CN, n = 48) and aMCI individuals stratified into AD aMCI (n = 28) and non-AD aMCI (n = 31) groups, underwent cognitive assessment, brain MRI, and spatial navigation assessment using the Virtual Supermarket Test with egocentric and allocentric tasks and a self-report questionnaire. Cerebrospinal fluid (CSF) biomarkers (amyloid-β1-42, phosphorylated tau181 and total tau) and amyloid PET imaging were assessed in aMCI participants. RESULTS: AD aMCI participants had the highest prevalence of APOE ε4 carriers and worst allocentric navigation. CSF levels of AD biomarkers and atrophy in AD-related brain regions were associated with worse allocentric navigation. Between-group differences in spatial navigation and associations with AD biomarkers and regional brain atrophy were not influenced by APOE genotype. Self-reported navigation ability was similar across groups and unrelated to spatial navigation performance. CONCLUSIONS: These findings suggest that allocentric navigation deficits in aMCI individuals are predominantly driven by AD pathology, independent of APOE genotype. This highlights the role of AD pathology as measured by biomarkers, rather than genetic status, as a major factor in navigational impairment in aMCI, and emphasizes the assessment of spatial navigation as a valuable tool for early detection of AD.

Zobrazit více v PubMed

(2023) 2023 Alzheimer’s disease facts and figures. Alzheimers Dement 19:1598–1695. 10.1002/ALZ.13016 PubMed

Cummings J, Zhou Y, Lee G et al (2023) Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement Transl Res Clin Interv 9:e12385. 10.1002/trc2.12385 PubMed PMC

Sims JR, Zimmer JA, Evans CD et al (2023) Donanemab in early symptomatic Alzheimer disease: the TRAILBLAZER-ALZ 2 randomized clinical trial. JAMA 330:512–527. 10.1001/JAMA.2023.13239 PubMed PMC

van Dyck CH, Swanson CJ, Aisen P et al (2023) Lecanemab in early Alzheimer’s disease. N Engl J Med 388:142–143. 10.1056/NEJMOA2212948 PubMed

Georgakas JE, Howe MD, Thompson LI et al (2023) Biomarkers of Alzheimer’s disease: past, present and future clinical use. Biomarkers Neuropsychiatry 8:100063. 10.1016/J.BIONPS.2023.100063

Parizkova M, Lerch O, Moffat SD et al (2018) The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiol Aging 64:107–115. 10.1016/j.neurobiolaging.2017.12.019 PubMed

Schöberl F, Pradhan C, Irving S et al (2020) Real-space navigation testing differentiates between amyloid-positive and -negative aMCI. Neurology 94:e861–e873. 10.1212/wnl.0000000000008758 PubMed

Allison SL, Fagan AM, Morris JC, Head D (2016) Spatial Navigation in preclinical Alzheimer’s disease. J Alzheimers Dis 52:77–90. 10.3233/JAD-150855 PubMed PMC

Allison SL, Rodebaugh TL, Johnston C et al (2019) Developing a spatial navigation screening tool sensitive to the preclinical Alzheimer disease continuum. Arch Clin Neuropsychol 34:1138–1155. 10.1093/ARCLIN/ACZ019 PubMed PMC

Coughlan G, Laczó J, Hort J et al (2018) Spatial navigation deficits — overlooked cognitive marker for preclinical Alzheimer disease? Nat Rev Neurol 14:496–506. 10.1038/s41582-018-0031-x PubMed

Lester AW, Moffat SD, Wiener JM et al (2017) The aging navigational system. Neuron 95:1019–1035. 10.1016/J.NEURON.2017.06.037 PubMed PMC

Cerman J, Laczó J, Vyhnálek M et al (2014) Differences in spatial navigation impairment in neurodegenerative dementias. Cesk Slov Neurol N 77(110):449–455

Tu S, Wong S, Hodges JR et al (2015) Lost in spatial translation - a novel tool to objectively assess spatial disorientation in Alzheimer’s disease and frontotemporal dementia. Cortex 67:83–94. 10.1016/j.cortex.2015.03.016 PubMed

Tu S, Spiers HJ, Hodges JR et al (2017) Egocentric versus allocentric spatial memory in behavioral variant frontotemporal dementia and Alzheimer’s disease. J Alzheimer’s Dis 59:883–892. 10.3233/JAD-160592 PubMed

Laczó M, Martinkovic L, Lerch O et al (2022) Different profiles of spatial navigation deficits In Alzheimer’s disease biomarker-positive versus biomarker-negative older adults with amnestic mild cognitive impairment. Front Aging Neurosci 14:886778. 10.3389/FNAGI.2022.886778 PubMed PMC

Coughlan G, Zhukovsky P, Puthusseryppady V et al (2020) Functional connectivity between the entorhinal and posterior cingulate cortices underpins navigation discrepancies in at-risk Alzheimer’s disease. Neurobiol Aging 90:110–118. 10.1016/J.NEUROBIOLAGING.2020.02.007 PubMed

Coughlan G, DeSouza B, Zhukovsky P et al (2023) Spatial cognition is associated with levels of phosphorylated-tau and β-amyloid in clinically normal older adults. Neurobiol Aging 130:124–134. 10.1016/J.NEUROBIOLAGING.2023.06.016 PubMed

Tangen GG, Nilsson MH, Stomrud E et al (2022) Spatial navigation and its association with biomarkers and future dementia in memory clinic patients without dementia. Neurology 99:E2081–E2091. 10.1212/WNL.0000000000201106 PubMed PMC

Laczó M, Svatkova R, Lerch O et al (2024) Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer’s disease. iScience 27(6):109832. 10.1016/J.ISCI.2024.109832 PubMed PMC

Nelson PT (2024) New criteria to predict LATE-NC in the clinical setting: Probable/Possible LATE and LANS. J Neuropathol Exp Neurol 84:2–7. 10.1093/JNEN/NLAE113 PubMed PMC

Saunders AM, Hulette C, Welsh-Bohmer KA et al (1996) Specificity, sensitivity, and predictive value of apolipoprotein-E genotyping for sporadic Alzheimer’s disease. Lancet 348:90–93. 10.1016/S0140-6736(96)01251-2 PubMed

Corder EH, Saunders AM, Strittmatter WJ et al (1993) Gene dose of apolipoprotein E type 4 allele and the risk of Alzheimer’s disease in late onset families. Science 261:921–923 PubMed

Caselli RJ, Dueck AC, Osborne D et al (2009) Longitudinal modeling of age-related memory decline and the APOE epsilon4 effect. N Engl J Med 361:255–263. 10.1056/NEJMOA0809437 PubMed PMC

Saeed U, Desmarais P, Masellis M (2021) The APOE ε4 variant and hippocampal atrophy in Alzheimer’s disease and Lewy body dementia: a systematic review of magnetic resonance imaging studies and therapeutic relevance. Expert Rev Neurother 21:851–870. 10.1080/14737175.2021.1956904 PubMed

Coughlan G, Coutrot A, Khondoker M et al (2019) Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proc Natl Acad Sci U S A 116:9285–9292. 10.1073/PNAS.1901600116 PubMed PMC

Laczó J, Cechova K, Parizkova M et al (2020) The combined effect of APOE and BDNF Val66Met polymorphisms on spatial navigation in older adults. J Alzheimers Dis 78(4):1473–1492. 10.3233/JAD-200615 PubMed PMC

Lim YY, Mormino EC (2017) APOE genotype and early β-amyloid accumulation in older adults without dementia. Neurology 89:1028–1034. 10.1212/WNL.0000000000004336 PubMed PMC

Baek MS, Cho H, Lee HS et al (2020) Effect of APOE ε4 genotype on amyloid-β and tau accumulation in Alzheimer’s disease. Alzheimers Res Ther 12:140. 10.1186/S13195-020-00710-6 PubMed PMC

Therriault J, Benedet AL, Pascoal TA et al (2020) Association of apolipoprotein E ε4 with medial temporal tau independent of amyloid-β. JAMA Neurol 77:470–479. 10.1001/JAMANEUROL.2019.4421 PubMed PMC

Young CB, Johns E, Kennedy G et al (2023) APOE effects on regional tau in preclinical Alzheimer’s disease. Mol Neurodegener 18:1. 10.1186/S13024-022-00590-4 PubMed PMC

Laczó J, Andel R, Vyhnalek M et al (2014) APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology 28:676–684. 10.1037/neu0000072 PubMed

Laczó J, Andel R, Vlček K et al (2011) Spatial navigation and APOE in amnestic mild cognitive impairment. Neurodegener Dis 8:169–177. 10.1159/000321581 PubMed

Sheardova K, Vyhnalek M, Nedelska Z et al (2019) Czech brain aging study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open 9:e030379. 10.1136/BMJOPEN-2019-030379 PubMed PMC

Albert MS, DeKosky ST, Dickson D et al (2011) The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the national institute on aging-Alzheimer’s association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement 7:270–279. 10.1016/j.jalz.2011.03.008 PubMed PMC

Wolk DA, Nelson PT, Apostolova L et al (2025) Clinical criteria for limbic-predominant age-related TDP-43 encephalopathy. Alzheimer’s Dement 21:e14202. 10.1002/ALZ.14202 PubMed PMC

Hegarty M, Richardson A, Montello D et al (2002) Development of a self-report measure of environmental spatial ability. Intelligence 30:425–447

Hegarty M, Burte H, Boone AP (2018) Individual differences in large-scale spatial abilities and strategies. Handb Behav Cogn Geogr, pp 231–246. 10.4337/9781784717544.00022

Štěpánková H, Nikolai T, Lukavský J et al (2015) Mini-mental state examination – Czech normative study. Cesk Slov Neurol N 78(111):57–63

Bezdicek O, Stepankova H, Moták L et al (2014) Czech version of Rey auditory verbal learning test: normative data. Neuropsychol Dev Cogn B Aging Neuropsychol Cogn 21:693–721. 10.1080/13825585.2013.865699 PubMed

Drozdova K, Štěpánková H, Lukavský J et al (2015) Normativní studie testu Reyovy- Osterriethovy komplexní figury v populaci českých seniorů. Cesk Slov Neurol N 78(111):542–549

Mazancova AF, Nikolai T, Stepankova H et al (2017) The reliability of clock drawing test scoring systems modeled on the normative data in healthy aging and nonamnestic mild cognitive impairment. Assessment 24:945–957. 10.1177/1073191116632586 PubMed

Nikolai T, Stepankova H, Kopecek M et al (2018) The uniform data set, Czech version: normative data in older adults from an international perspective. J Alzheimers Dis 61:1233–1240. 10.3233/JAD-170595 PubMed PMC

Nikolai T, Štěpánková H, Michalec J et al (2015) Testy verbální fluence, česká normativní studie pro osoby vyššího věku. Cesk Slov Neurol N 78(111):292–299. 10.14735/AMCSNN2015292

Yesavage JA, Sheikh JI (1986) Geriatric depression scale (GDS). Clin Gerontol 5:165–173. 10.1300/J018V05N01_09

Beck AT, Epstein N, Brown G, Steer RA (1988) An inventory for measuring clinical anxiety: psychometric properties. J Consult Clin Psychol 56:893–897. 10.1037/0022-006X.56.6.893 PubMed

Hixson JE, Vernier DT (1990) Restriction isotyping of human apolipoprotein E by gene amplification and cleavage with HhaI. J Lipid Res 31:545–548 PubMed

Vanderstichele H, Bibl M, Engelborghs S et al (2012) Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement 8:65–73. 10.1016/J.JALZ.2011.07.004 PubMed

Cerman J, Laczó J, Vyhnálek M et al (2020) Cerebrospinal fluid ratio of phosphorylated tau protein and beta amyloid predicts amyloid PET positivity. Cesk Slov Neurol N 83(2):173–179. 10.14735/amcsnn2020173

Belohlavek O, Jaruskova M, Skopalova M et al (2019) Improved beta-amyloid PET reproducibility using two-phase acquisition and grey matter delineation. Eur J Nucl Med Mol Imaging 46:297–303. 10.1007/S00259-018-4140-Y PubMed PMC

Parizkova M, Lerch O, Andel R et al (2020) Spatial pattern separation in early Alzheimer’s disease. J Alzheimers Dis 76:121–138. 10.3233/JAD-200093 PubMed

Laczó M, Lerch O, Martinkovic L et al (2021) Spatial pattern separation testing differentiates Alzheimer’s disease biomarker-positive and biomarker-negative older adults with amnestic mild cognitive impairment. Front Aging Neurosci 13:774600. 10.3389/fnagi.2021.774600 PubMed PMC

Ashburner J (2009) Computational anatomy with the SPM software. Magn Reson Imaging 27:1163–1174. 10.1016/J.MRI.2009.01.006 PubMed

Brunec IK, Bellana B, Ozubko JD et al (2018) Multiple scales of representation along the hippocampal anteroposterior axis in humans. Curr Biol 28:2129-2135.e6. 10.1016/J.CUB.2018.05.016 PubMed

Evensmoen HR, Ladstein J, Hansen TI et al (2015) From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. Hippocampus 25:119–135. 10.1002/HIPO.22357 PubMed

Desikan RS, Ségonne F, Fischl B et al (2006) An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage 31:968–980. 10.1016/j.neuroimage.2006.01.021 PubMed

Matyi MA, Spielberg JM (2022) The structural brain network topology of episodic memory. PLoS ONE 17:e0270592. 10.1371/JOURNAL.PONE.0270592 PubMed PMC

Huang CC, Rolls ET, Feng J, Lin CP (2022) An extended human connectome project multimodal parcellation atlas of the human cortex and subcortical areas. Brain Struct Funct 227:763–778. 10.1007/S00429-021-02421-6 PubMed

Rolls ET, Wirth S, Deco G et al (2023) The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum Brain Mapp 44:629–655. 10.1002/HBM.26089 PubMed PMC

Teipel SJ, Flatz WH, Heinsen H et al (2005) Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain 128:2626–2644. 10.1093/brain/awh589 PubMed

Teipel SJ, Flatz W, Ackl N et al (2014) Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus. Psychiatry Res 221:187–194. 10.1016/J.PSCYCHRESNS.2013.10.003 PubMed PMC

Wolf D, Grothe M, Fischer FU et al (2014) Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia 53:54–63. 10.1016/J.NEUROPSYCHOLOGIA.2013.11.002 PubMed

Ashburner J (2007) A fast diffeomorphic image registration algorithm. Neuroimage 38:95–113. 10.1016/j.neuroimage.2007.07.007 PubMed

Lerch O, Laczó M, Vyhnálek M et al (2022) APOEɛ4 allele moderates the association between basal forebrain nuclei volumes and allocentric navigation in older adults without dementia. J Alzheimers Dis 86:155–171. 10.3233/JAD-215034 PubMed

Laczó J, Andel R, Vyhnalek M et al (2015) The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol Aging 36:2024–2033. 10.1016/j.neurobiolaging.2015.03.004 PubMed

Jack CR Jr, Petersen RC, O’Brien PC, Tangalos EG (1992) MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology 42:183–188. 10.1212/wnl.42.1.183 PubMed

Kreidler SM, Muller KE, Grunwald GK et al (2013) GLIMMPSE: online power computation for linear models with and without a baseline covariate. J Stat Softw 54:i10. 10.18637/JSS.V054.I10 PubMed PMC

Lowry E, Puthusseryppady V, Coughlan G et al (2020) Path integration changes as a cognitive marker for vascular cognitive impairment?-A pilot study. Front Hum Neurosci 14:131. 10.3389/FNHUM.2020.00131 PubMed PMC

Coughlan G, Puthusseryppady V, Lowry E et al (2020) Test-retest reliability of spatial navigation in adults at-risk of Alzheimer’s disease. PLoS ONE 15:e0239077. 10.1371/JOURNAL.PONE.0239077 PubMed PMC

Daly J, De Luca F, Berens SC et al (2024) The effect of apolipoprotein E genotype on spatial processing in humans: a meta-analysis and systematic review. Cortex 177:268–284. 10.1016/J.CORTEX.2024.05.006 PubMed

Pařízková M, Andel R, Lerch O et al (2017) Homocysteine and real-space navigation performance among non-demented older adults. J Alzheimers Dis 55:951–964. 10.3233/JAD-160667 PubMed

Tomassen J, den Braber A, van der Lee SJ et al (2022) Amyloid-β and APOE genotype predict memory decline in cognitively unimpaired older individuals independently of Alzheimer’s disease polygenic risk score. BMC Neurol 22:484. 10.1186/S12883-022-02925-6/FIGURES/4 PubMed PMC

Mormino EC, Betensky RA, Hedden T et al (2014) Amyloid and APOE ε4 interact to influence short-term decline in preclinical Alzheimer disease. Neurology 82:1760–1767. 10.1212/WNL.0000000000000431 PubMed PMC

Brugulat-Serrat A, Sánchez-Benavides G, Cacciaglia R et al (2023) APOE-ε4 modulates the association between regional amyloid deposition and cognitive performance in cognitively unimpaired middle-aged individuals. EJNMMI Res 13:18. 10.1186/S13550-023-00967-6 PubMed PMC

Braak H, Braak E (1995) Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol Aging 16:271–284. 10.1016/0197-4580(95)00021-6 PubMed

Palmqvist S, Schöll M, Strandberg O et al (2017) Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat Commun 8:1214. 10.1038/s41467-017-01150-x PubMed PMC

Whitwell JL, Przybelski SA, Weigand SD et al (2007) 3D maps from multiple MRI illustrate changing atrophy patterns as subjects progress from mild cognitive impairment to Alzheimer’s disease. Brain 130:1777–1786. 10.1093/BRAIN/AWM112 PubMed PMC

Clark BJ, Simmons CM, Berkowitz LE, Wilber AA (2018) The retrosplenial-parietal network and reference frame coordination for spatial navigation. Behav Neurosci 132:416–429. 10.1037/BNE0000260 PubMed PMC

Nedelska Z, Andel R, Laczó J et al (2012) Spatial navigation impairment is proportional to right hippocampal volume. Proc Natl Acad Sci U S A 109:2590–2594. 10.1073/pnas.1121588109 PubMed PMC

Laczó J, Andel R, Nedelska Z et al (2017) Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol Aging 51:67–70. 10.1016/j.neurobiolaging.2016.12.003 PubMed

Sojkova J, Zhou Y, An Y et al (2011) Longitudinal patterns of β-amyloid deposition in nondemented older adults. Arch Neurol 68:644–649. 10.1001/ARCHNEUROL.2011.77 PubMed PMC

Ruotolo F, Ruggiero G, Raemaekers M et al (2019) Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience 409:235–252. 10.1016/J.NEUROSCIENCE.2019.04.021 PubMed

Thorvaldsson V, Nordlund A, Reinvang I et al (2010) Memory in individuals with mild cognitive impairment in relation to APOE and CSF Abeta42. Int psychogeriatrics 22:598–606. 10.1017/S1041610210000335 PubMed

Weigand AJ, Ortiz G, Walker KS et al (2023) APOE differentially moderates cerebrospinal fluid and plasma phosphorylated tau181 associations with multi-domain cognition. Neurobiol Aging 125:1–8. 10.1016/J.NEUROBIOLAGING.2022.10.016 PubMed

Schöll M, Maass A, Mattsson N et al (2019) Biomarkers for tau pathology. Mol Cell Neurosci 97:18–33. 10.1016/J.MCN.2018.12.001 PubMed PMC

Schinazi VR, Nardi D, Newcombe NS et al (2013) Hippocampal size predicts rapid learning of a cognitive map in humans. Hippocampus 23:515–528. 10.1002/HIPO.22111 PubMed PMC

Sargolini F, Fyhn M, Hafting T et al (2006) Conjunctive representation of position, direction, and velocity in entorhinal cortex. Science 312:758–762. 10.1126/SCIENCE.1125572 PubMed

Chadwick MJ, Jolly AEJ, Amos DP et al (2015) A Goal direction signal in the human entorhinal/subicular region. Curr Biol 25:87–92. 10.1016/J.CUB.2014.11.001 PubMed PMC

Baumann O, Mattingley JB (2010) Medial parietal cortex encodes perceived heading direction in humans. J Neurosci 30:12897. 10.1523/JNEUROSCI.3077-10.2010 PubMed PMC

Mesulam MM, Mufson EJ, Levey AI, Wainer BH (1983) Cholinergic innervation of cortex by the basal forebrain: cytochemistry and cortical connections of the septal area, diagonal band nuclei, nucleus basalis (substantia innominata), and hypothalamus in the rhesus monkey. J Comp Neurol 214:170–197. 10.1002/cne.902140206 PubMed

Ikonen S, McMahan R, Gallagher M et al (2002) Cholinergic system regulation of spatial representation by the hippocampus. Hippocampus 12:386–397. 10.1002/hipo.1109 PubMed

Kerbler G, Nedelska Z, Fripp J et al (2015) Basal forebrain atrophy contributes to allocentric navigation impairment in Alzheimer’s disease patients. Front Aging Neurosci 7:185. 10.3389/fnagi.2015.00185 PubMed PMC

Weniger G, Ruhleder M, Lange C et al (2011) Egocentric and allocentric memory as assessed by virtual reality in individuals with amnestic mild cognitive impairment. Neuropsychologia 49:518–527. 10.1016/j.neuropsychologia.2010.12.031 PubMed

Lowry E, Coughlan G, Morrissey S et al (2022) Spatial orientation - a stable marker for vascular cognitive impairment? Cereb Circ Cogn Behav 4:100155. 10.1016/J.CCCB.2022.100155 PubMed PMC

Huang Y, Shan Y, Qin W, Zhao G (2023) Apolipoprotein E ε4 accelerates the longitudinal cerebral atrophy in open access series of imaging studies-3 elders without dementia at enrollment. Front Aging Neurosci 15:1158579. 10.3389/FNAGI.2023.1158579/FULL PubMed PMC

Soldan A, Wang J, Pettigrew C et al (2024) Alzheimer’s disease genetic risk and changes in brain atrophy and white matter hyperintensities in cognitively unimpaired adults. Brain Commun 6:fcae276. 10.1093/BRAINCOMMS/FCAE276 PubMed PMC

Håglin S, Koch E, Schäfer Hackenhaar F et al (2023) (2023) APOE ɛ4, but not polygenic Alzheimer’s disease risk, is related to longitudinal decrease in hippocampal brain activity in non-demented individuals. Sci Reports 131(13):1–9. 10.1038/s41598-023-35316-z PubMed PMC

Bookheimer SY, Strojwas MH, Cohen MS et al (2000) Patterns of brain activation in people at risk for Alzheimer’s disease. N Engl J Med 343:450–456. 10.1056/NEJM200008173430701 PubMed PMC

Bondi MW, Houston WS, Eyler LT, Brown GG (2005) fMRI evidence of compensatory mechanisms in older adults at genetic risk for Alzheimer disease. Neurology 64:501–508. 10.1212/01.WNL.0000150885.00929.7E PubMed PMC

Scheller E, Peter J, Schumacher LV et al (2017) APOE moderates compensatory recruitment of neuronal resources during working memory processing in healthy older adults. Neurobiol Aging 56:127–137. 10.1016/J.NEUROBIOLAGING.2017.04.015 PubMed

Roberts JL, Clare L, Woods RT (2009) Subjective memory complaints and awareness of memory functioning in mild cognitive impairment: a systematic review. Dement Geriatr Cogn Disord 28:95–109. 10.1159/000234911 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...