Spatial navigation questionnaires as a supportive diagnostic tool in early Alzheimer's disease

. 2024 Jun 21 ; 27 (6) : 109832. [epub] 20240426

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid38779476
Odkazy

PubMed 38779476
PubMed Central PMC11108981
DOI 10.1016/j.isci.2024.109832
PII: S2589-0042(24)01054-X
Knihovny.cz E-zdroje

Impaired spatial navigation is early marker of Alzheimer's disease (AD). We examined ability of self- and informant-reported navigation questionnaires to discriminate between clinically and biomarker-defined participants, and associations of questionnaires with navigation performance, regional brain atrophy, AD biomarkers, and biomarker status. 262 participants (cognitively normal, with subjective cognitive decline, amnestic mild cognitive impairment [aMCI], and mild dementia) and their informants completed three navigation questionnaires. Navigation performance, magnetic resonance imaging volume/thickness of AD-related brain regions, and AD biomarkers were measured. Informant-reported questionnaires distinguished between cognitively normal and impaired participants, and amyloid-β positive and negative aMCI. Lower scores were associated with worse navigation performance, greater atrophy in AD-related brain regions, and amyloid-β status. Self-reported questionnaire scores did not distinguish between the groups and were weakly associated with navigation performance. Other associations were not significant. Informant-reported navigation questionnaires may be a screening tool for early AD reflecting atrophy of AD-related brain regions and AD pathology.

Zobrazit více v PubMed

Hampel H., Hardy J., Blennow K., Chen C., Perry G., Kim S.H., Villemagne V.L., Aisen P., Vendruscolo M., Iwatsubo T., et al. The Amyloid-β Pathway in Alzheimer’s Disease. Mol. Psychiatr. 2021;26:5481–5503. doi: 10.1038/s41380-021-01249-0. PubMed DOI PMC

2023 Alzheimer’s disease facts and figures. Alzheimers Dement. 2023;19:1598–1695. doi: 10.1002/ALZ.13016. PubMed DOI

Jack C.R., Bennett D.A., Blennow K., Carrillo M.C., Dunn B., Haeberlein S.B., Holtzman D.M., Jagust W., Jessen F., Karlawish J., et al. NIA-AA Research Framework: Toward a biological definition of Alzheimer’s disease. Alzheimers Dement. 2018;14:535–562. doi: 10.1016/j.jalz.2018.02.018. PubMed DOI PMC

Cummings J., Zhou Y., Lee G., Zhong K., Fonseca J., Cheng F. Alzheimer’s disease drug development pipeline: 2023. Alzheimers Dement. 2023;9 doi: 10.1002/trc2.12385. PubMed DOI PMC

Georgakas J.E., Howe M.D., Thompson L.I., Riera N.M., Riddle M.C. Biomarkers of Alzheimer’s disease: Past, present and future clinical use. Biomarkers Neuropsychiatry. 2023;8 doi: 10.1016/J.BIONPS.2023.100063. DOI

Teunissen C.E., Verberk I.M.W., Thijssen E.H., Vermunt L., Hansson O., Zetterberg H., van der Flier W.M., Mielke M.M., del Campo M. Blood-based biomarkers for Alzheimer’s disease: towards clinical implementation. Lancet Neurol. 2022;21:66–77. doi: 10.1016/S1474-4422(21)00361-6. PubMed DOI

Coughlan G., Laczó J., Hort J., Minihane A.M., Hornberger M. Spatial navigation deficits — Overlooked cognitive marker for preclinical Alzheimer disease? Nat. Rev. Neurol. 2018;14:496–506. doi: 10.1038/s41582-018-0031-x. PubMed DOI

Lester A.W., Moffat S.D., Wiener J.M., Barnes C.A., Wolbers T. The Aging Navigational System. Neuron. 2017;95:1019–1035. doi: 10.1016/J.NEURON.2017.06.037. PubMed DOI PMC

Ruotolo F., Ruggiero G., Raemaekers M., Iachini T., van der Ham I.J.M., Fracasso A., Postma A. Neural correlates of egocentric and allocentric frames of reference combined with metric and non-metric spatial relations. Neuroscience. 2019;409:235–252. doi: 10.1016/J.NEUROSCIENCE.2019.04.021. PubMed DOI

Saj A., Cojan Y., Musel B., Honoré J., Borel L., Vuilleumier P. Functional neuro-anatomy of egocentric versus allocentric space representation. Neurophysiol. Clin. 2014;44:33–40. doi: 10.1016/J.NEUCLI.2013.10.135. PubMed DOI

Laczó J., Andel R., Nedelska Z., Vyhnalek M., Vlcek K., Crutch S., Harrison J., Hort J. Exploring the contribution of spatial navigation to cognitive functioning in older adults. Neurobiol. Aging. 2017;51:67–70. doi: 10.1016/j.neurobiolaging.2016.12.003. PubMed DOI

Nedelska Z., Andel R., Laczó J., Vlcek K., Horinek D., Lisy J., Sheardova K., Bures J., Hort J. Spatial navigation impairment is proportional to right hippocampal volume. Proc. Natl. Acad. Sci. USA. 2012;109:2590–2594. doi: 10.1073/pnas.1121588109. PubMed DOI PMC

Shine J.P., Valdés-Herrera J.P., Tempelmann C., Wolbers T. Evidence for allocentric boundary and goal direction information in the human entorhinal cortex and subiculum. Nat. Commun. 2019;10:4004. doi: 10.1038/S41467-019-11802-9. PubMed DOI PMC

Brunec I.K., Bellana B., Ozubko J.D., Man V., Robin J., Liu Z.X., Grady C., Rosenbaum R.S., Winocur G., Barense M.D., Moscovitch M. Multiple Scales of Representation along the Hippocampal Anteroposterior Axis in Humans. Curr. Biol. 2018;28:2129–2135.e6. doi: 10.1016/J.CUB.2018.05.016. PubMed DOI

Evensmoen H.R., Ladstein J., Hansen T.I., Møller J.A., Witter M.P., Nadel L., Håberg A.K. From details to large scale: the representation of environmental positions follows a granularity gradient along the human hippocampal and entorhinal anterior-posterior axis. Hippocampus. 2015;25:119–135. doi: 10.1002/HIPO.22357. PubMed DOI

Kerbler G.M., Nedelska Z., Fripp J., Laczó J., Vyhnalek M., Lisý J., Hamlin A.S., Rose S., Hort J., Coulson E.J. Basal Forebrain Atrophy Contributes to Allocentric Navigation Impairment in Alzheimer’s Disease Patients. Front. Aging Neurosci. 2015;7:185. doi: 10.3389/fnagi.2015.00185. PubMed DOI PMC

Clark B.J., Simmons C.M., Berkowitz L.E., Wilber A.A. The Retrosplenial-Parietal Network and Reference Frame Coordination for Spatial Navigation. Behav. Neurosci. 2018;132:416–429. doi: 10.1037/BNE0000260. PubMed DOI PMC

Braak H., Braak E. Staging of Alzheimer’s disease-related neurofibrillary changes. Neurobiol. Aging. 1995;16:271–284. doi: 10.1016/0197-4580(95)00021-6. PubMed DOI

Palmqvist S., Schöll M., Strandberg O., Mattsson N., Stomrud E., Zetterberg H., Blennow K., Landau S., Jagust W., Hansson O. Earliest accumulation of β-amyloid occurs within the default-mode network and concurrently affects brain connectivity. Nat. Commun. 2017;8:1214. doi: 10.1038/S41467-017-01150-X. PubMed DOI PMC

Pai M.C., Jacobs W.J. Topographical disorientation in community-residing patients with Alzheimer’s disease. Int. J. Geriatr. Psychiatry. 2004;19:250–255. doi: 10.1002/gps.1081. PubMed DOI

Allison S.L., Fagan A.M., Morris J.C., Head D. Spatial Navigation in Preclinical Alzheimer’s Disease. J. Alzheimers Dis. 2016;52:77–90. doi: 10.3233/JAD-150855. PubMed DOI PMC

Schöberl F., Pradhan C., Irving S., Buerger K., Xiong G., Kugler G., Kohlbecher S., Engmann J., Werner P., Brendel M., et al. Real-space navigation testing differentiates between amyloid-positive and -negative aMCI. Neurology. 2020;94:e861–e873. doi: 10.1212/wnl.0000000000008758. PubMed DOI

Laczó M., Martinkovic L., Lerch O., Wiener J.M., Kalinova J., Matuskova V., Nedelska Z., Vyhnalek M., Hort J., Laczó J. Different Profiles of Spatial Navigation Deficits In Alzheimer’s Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2022;14 doi: 10.3389/FNAGI.2022.886778. PubMed DOI PMC

Laczó M., Wiener J.M., Kalinova J., Matuskova V., Vyhnalek M., Hort J., Laczó J. Spatial Navigation and Visuospatial Strategies in Typical and Atypical Aging. Brain Sci. 2021;11:1421. doi: 10.3390/BRAINSCI11111421. PubMed DOI PMC

Chen Q., Qing Z., Jin J., Sun Y., Chen W., Lu J., Lv P., Liu J., Li X., Wang J., et al. Ego- and allo-network disconnection underlying spatial disorientation in subjective cognitive decline. Cortex. 2021;137:35–48. doi: 10.1016/J.CORTEX.2020.12.022. PubMed DOI

Jessen F., Amariglio R.E., Buckley R.F., van der Flier W.M., Han Y., Molinuevo J.L., Rabin L., Rentz D.M., Rodriguez-Gomez O., Saykin A.J., et al. The characterisation of subjective cognitive decline. Lancet Neurol. 2020;19:271–278. doi: 10.1016/S1474-4422(19)30368-0. PubMed DOI PMC

Howett D., Castegnaro A., Krzywicka K., Hagman J., Marchment D., Henson R., Rio M., King J.A., Burgess N., Chan D. Differentiation of mild cognitive impairment using an entorhinal cortex-based test of virtual reality navigation. Brain. 2019;142:1751–1766. doi: 10.1093/brain/awz116. PubMed DOI PMC

Allison S.L., Rodebaugh T.L., Johnston C., Fagan A.M., Morris J.C., Head D. Developing a Spatial Navigation Screening Tool Sensitive to the Preclinical Alzheimer Disease Continuum. Arch. Clin. Neuropsychol. 2019;34:1138–1155. doi: 10.1093/ARCLIN/ACZ019. PubMed DOI PMC

Hegarty M., Richardson A., Montello D., Lovelace K., Subbiah I. Development of a self-report measure of environmental spatial ability. Intelligence. 2002;30:425–447.

Hund A.M., Padgitt A.J. Direction giving and following in the service of wayfinding in a complex indoor environment. J. Environ. Psychol. 2010;30:553–564. doi: 10.1016/J.JENVP.2010.01.002. DOI

Meneghetti C., Borella E., Pastore M., De Beni R. The role of spatial abilities and self-assessments in cardinal point orientation across the lifespan. Learn. Individ. Differ. 2014;35:113–121. doi: 10.1016/J.LINDIF.2014.07.006. DOI

Allison S., Babulal G.M., Stout S.H., Barco P.P., Carr D.B., Fagan A.M., Morris J.C., Roe C.M., Head D. Alzheimer Disease Biomarkers and Driving in Clinically Normal Older Adults: Role of Spatial Navigation Abilities. Alzheimer Dis. Assoc. Disord. 2018;32:101–106. doi: 10.1097/WAD.0000000000000257. PubMed DOI PMC

Cerman J., Andel R., Laczo J., Vyhnalek M., Nedelska Z., Mokrisova I., Sheardova K., Hort J. Subjective Spatial Navigation Complaints - A Frequent Symptom Reported by Patients with Subjective Cognitive Decline, Mild Cognitive Impairment and Alzheimer’s Disease. Curr. Alzheimer Res. 2018;15:219–228. doi: 10.2174/1567205014666171120145349. PubMed DOI

Pai M.-C., Lee C.-C., Yang Y.-C., Lee Y.-T., Chen K.-C., Lin S.-H., Jheng S.-S., Sun P.-W., Cheng P.-J. Development of a Questionnaire on Everyday Navigational Ability to Assess Topographical Disorientation in Alzheimer’s Disease. Am. J. Alzheimers Dis. Other Dement. 2012;27:65–72. doi: 10.1177/1533317512436805. PubMed DOI PMC

Pai M.C., Lee C.C. The Incidence and Recurrence of Getting Lost in Community-Dwelling People with Alzheimer’s Disease: A Two and a Half-Year Follow-Up. PLoS One. 2016;11 doi: 10.1371/JOURNAL.PONE.0155480. PubMed DOI PMC

Sheardova K., Laczó J., Vyhnalek M., Mokrisova I., Telensky P., Andel R., Hort J. Spatial Navigation Complaints are Associated with Anxiety Regardless of the Real Performance in Non-Demented Elderly. J. Depress. Anxiety. 2015;4:1–6. doi: 10.4172/2167-1044.1000205. DOI

Pai M.C., Jan S.S. Have I Been Here? Sense of Location in People With Alzheimer’s Disease. Front. Aging Neurosci. 2020;12 doi: 10.3389/FNAGI.2020.582525. PubMed DOI PMC

Baker P.S., Bodner E.V., Allman R.M. Measuring life-space mobility in community-dwelling older adults. J. Am. Geriatr. Soc. 2003;51:1610–1614. doi: 10.1046/J.1532-5415.2003.51512.X. PubMed DOI

De Silva N.A., Gregory M.A., Venkateshan S.S., Verschoor C.P., Kuspinar A. Examining the Association between Life-Space Mobility and Cognitive Function in Older Adults: A Systematic Review. J. Aging Res. 2019;2019 doi: 10.1155/2019/3923574. PubMed DOI PMC

Hort J., Laczó J., Vyhnálek M., Bojar M., Bureš J., Vlček K. Spatial Navigation Deficit in Amnestic Mild Cognitive Impairment. Proc. Natl. Acad. Sci. USA. 2007;104:4042–4047. doi: 10.1073/pnas.0611314104. PubMed DOI PMC

Numbers K., Crawford J.D., Kochan N.A., Draper B., Sachdev P.S., Brodaty H. Participant and informant memory-specific cognitive complaints predict future decline and incident dementia: Findings from the Sydney Memory and Ageing Study. PLoS One. 2020;15 doi: 10.1371/JOURNAL.PONE.0232961. PubMed DOI PMC

Numbers K., Lam B.C.P., Crawford J.D., Kochan N.A., Sachdev P.S., Brodaty H. Longitudinal changes in participant and informant reports of subjective cognitive complaints are associated with dementia risk. Front. Aging Neurosci. 2023;15 doi: 10.3389/FNAGI.2023.1044807. PubMed DOI PMC

Pérez-Blanco L., Felpete A., Patten S.B., Mallo S.C., Pereiro A.X., Campos-Magdaleno M., Juncos-Rabadán O. Do informant-reported subjective cognitive complaints predict progression to mild cognitive impairment and dementia better than self-reported complaints in old adults? A meta-analytical study. Ageing Res. Rev. 2022;82 doi: 10.1016/J.ARR.2022.101772. PubMed DOI

Rahman-Filipiak A.M., Giordani B., Heidebrink J., Bhaumik A., Hampstead B.M. Self- and Informant-Reported Memory Complaints: Frequency and Severity in Cognitively Intact Individuals and those with Mild Cognitive Impairment and Neurodegenerative Dementias. J. Alzheimers Dis. 2018;65:1011–1027. doi: 10.3233/JAD-180083. PubMed DOI PMC

Rueda A.D., Lau K.M., Saito N., Harvey D., Risacher S.L., Aisen P.S., Petersen R.C., Saykin A.J., Farias S.T., Alzheimer's Disease Neuroimaging Initiative Self-rated and informant-rated everyday function in comparison to objective markers of Alzheimer’s disease. Alzheimers Dement. 2015;11:1080–1089. doi: 10.1016/J.JALZ.2014.09.002. PubMed DOI PMC

Kuhn E., Perrotin A., La Joie R., Touron E., Dautricourt S., Vanhoutte M., Vivien D., De La Sayette V., Chételat G., Alzheimer's Disease Neuroimaging Initiative Association of the Informant-Reported Memory Decline With Cognitive and Brain Deterioration Through the Alzheimer Clinical Continuum. Neurology. 2023;100:E2454–E2465. doi: 10.1212/WNL.0000000000207338. PubMed DOI PMC

Zuroff L., Wisse L.E., Glenn T., Xie S.X., Nasrallah I.M., Habes M., Dubroff J., De Flores R., Xie L., Yushkevich P., et al. Self- and Partner-Reported Subjective Memory Complaints: Association with Objective Cognitive Impairment and Risk of Decline. J. Alzheimers Dis. Rep. 2022;6:411–430. doi: 10.3233/ADR-220013. PubMed DOI PMC

Milanovic M., Wood-Ross C., Butters M.A., Fischer C.E., Flint A.J., Gerretsen P., Herrmann N., Lanctôt K.L., Mah L., Mulsant B.H., et al. Self- versus informant-report of cognitive decline in mild cognitive impairment: Concordance with cognitive and functional performance. Neuropsychology. 2023;37:827–836. doi: 10.1037/NEU0000842. PubMed DOI

Sabbagh M., Miller J., Jones S., Ritter A., Shi J., Decourt B., Wint D. Does Informant-Based Reporting of Cognitive Decline Correlate with Age-Adjusted Hippocampal Volume in Mild Cognitive Impairment and Alzheimer’s Disease? J. Alzheimers Dis. Rep. 2021;5:207–211. doi: 10.3233/ADR-200260. PubMed DOI PMC

Vogel A., Stokholm J., Gade A., Andersen B.B., Hejl A.M., Waldemar G. Awareness of deficits in mild cognitive impairment and Alzheimer’s disease: do MCI patients have impaired insight? Dement. Geriatr. Cogn. Disord. 2004;17:181–187. doi: 10.1159/000076354. PubMed DOI

Laczó M., Martinkovic L., Lerch O., Wiener J.M., Kalinova J., Matuskova V., Nedelska Z., Vyhnalek M., Hort J., Laczó J. Different Profiles of Spatial Navigation Deficits In Alzheimer’s Disease Biomarker-Positive Versus Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2022;14 doi: 10.3389/FNAGI.2022.886778. PubMed DOI PMC

Edmonds E.C., Delano-Wood L., Galasko D.R., Salmon D.P., Bondi M.W., Alzheimer’s Disease Neuroimaging Initiative Subjective cognitive complaints contribute to misdiagnosis of mild cognitive impairment. J. Int. Neuropsychol. Soc. 2014;20:836–847. doi: 10.1017/S135561771400068X. PubMed DOI PMC

Roberts J.L., Clare L., Woods R.T. Subjective memory complaints and awareness of memory functioning in mild cognitive impairment: a systematic review. Dement. Geriatr. Cogn. Disord. 2009;28:95–109. doi: 10.1159/000234911. PubMed DOI

Farias S.T., Mungas D., Jagust W. Degree of discrepancy between self and other-reported everyday functioning by cognitive status: dementia, mild cognitive impairment, and healthy elders. Int. J. Geriatr. Psychiatry. 2005;20:827–834. doi: 10.1002/GPS.1367. PubMed DOI PMC

Nosheny R.L., Amariglio R., Sikkes S.A.M., Van Hulle C., Bicalho M.A.C., Dowling N.M., Brucki S.M.D., Ismail Z., Kasuga K., Kuhn E., et al. The role of dyadic cognitive report and subjective cognitive decline in early ADRD clinical research and trials: Current knowledge, gaps, and recommendations. Alzheimers Dement. 2022;8 doi: 10.1002/TRC2.12357. PubMed DOI PMC

Rekers S., Finke C. Translating spatial navigation evaluation from experimental to clinical settings: The virtual environments navigation assessment (VIENNA) Behav. Res. Methods. 2024;56:2033–2048. doi: 10.3758/S13428-023-02134-0. PubMed DOI PMC

Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., Tolar M., Hort J. Human analogue of the morris water maze for testing subjects at risk of Alzheimer’s Disease. Neurodegener. Dis. 2010;7:148–152. doi: 10.1159/000289226. PubMed DOI

Laczó J., Andel R., Vyhnalek M., Vlcek K., Magerova H., Varjassyova A., Nedelska Z., Gazova I., Bojar M., Sheardova K., Hort J. From Morris Water Maze to Computer Tests in the Prediction of Alzheimer’s Disease. Neurodegener. Dis. 2012;10:153–157. doi: 10.1159/000333121. PubMed DOI

Laczó J., Vlcek K., Vyhnálek M., Vajnerová O., Ort M., Holmerová I., Tolar M., Andel R., Bojar M., Hort J. Spatial navigation testing discriminates two types of amnestic mild cognitive impairment. Behav. Brain Res. 2009;202:252–259. doi: 10.1016/j.bbr.2009.03.041. PubMed DOI

Puthusseryppady V., Morrissey S., Spiers H., Patel M., Hornberger M. Predicting real world spatial disorientation in Alzheimer’s disease patients using virtual reality navigation tests. Sci. Rep. 2022;12 doi: 10.1038/S41598-022-17634-W. PubMed DOI PMC

Castegnaro A., Howett D., Li A., Harding E., Chan D., Burgess N., King J. Assessing mild cognitive impairment using object-location memory in immersive virtual environments. Hippocampus. 2022;32:660–678. doi: 10.1002/HIPO.23458. PubMed DOI PMC

Coughlan G., Coutrot A., Khondoker M., Minihane A.M., Spiers H., Hornberger M. Toward personalized cognitive diagnostics of at-genetic-risk Alzheimer’s disease. Proc. Natl. Acad. Sci. USA. 2019;116:9285–9292. doi: 10.1073/PNAS.1901600116. PubMed DOI PMC

Coughlan G., Zhukovsky P., Puthusseryppady V., Gillings R., Minihane A.M., Cameron D., Hornberger M. Functional connectivity between the entorhinal and posterior cingulate cortices underpins navigation discrepancies in at-risk Alzheimer’s disease. Neurobiol. Aging. 2020;90:110–118. doi: 10.1016/J.NEUROBIOLAGING.2020.02.007. PubMed DOI

Wiener J.M., Carroll D., Moeller S., Bibi I., Ivanova D., Allen P., Wolbers T. A novel virtual-reality-based route-learning test suite: Assessing the effects of cognitive aging on navigation. Behav. Res. Methods. 2020;52:630–640. doi: 10.3758/s13428-019-01264-8. PubMed DOI PMC

Craig M., Wolbers T., Strickland S., Achtzehn J., Dewar M. Rapid improvement of cognitive maps in the awake state. Hippocampus. 2019;29:862–868. doi: 10.1002/HIPO.23081. PubMed DOI

Levine T.F., Allison S.L., Dessenberger S.J., Head D., Alzheimer’s Disease Neuroimaging Initiative Clinical utility of self- and informant-reported memory, attention, and spatial navigation in detecting biomarkers associated with Alzheimer disease in clinically normal adults. J. Int. Neuropsychol. Soc. 2024;30:232–243. doi: 10.1017/S1355617723000528. PubMed DOI

Yassa M.A., Mattfeld A.T., Stark S.M., Stark C.E.L. Age-related memory deficits linked to circuit-specific disruptions in the hippocampus. Proc. Natl. Acad. Sci. USA. 2011;108:8873–8878. doi: 10.1073/pnas.1101567108. PubMed DOI PMC

Matyi M.A., Spielberg J.M. The structural brain network topology of episodic memory. PLoS One. 2022;17 doi: 10.1371/JOURNAL.PONE.0270592. PubMed DOI PMC

Sheardova K., Vyhnalek M., Nedelska Z., Laczo J., Andel R., Marciniak R., Cerman J., Lerch O., Hort J. Czech Brain Aging Study (CBAS): prospective multicentre cohort study on risk and protective factors for dementia in the Czech Republic. BMJ Open. 2019;9 doi: 10.1136/bmjopen-2019-030379. PubMed DOI PMC

Morris J.C. The Clinical Dementia Rating (CDR): current version and scoring rules. Neurology. 1993;43:2412–2414. doi: 10.1212/WNL.43.11.2412-a. PubMed DOI

Albert M.S., DeKosky S.T., Dickson D., Dubois B., Feldman H.H., Fox N.C., Gamst A., Holtzman D.M., Jagust W.J., Petersen R.C., et al. The diagnosis of mild cognitive impairment due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:270–279. doi: 10.1016/j.jalz.2011.03.008. PubMed DOI PMC

McKhann G.M., Knopman D.S., Chertkow H., Hyman B.T., Jack C.R., Jr., Kawas C.H., Klunk W.E., Koroshetz W.J., Manly J.J., Mayeux R., et al. The diagnosis of dementia due to Alzheimer’s disease: recommendations from the National Institute on Aging-Alzheimer’s Association workgroups on diagnostic guidelines for Alzheimer’s disease. Alzheimers Dement. 2011;7:263–269. doi: 10.1016/j.jalz.2011.03.005. PubMed DOI PMC

Scheltens P., Leys D., Barkhof F., Huglo D., Weinstein H.C., Vermersch P., Kuiper M., Steinling M., Wolters E.C., Valk J. Atrophy of medial temporal lobes on MRI in “probable” Alzheimer’s disease and normal ageing: diagnostic value and neuropsychological correlates. J. Neurol. Neurosurg. Psychiatry. 1992;55:967–972. PubMed PMC

Laczó J., Andel R., Vlček K., Macoška V., Vyhnálek M., Tolar M., Bojar M., Hort J. Spatial Navigation and APOE in Amnestic Mild Cognitive Impairment. Neurodegener. Dis. 2011;8:169–177. doi: 10.1159/000321581. PubMed DOI

Laczó J., Andel R., Vyhnalek M., Vlcek K., Nedelska Z., Matoska V., Gazova I., Mokrisova I., Sheardova K., Hort J. APOE and spatial navigation in amnestic MCI: results from a computer-based test. Neuropsychology. 2014;28:676–684. doi: 10.1037/neu0000072. PubMed DOI

Laczó J., Andel R., Vyhnalek M., Matoska V., Kaplan V., Nedelska Z., Lerch O., Gazova I., Moffat S.D., Hort J. The effect of TOMM40 on spatial navigation in amnestic mild cognitive impairment. Neurobiol. Aging. 2015;36:2024–2033. doi: 10.1016/j.neurobiolaging.2015.03.004. PubMed DOI

Hegarty M., Burte H., Boone A.P. Individual differences in large-scale spatial abilities and strategies. Handb. Behav. Cogn. Geogr. 2018:231–246. doi: 10.4337/9781784717544.00022. DOI

Crowe M., Andel R., Wadley V.G., Okonkwo O.C., Sawyer P., Allman R.M. Life-space and cognitive decline in a community-based sample of African American and Caucasian older adults. J. Gerontol. A Biol. Sci. Med. Sci. 2008;63:1241–1245. doi: 10.1093/GERONA/63.11.1241. PubMed DOI PMC

Štěpánková H., Nikolai T., Lukavský J., Bezdíček M., Vrajová M., Kopeček M. Mini-Mental State Examination – Czech Normative Study. Ces. Slov. Neurol. N. 2015;78/111:57–63.

Nikolai T., Stepankova H., Kopecek M., Sulc Z., Vyhnalek M., Bezdicek O. The Uniform Data Set, Czech Version: Normative Data in Older Adults from an International Perspective. J. Alzheimers Dis. 2018;61:1233–1240. doi: 10.3233/JAD-170595. PubMed DOI PMC

Bezdicek O., Stepankova H., Moták L., Axelrod B.N., Woodard J.L., Preiss M., Nikolai T., Růžička E., Poreh A. Czech version of Rey Auditory Verbal Learning test: normative data. Neuropsychol. Dev. Cogn. B Aging Neuropsychol. Cogn. 2014;21:693–721. doi: 10.1080/13825585.2013.865699. PubMed DOI

Drozdova K., Štěpánková H., Lukavský J., Bezdíček M., Kopeček M. Normativní studie testu Reyovy- Osterriethovy komplexní figury v populaci českých seniorů. Ces. Slov. Neurol. N. 2015;78/111:542–549.

Mazancova A.F., Nikolai T., Stepankova H., Kopecek M., Bezdicek O. The Reliability of Clock Drawing Test Scoring Systems Modeled on the Normative Data in Healthy Aging and Nonamnestic Mild Cognitive Impairment. Assessment. 2017;24:945–957. doi: 10.1177/1073191116632586. PubMed DOI

Bezdicek O., Lukavsky J., Stepankova H., Nikolai T., Axelrod B.N., Michalec J., Růžička E., Kopecek M. The Prague Stroop Test: Normative standards in older Czech adults and discriminative validity for mild cognitive impairment in Parkinson’s disease. J. Clin. Exp. Neuropsychol. 2015;37:794–807. doi: 10.1080/13803395.2015.1057106. PubMed DOI

Yesavage J.A., Sheikh J.I. Geriatric Depression Scale (GDS) Clin. Gerontol. 1986;5:165–173. doi: 10.1300/J018V05N01_09. DOI

Beck A.T., Epstein N., Brown G., Steer R.A. An inventory for measuring clinical anxiety: psychometric properties. J. Consult. Clin. Psychol. 1988;56:893–897. doi: 10.1037//0022-006X.56.6.893. PubMed DOI

Vanderstichele H., Bibl M., Engelborghs S., Le Bastard N., Lewczuk P., Molinuevo J.L., Parnetti L., Perret-Liaudet A., Shaw L.M., Teunissen C., et al. Standardization of preanalytical aspects of cerebrospinal fluid biomarker testing for Alzheimer’s disease diagnosis: a consensus paper from the Alzheimer’s Biomarkers Standardization Initiative. Alzheimers Dement. 2012;8:65–73. doi: 10.1016/J.JALZ.2011.07.004. PubMed DOI

Cerman J., Laczó J., Vyhnálek M., Malinovská J., Hanzalová J., Hort J. Cerebrospinal fluid ratio of phosphorylated tau protein and beta amyloid predicts amyloid PET positivity. Ces. Slov. Neurol. N. 2020;83/116:173–179. doi: 10.14735/amcsnn2020173. DOI

Belohlavek O., Jaruskova M., Skopalova M., Szarazova G., Simonova K. Improved beta-amyloid PET reproducibility using two-phase acquisition and grey matter delineation. Eur. J. Nucl. Med. Mol. Imag. 2019;46:297–303. doi: 10.1007/S00259-018-4140-Y. PubMed DOI PMC

Parizkova M., Lerch O., Moffat S.D., Andel R., Mazancova A.F., Nedelska Z., Vyhnalek M., Hort J., Laczó J. The effect of Alzheimer’s disease on spatial navigation strategies. Neurobiol. Aging. 2018;64:107–115. doi: 10.1016/j.neurobiolaging.2017.12.019. PubMed DOI

Parizkova M., Lerch O., Andel R., Kalinova J., Markova H., Vyhnalek M., Hort J., Laczó J. Spatial Pattern Separation in Early Alzheimer’s Disease. J. Alzheimers Dis. 2020;76:121–138. doi: 10.3233/JAD-200093. PubMed DOI

Laczó M., Lerch O., Martinkovic L., Kalinova J., Markova H., Vyhnalek M., Hort J., Laczó J. Spatial Pattern Separation Testing Differentiates Alzheimer’s Disease Biomarker-Positive and Biomarker-Negative Older Adults With Amnestic Mild Cognitive Impairment. Front. Aging Neurosci. 2021;13 doi: 10.3389/fnagi.2021.774600. PubMed DOI PMC

Ashburner J. Computational anatomy with the SPM software. Magn. Reson. Imag. 2009;27:1163–1174. doi: 10.1016/J.MRI.2009.01.006. PubMed DOI

Avants B.B., Tustison N.J., Song G., Cook P.A., Klein A., Gee J.C. A reproducible evaluation of ANTs similarity metric performance in brain image registration. Neuroimage. 2011;54:2033–2044. doi: 10.1016/J.NEUROIMAGE.2010.09.025. PubMed DOI PMC

Berron D., Vieweg P., Hochkeppler A., Pluta J.B., Ding S.L., Maass A., Luther A., Xie L., Das S.R., Wolk D.A., et al. A protocol for manual segmentation of medial temporal lobe subregions in 7 Tesla MRI. NeuroImage. Clin. 2017;15:466–482. doi: 10.1016/J.NICL.2017.05.022. PubMed DOI PMC

Olsen R.K., Yeung L.K., Noly-Gandon A., D’Angelo M.C., Kacollja A., Smith V.M., Ryan J.D., Barense M.D. Human anterolateral entorhinal cortex volumes are associated with cognitive decline in aging prior to clinical diagnosis. Neurobiol. Aging. 2017;57:195–205. doi: 10.1016/J.NEUROBIOLAGING.2017.04.025. PubMed DOI

Desikan R.S., Ségonne F., Fischl B., Quinn B.T., Dickerson B.C., Blacker D., Buckner R.L., Dale A.M., Maguire R.P., Hyman B.T., et al. An automated labeling system for subdividing the human cerebral cortex on MRI scans into gyral based regions of interest. Neuroimage. 2006;31:968–980. doi: 10.1016/j.neuroimage.2006.01.021. PubMed DOI

Huang C.C., Rolls E.T., Feng J., Lin C.P. An extended Human Connectome Project multimodal parcellation atlas of the human cortex and subcortical areas. Brain Struct. Funct. 2022;227:763–778. doi: 10.1007/S00429-021-02421-6. PubMed DOI

Rolls E.T., Wirth S., Deco G., Huang C.C., Feng J. The human posterior cingulate, retrosplenial, and medial parietal cortex effective connectome, and implications for memory and navigation. Hum. Brain Mapp. 2023;44:629–655. doi: 10.1002/HBM.26089. PubMed DOI PMC

Teipel S.J., Flatz W.H., Heinsen H., Bokde A.L.W., Schoenberg S.O., Stöckel S., Dietrich O., Reiser M.F., Möller H.J., Hampel H. Measurement of basal forebrain atrophy in Alzheimer’s disease using MRI. Brain. 2005;128:2626–2644. doi: 10.1093/brain/awh589. PubMed DOI

Teipel S.J., Flatz W., Ackl N., Grothe M., Kilimann I., Bokde A.L.W., Grinberg L., Amaro E., Jr., Kljajevic V., Alho E., et al. Brain atrophy in primary progressive aphasia involves the cholinergic basal forebrain and Ayala’s nucleus. Psychiatry Res. 2014;221:187–194. doi: 10.1016/J.PSCYCHRESNS.2013.10.003. PubMed DOI PMC

Wolf D., Grothe M., Fischer F.U., Heinsen H., Kilimann I., Teipel S., Fellgiebel A. Association of basal forebrain volumes and cognition in normal aging. Neuropsychologia. 2014;53:54–63. doi: 10.1016/J.NEUROPSYCHOLOGIA.2013.11.002. PubMed DOI

Kilimann I., Grothe M., Heinsen H., Alho E.J.L., Grinberg L., Amaro E., Jr., dos Santos G.A.B., da Silva R.E., Mitchell A.J., Frisoni G.B., et al. Subregional Basal Forebrain Atrophy in Alzheimer’s Disease: A Multicenter Study. J. Alzheimers Dis. 2014;40:687–700. doi: 10.3233/JAD-132345. PubMed DOI PMC

Ashburner J. A fast diffeomorphic image registration algorithm. Neuroimage. 2007;38:95–113. doi: 10.1016/j.neuroimage.2007.07.007. PubMed DOI

Jack C.R., Jr., Petersen R.C., O’Brien P.C., Tangalos E.G. MR-based hippocampal volumetry in the diagnosis of Alzheimer’s disease. Neurology. 1992;42:183–188. doi: 10.1212/wnl.42.1.183. PubMed DOI

Schunk D. A Markov chain Monte Carlo algorithm for multiple imputation in large surveys. AStA. 2008;92:101–114. doi: 10.1007/S10182-008-0053-6/METRICS. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...