Microdialysis as a tool for antibiotic assessment in patients with diabetic foot: a review
Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy, práce podpořená grantem
PubMed
37139338
PubMed Central
PMC10150051
DOI
10.3389/fendo.2023.1141086
Knihovny.cz E-zdroje
- Klíčová slova
- antibiotic (ATB), capillary electrophoresis (CE), diabetic foot (DF), diabetic foot infection (DFI), microdialysis (MD),
- MeSH
- amputace MeSH
- antibakteriální látky terapeutické užití MeSH
- diabetes mellitus * farmakoterapie MeSH
- diabetická noha * diagnóza farmakoterapie MeSH
- dolní končetina patologie MeSH
- lidé MeSH
- mikrodialýza škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- antibakteriální látky MeSH
Diabetic foot is a serious late complication frequently caused by infection and ischaemia. Both require prompt and aggressive treatment to avoid lower limb amputation. The effectiveness of peripheral arterial disease therapy can be easily verified using triplex ultrasound, ankle-brachial/toe-brachial index examination, or transcutaneous oxygen pressure. However, the success of infection treatment is difficult to establish in patients with diabetic foot. Intravenous systemic antibiotics are recommended for the treatment of infectious complications in patients with moderate or serious stages of infection. Antibiotic therapy should be initiated promptly and aggressively to achieve sufficient serum and peripheral antibiotic concentrations. Antibiotic serum levels are easily evaluated by pharmacokinetic assessment. However, antibiotic concentrations in peripheral tissues, especially in diabetic foot, are not routinely detectable. This review describes microdialysis techniques that have shown promise in determining antibiotic levels in the surroundings of diabetic foot lesions.
2nd Faculty of Medicine Charles University Prague Czechia
Department of Hygiene 3rd Faculty of Medicine Charles University Prague Czechia
Department of Pathophysiology 3rd Faculty of Medicine Charles University Prague Czechia
Diabetes Centre Institute for Clinical and Experimental Medicine Prague Czechia
Zobrazit více v PubMed
. Available at: https://iwgdfguidelines.org/.
Prompers L, Huijberts M, Apelqvist J, Jude E, Piaggesi A, Bakker K, et al. . High prevalence of ischaemia, infection and serious comorbidity in patients with diabetic foot disease in europe. baseline results from the eurodiale study. Diabetologia (2007) 50:18–25. doi: 10.1007/s00125-006-0491-1 PubMed DOI
Boulton AJM, Armstrong DG, Hardman MJ, Malone M, Embil JM, Attinger CE, et al. . Diagnosis and management of diabetic foot infections, diagnosis and management of diabetic foot infections. Arlington (VA: American Diabetes Association; (2020). PubMed
Fejfarová V, Jirkovská A, Dragomirecká E, Game F, Bem R, Dubský M, et al. . Does the diabetic foot have a significant impact on selected psychological or social characteristics of patients with diabetes mellitus? J Diabetes Res (2014) 2014:1–8. doi: 10.1155/2014/371938 PubMed DOI PMC
Kim BS, Choi WJ, Baek MK, Kim YS, Lee JW. Limb salvage in severe diabetic foot infection. Foot Ankle Int (2011) 32:31–7. doi: 10.3113/fai.2011.0031 PubMed DOI
Lavery LA, Armstrong DG, Murdoch DP, Peters EJG, Lipsky BA. Validation of the infectious diseases society of america's diabetic foot infection classification system. Clin Infect Dis (2007) 44:562–5. doi: 10.1086/511036 PubMed DOI
Bravo-Molina A, Linares-Palomino JP, Vera-Arroyo B, Salmeron-Febres LM, Ros-Die E. Inter-observer agreement of the Wagner, university of Texas and PEDIS classification systems for the diabetic foot syndrome. Foot Ankle Surg (2018) 24:60–4. doi: 10.1016/j.fas.2016.10.009 PubMed DOI
Monteiro-Soares M, Martins-Mendes D, Vaz-Carneiro A, Sampaio S, Dinis-Ribeiro M. Classification systems for lower extremity amputation prediction in subjects with active diabetic foot ulcer: a systematic review and meta-analysis. Diabetes Metab Res Rev (2014) 30:610–22. doi: 10.1002/dmrr.2535 PubMed DOI
Mills JL, Conte MS, Armstrong DG, Pomposelli FB, Schanzer A, Sidawy AN, et al. . The society for vascular surgery lower extremity threatened limb classification system: Risk stratification based on wound, ischemia, and foot infection (WIfI). J Vasc Surg (2014) 59:220–34. doi: 10.1016/j.jvs.2013.08.003 PubMed DOI
Sen P, Demirdal T. Predictive ability of LRINEC score in the prediction of limb loss and mortality in diabetic foot infection. Diagn Microbiol Infect Dis (2021) 100:1–5. doi: 10.1016/j.diagmicrobio.2021.115323 PubMed DOI
Tajima Y. Polyoxotungstates reduce the beta-lactam resistance of methicillin-resistant staphylococcus aureus. Mini Rev Med Chem (2005) 5:255–68. doi: 10.2174/1389557053175344 PubMed DOI
. Available at: https://iwgdfguidelines.org/.
Maurer SM, Hepp ZS, McCallin S, Waibel FWA, Romero FC, Zorman Y, et al. . Short and oral antimicrobial therapy for diabetic foot infection: a narrative review of current knowledge. J Bone Jt Infect (2022) 7:61–70. doi: 10.5194/jbji-7-61-2022 PubMed DOI PMC
Loffler MW, Schuster H, Buhler S, Beckert S. Wound fluid in diabetic foot ulceration: More than just an undefined soup? Int J Low Extrem Wounds (2013) 12:113–29. doi: 10.1177/1534734613489989 PubMed DOI
Plock N, Kloft C. Microdialysis - theoretical background and recent implementation in applied life-sciences. Eur J Pharm Sci (2005) 25:1–24. doi: 10.1016/j.ejps.2005.01.017 PubMed DOI
Chefer VI, Thompson AC, Zapata A, Shippenberg TS. Overview of brain microdialysis. Curr Protoc Neurosci (2009). doi: 10.1002/0471142301.ns0701s47 PubMed DOI PMC
Benjamin RK, Hochberg FH, Fox E, Bungay PM, Elmquist WF, Stewart CF, et al. . Review of microdialysis in brain tumors, from concept to application: First annual Carolyn Frye-halloran symposium. Neuro-Oncol (2004) 6:65–74. doi: 10.1215/s1152.8517.03.00010.3 PubMed DOI PMC
Bielecka-Grzela S, Klimowicz A. Application of cutaneous microdialysis to evaluate metronidazole and its main metabolite concentrations in the skin after a single oral dose. J Clin Pharm Ther (2003) 28:465–9. doi: 10.1046/j.0269-4727.2003.00516.x PubMed DOI
Nandi P, Lunte SM. Recent trends in microdialysis sampling integrated with conventional and microanalytical systems for monitoring biological events: A review. Anal Chim Acta (2009) 651:1–14. doi: 10.1016/j.aca.2009.07.064 PubMed DOI PMC
Holovics HJ, Anderson CR, Levine BS, Hui HW, Lunte CE. Investigation of drug delivery by iontophoresis in a surgical wound utilizing microdialysis. Pharm Res (2008) 25:1762–70. doi: 10.1007/s11095-007-9490-2 PubMed DOI PMC
Kim A, Suecof LA, Sutherland CA, Gao LH, Kuti JL, Nicolau DP. In vivo microdialysis study of the penetration of daptomycin into soft tissues in diabetic versus healthy volunteers. Antimicrob Agents Chemother (2008) 52:3941–6. doi: 10.1128/aac.00589-08 PubMed DOI PMC
Groth L, Serup J. Cutaneous microdialysis in man: Effects of needle insertion trauma and anaesthesia on skin perfusion, erythema and skin thickness. Acta Derm Venereol (1998) 78:5–9. doi: 10.1080/00015559850135733 PubMed DOI
Zhou Q, Gallo JM. In vivo microdialysis for PK and PD studies of anticancer drugs. AAPS J (2005) 7(3):E659–67. doi: 10.1208/aapsj070366 PubMed DOI PMC
de la Pena A, Liu P, Derendorf H. Microdialysis in peripheral tissues. Adv Drug Deliv Rev (2000) 45:189–216. doi: 10.1016/s0169-409x(00)00106-x PubMed DOI
Richards DA, Silva MA, Murphy N, Wigmore SJ, Mirza DF. Extracellular amino acid levels in the human liver during transplantation: a microdialysis study from donor to recipient. Amino Acids (2007) 33:429–37. doi: 10.1007/s00726-006-0480-1 PubMed DOI
Obata T, Miyashita M. Effect of tyramine on the production of interstitial adenosine during perfusion with adenosine 5 '-monophosphate in rat hearts in vivo. Eur J Pharmacol (2013) 700:60–4. doi: 10.1016/j.ejphar.2012.12.011 PubMed DOI
Gerdle B, Ghafouri B, Ernberg M, Larsson B. Chronic musculoskeletal pain: review of mechanisms and biochemical biomarkers as assessed by the microdialysis technique. J Pain Res (2014) 7:313–26. doi: 10.2147/jpr.S59144 PubMed DOI PMC
Rea H, Kirby B. A review of cutaneous microdialysis of inflammatory dermatoses. Acta Derm Venereol (2019) 99:945–52. doi: 10.2340/00015555-3223 PubMed DOI
Baumann KY, Church MK, Clough GF, Quist SR, Schmelz M, Skov PS, et al. . Skin microdialysis: methods, applications and future opportunities-an EAACI position paper. Clin Transl Allergy (2019) 9:1–13. doi: 10.1186/s13601-019-0262-y PubMed DOI PMC
Gill CM, Fratoni AJ, Shepard AK, Kuti JL, Nicolau DP. Omadacycline pharmacokinetics and soft-tissue penetration in diabetic patients with wound infections and healthy volunteers using in vivo microdialysis. J Antimicrob Chemother (2022) 77:1372–8. doi: 10.1093/jac/dkac055 PubMed DOI PMC
Stainton SM, Monogue ML, Baummer-Carr A, Shepard AK, Nugent JF, Kuti JL, et al. . Comparative assessment of tedizolid pharmacokinetics and tissue penetration between diabetic patients with wound infections and healthy volunteers via in vivo microdialysis. Antimicrob Agents Chemother (2018) 62:1–4. doi: 10.1128/aac.01880-17 PubMed DOI PMC
Sauermann R, Burian B, Burian A, Jager W, Hoferl M, Stella A, et al. . Tissue pharmacokinetics of ertapenem at steady-state in diabetic patients with leg infections. J Antimicrob Chemother (2013) 68:895–9. doi: 10.1093/jac/dks479 PubMed DOI
Grabb MC, Sciotti VM, Gidday JM, Cohen SA, Van Wylen DGL. Neurochemical and morphological responses to acutely and chronically implanted brain microdialysis probes. J Neurosci Methods (1998) 82:25–34. doi: 10.1016/s0165-0270(98)00025-9 PubMed DOI
Booth MA, Gowers SAN, Leong CL, Rogers ML, Samper IC, Wickham AP, et al. . Chemical monitoring in clinical settings: Recent developments toward real-time chemical monitoring of patients. Anal Chem (2018) 90:2–18. doi: 10.1021/acs.analchem.7b04224 PubMed DOI
Kennedy RT. Emerging trends in in vivo neurochemical monitoring by microdialysis. Curr Opin Chem Biol (2013) 17:860–7. doi: 10.1016/j.cbpa.2013.06.012 PubMed DOI PMC
Zhang W, Ramautar R. CE-MS for metabolomics: Developments and applications in the period 2018-2020. Electrophoresis (2021) 42:381–401. doi: 10.1002/elps.202000203 PubMed DOI PMC
van Mever M, Segers K, Drouin N, Guled F, Vander Heyden Y, Van Eeckhaut A, et al. . Direct profiling of endogenous metabolites in rat brain microdialysis samples by capillary electrophoresis-mass spectrometry with on-line preconcentration. Microchem J (2020) 156:1–10. doi: 10.1016/j.microc.2020.104949 DOI
Saylor RA, Lunte SM. A review of microdialysis coupled to microchip electrophoresis for monitoring biological events. J Chromatogr A (2015) 1382:48–64. doi: 10.1016/j.chroma.2014.12.086 PubMed DOI PMC
Guihen E, O'Connor WT. Current separation and detection methods in microdialysis the drive towards sensitivity and speed. Electrophoresis (2009) 30:2062–75. doi: 10.1002/elps.200900039 PubMed DOI
Guihen E, O'Connor WT. Capillary and microchip electrophoresis in microdialysis: Recent applications. Electrophoresis (2010) 31:55–64. doi: 10.1002/elps.200900467 PubMed DOI
Phillips TM. Recent advances in CE and microchip-CE in clinical applications: 2014 to mid-2017. Electrophoresis (2018) 39:126–35. doi: 10.1002/elps.201700283 PubMed DOI
Štěpánová S, Kašička V. Applications of capillary electromigration methods for separation and analysis of proteins (2017–mid 2021) – a review. Anal Chim Acta (2022) 1209:1–29. doi: 10.1016/j.aca.2022.339447 PubMed DOI
Tůma P, Opekar F. Detectors in capillary electrophoresis, analytical separation science, Wiley-VCH verlag GmbH & co. KGaA. Stockholm:Universitetsservice US-AB; (2015).
Schultz KN, Kennedy RT. Time-resolved microdialysis for in vivo neurochemical measurements and other applications. Annu Rev Anal Chem (Palo Alto Calif) (2008), 1:627–61. doi: 10.1146/annurev.anchem.1.031207.113047 PubMed DOI
Valcarcel M, Arce L, Rios A. Coupling continuous separation techniques to capillary electrophoresis. J Chromatogr A (2001) 924:3–30. doi: 10.1016/s0021-9673(01)00898-6 PubMed DOI
Gong MJ, Zhang N, Maddukuri N. Flow-gated capillary electrophoresis: a powerful technique for rapid and efficient chemical separation. Anal Methods (2018) 10:3131–43. doi: 10.1039/c8ay00979a DOI
Ranjbar L, Foley JP, Breadmore MC. Multidimensional liquid-phase separations combining both chromatography and electrophoresis - a review. Anal Chim Acta (2017) 950:7–31. doi: 10.1016/j.aca.2016.10.025 PubMed DOI
Tůma P, Sommerová B, Daněček V. On-line coupling of capillary electrophoresis with microdialysis for determining saccharides in dairy products and honey. Food Chem (2020) 316:1–6. doi: 10.1016/j.foodchem.2020.126362 PubMed DOI
Opekar F, Hraníček J, Tůma P. Rapid determination of majority cations in yoghurts using on-line connection of capillary electrophoresis with mini-dialysis. Food Chem (2020) 308:1–5. doi: 10.1016/j.foodchem.2019.125647 PubMed DOI
Opekar F, Tůma P. Dialysis of one sample drop on-line connected with electrophoresis in short capillary. Talanta (2020) 219:1–7. doi: 10.1016/j.talanta.2020.121252 PubMed DOI
Kubáň P, Dvořák M, Kubáň P. Capillary electrophoresis of small ions and molecules in less conventional human body fluid samples: A review. Anal Chim Acta (2019) 1075:1–26. doi: 10.1016/j.aca.2019.05.004 PubMed DOI
Shang FJ, Guihen E, Glennon JD. Recent advances in miniaturisation - the role of microchip electrophoresis in clinical analysis. Electrophoresis (2012) 33:105–16. doi: 10.1002/elps.201100454 PubMed DOI
Ou GZ, Feng XJ, Du W, Liu X, Liu BF. Recent advances in microchip electrophoresis for amino acid analysis. Anal Bioanal Chem (2013) 405:7907–18. doi: 10.1007/s00216-013-6830-4 PubMed DOI
Hauser PC, Kubáň P. Capacitively coupled contactless conductivity detection for analytical techniques - developments from 2018 to 2020. J Chromatogr A (2020) 1632:1–19. doi: 10.1016/j.chroma.2020.461616 PubMed DOI
Kubáň P, Hauser PC. 20th anniversary of axial capacitively coupled contactless conductivity detection in capillary electrophoresis. Trac-Trends Anal Chem (2018) 102:311–21. doi: 10.1016/j.trac.2018.03.007 DOI
Coltro WKT, Lima RS, Segato TP, Carrilho E, de Jesus DP, do Lago CL, et al. . Capacitively coupled contactless conductivity detection on microfluidic systems-ten years of development. Anal Methods (2012) 4:25–33. doi: 10.1039/c1ay05364g DOI
Tůma P. Determination of amino acids by capillary and microchip electrophoresis with contactless conductivity detection - theory, instrumentation and applications. Talanta (2021) 224:1–11. doi: 10.1016/j.talanta.2020.121922 PubMed DOI
Tůma P, Opekar F, Dlouhý P. Capillary and microchip electrophoresis with contactless conductivity detection for analysis of foodstuffs and beverages. Food Chem (2022) 375:1–13. doi: 10.1016/j.foodchem.2021.131858 PubMed DOI
Tůma P. Monitoring of biologically active substances in clinical samples by capillary and microchip electrophoresis with contactless conductivity detection: A review. Anal Chim Acta (2022) 1225:1–20. doi: 10.1016/j.aca.2022.340161 PubMed DOI
Tůma P, Jaček M, Sommerová B, Dlouhý P, Jarošíková R, Husáková J, et al. . Monitoring of amoxicilline and ceftazidime in the microdialysate of diabetic foot and serum by capillary electrophoresis with contactless conductivity detection. Electrophoresis (2022) 43:1129–39. doi: 10.1002/elps.202100366 PubMed DOI
Monogue ML, Stainton SM, Baummer-Carr A, Shepard AK, Nugent JF, Kuti JL, et al. . Pharmacokinetics and tissue penetration of ceftolozane-tazobactam in diabetic patients with lower limb infections and healthy adult volunteers. Antimicrob Agents Chemother (2017) 61:1–8. doi: 10.1128/aac.01449-17 PubMed DOI PMC
Minichmayr IK, Schaeftlein A, Kuti JL, Zeitlinger M, Kloft C. Clinical determinants of target non-attainment of linezolid in plasma and interstitial space fluid: A pooled population pharmacokinetic analysis with focus on critically ill patients. Clin Pharmacokinet (2017) 56:617–33. doi: 10.1007/s40262-016-0463-7 PubMed DOI
Eslam RB, Burian A, Vila G, Sauermann R, Hammer A, Frenzel D, et al. . Target site pharmacokinetics of linezolid after single and multiple doses in diabetic patients with soft tissue infection. J Clin Pharmacol (2014) 54:1058–62. doi: 10.1002/jcph.296 PubMed DOI
Wiskirchen DE, Shepard A, Kuti JL, Nicolau DP. Determination of tissue penetration and pharmacokinetics of linezolid in patients with diabetic foot infections using in vivo microdialysis. Antimicrob Agents Chemother (2011) 55:4170–5. doi: 10.1128/aac.00445-11 PubMed DOI PMC
Traunmuller F, Schintler MV, Spendel S, Popovic M, Mauric O, Scharnagl E, et al. . Linezolid concentrations in infected soft tissue and bone following repetitive doses in diabetic patients with bacterial foot infections. Int J Antimicrob Agents (2010) 36:84–6. doi: 10.1016/j.ijantimicag.2010.03.007 PubMed DOI
Hamada Y, Kuti JL, Nicolau DP. Vancomycin serum concentrations do not adequately predict tissue exposure in diabetic patients with mild to moderate limb infections. J Antimicrob Chemother (2015) 70:2064–7. doi: 10.1093/jac/dkv074 PubMed DOI
Koomanacha P, Keel RA, Johnson-Arbor KK, Suecof LA, Nicolau DP, Kuti JL. Linezolid penetration into wound tissue of two diabetic patients before and after hyperbaric oxygen therapy. Undersea Hyperb Med (2011) 38(1):11–6. PubMed
Muller M, Brunner M, Hollenstein U, Joukhadar C, Schmid R, Minar E, et al. . Penetration of ciprofloxacin into the interstitial space of inflamed foot lesions in non-insulin-dependent diabetes mellitus patients. Antimicrob Agents Chemother (1999) 43:2056–8. doi: 10.1128/aac.43.8.2056 PubMed DOI PMC
Legat FJ, Maier A, Dittrich P, Zenahlik P, Kern T, Nuhsbaumer S, et al. . Penetration of fosfomycin into inflammatory lesions in patients with cellulitis or diabetic foot syndrome. Antimicrob Agents Chemother (2003) 47:371–4. doi: 10.1128/aac.47.1.371-374.2003 PubMed DOI PMC
Legat FJ, Krause R, Zenahlik P, Hoffmann C, Scholz S, Salmhofer W, et al. . Penetration of piperacillin and tazobactam into inflamed soft tissue of patients with diabetic foot infection. Antimicrob Agents Chemother (2005) 49:4368–71. doi: 10.1128/aac.49.10.4368-4371.2005 PubMed DOI PMC
Schintler MV, Traunmuller F, Metzler J, Kreuzwirt G, Spendel S, Mauric O, et al. . High fosfomycin concentrations in bone and peripheral soft tissue in diabetic patients presenting with bacterial foot infection. J Antimicrob Chemother (2009) 64:574–8. doi: 10.1093/jac/dkp230 PubMed DOI
Traunmuller F, Schintler MV, Metzler J, Spendel S, Mauric O, Popovic M, et al. . Soft tissue and bone penetration abilities of daptomycin in diabetic patients with bacterial foot infections. J Antimicrob Chemother (2010) 65:1252–7. doi: 10.1093/jac/dkq109 PubMed DOI
Bulik CC, Wiskirchen DE, Shepard A, Sutherland CA, Kuti JL, Nicolau DP. Tissue penetration and pharmacokinetics of tigecycline in diabetic patients with chronic wound infections described by using in vivo microdialysis. Antimicrob Agents Chemother (2010) 54:5209–13. doi: 10.1128/aac.01051-10 PubMed DOI PMC
Abouelhassan Y, Fratoni AJ, Shepard AK, Nicolau DP, Asempa TE. Pharmacokinetics and soft-tissue distribution of tebipenem pivoxil hydrobromide using microdialysis: A study in healthy subjects and patients with diabetic foot infections. J Antimicrob Chemother (2022) 78:296–301. doi: 10.1093/jac/dkac399 PubMed DOI
Tůma P, Jaček M, Fejfarová V, Polák J. Electrophoretic stacking for sensitive determination of antibiotic ceftazidime in human blood and microdialysates from diabetic foot. Anal Chim Acta (2016) 942:139–45. doi: 10.1016/j.aca.2016.09.008 PubMed DOI
Tůma P, Heneberg P, Vaculín S, Koval D. Electrophoretic large volume sample stacking for sensitive determination of the anti-microbial agent pentamidine in rat plasma for pharmacological studies. Electrophoresis (2018) 39:2605–11. doi: 10.1002/elps.201700440 PubMed DOI
Tůma P, Bursová M, Sommerová B, Horsley R, Čabala R, Hložek T. Novel electrophoretic acetonitrile-based stacking for sensitive monitoring of the antiepileptic drug perampanel in human serum. J Pharm Biomed Anal (2018) 160:368–73. doi: 10.1016/j.jpba.2018.08.006 PubMed DOI
Nordstrom CH. Cerebral microdialysis in TBI-limitations and possibilities. Acta Neurochir (2017) 159:2275–7. doi: 10.1007/s00701-017-3339-1 PubMed DOI
Nordstrom CH, Koskinen LO, Olivecrona M. Aspects on the physiological and biochemical foundations of neurocritical care. Front Neurol (2017) 8:274. doi: 10.3389/fneur.2017.00274 PubMed DOI PMC
Tunblad K, Ederoth P, Gardenfors A, Hammarlund-Udenaes M, Nordstrom CH. Altered brain exposure of morphine in experimental meningitis studied with microdialysis. Acta Anaesthesiol Scand (2004) 48:294–301. doi: 10.1111/j.0001-5172.2003.0311.x PubMed DOI
Ederoth P, Tunblad K, Bouw R, Lundberg CJF, Ungerstedt U, Nordstrom CH, et al. . Blood-brain barrier transport of morphine in patients with severe brain trauma. Br J Clin Pharmacol (2004) 57:427–35. doi: 10.1046/j.1365-2125.2003.02032.x PubMed DOI PMC