Using surface plasmon resonance, capillary electrophoresis and diffusion-ordered NMR spectroscopy to study drug release kinetics

. 2023 Aug 31 ; 6 (1) : 180. [epub] 20230831

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid37653020

Grantová podpora
NU20-08-00255 Ministerstvo Zdravotnictví Ceské Republiky (Ministry of Health of the Czech Republic)
19-00956Y Grantová Agentura České Republiky (Grant Agency of the Czech Republic)
LX22NPO5102 Ministerstvo Školství, Mládeže a Tělovýchovy (Ministry of Education, Youth and Sports)
SVV260690 Univerzita Karlova v Praze (Charles University)

Odkazy

PubMed 37653020
PubMed Central PMC10471694
DOI 10.1038/s42004-023-00992-5
PII: 10.1038/s42004-023-00992-5
Knihovny.cz E-zdroje

Nanomedicines, including polymer nanocarriers with controlled drug release, are considered next-generation therapeutics with advanced therapeutic properties and reduced side effects. To develop safe and efficient nanomedicines, it is crucial to precisely determine the drug release kinetics. Herein, we present application of analytical methods, i.e., surface plasmon resonance biosensor technology (SPR), capillary electrophoresis, and 1H diffusion-ordered nuclear magnetic resonance spectroscopy, which were innovatively applied for drug release determination. The methods were optimised to quantify the pH-triggered release of three structurally different drugs from a polymer carrier. The suitability of these methods for drug release characterisation was evaluated and compared using several parameters including applicability for diverse samples, the biological relevance of the experimental setup, method complexity, and the analysis outcome. The SPR method was the most universal method for the evaluation of diverse drug molecule release allowing continuous observation in the flow-through setting and requiring a small amount of sample.

Zobrazit více v PubMed

Ekladious I, Colson YL, Grinstaff MW. Polymer–drug conjugate therapeutics: advances, insights and prospects. Nat. Rev. Drug Discov. 2019;18:273–294. doi: 10.1038/s41573-018-0005-0. PubMed DOI

Yuan F, Quan L, Cui L, Goldring SR, Wang D. Development of macromolecular prodrug for rheumatoid arthritis. Adv. Drug Deliv. Rev. 2012;64:1205–1219. doi: 10.1016/j.addr.2012.03.006. PubMed DOI PMC

Matsumura Y, Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed

Chytil P, Koziolová E, Etrych T, Ulbrich K. HPMA copolymer–drug conjugates with controlled tumor-specific drug release. Macromol. Biosci. 2018;18:1700209. doi: 10.1002/mabi.201700209. PubMed DOI

Libánská A, et al. Polymer nanomedicines with Ph-sensitive release of dexamethasone for the localized treatment of inflammation. Pharmaceutics. 2020;12:700. doi: 10.3390/pharmaceutics12080700. PubMed DOI PMC

Krakovicová H, Etrych T, Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009;37:405–412. doi: 10.1016/j.ejps.2009.03.011. PubMed DOI

Etrych T, Sírová M, Starovoytova L, Ríhová B, Ulbrich K. HPMA copolymer conjugates of paclitaxel and docetaxel with pH-controlled drug release. Mol. Pharm. 2010;7:1015–1026. doi: 10.1021/mp100119f. PubMed DOI

Šubr V, et al. Synthesis of poly [N-(2-hydroxypropyl) methacrylamide] conjugates of inhibitors of the ABC transporter that overcome multidrug resistance in doxorubicin-resistant P388 cells in vitro. Biomacromolecules. 2014;15:3030–3043. doi: 10.1021/bm500649q. PubMed DOI

Ulbrich K, Etrych T, Chytil P, Jelínková M, Ríhová B. HPMA copolymers with pH-controlled release of doxorubicin: in vitro cytotoxicity and in vivo antitumor activity. J. Control. Release. 2003;87:33–47. doi: 10.1016/S0168-3659(02)00348-6. PubMed DOI

Koziolová E, et al. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC

Kostka L, et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC

Hua S. Comparison of in vitro dialysis release methods of loperamide-encapsulated liposomal gel for topical drug delivery. Int. J. Nanomed. 2014;9:735. doi: 10.2147/IJN.S55805. PubMed DOI PMC

Zambito Y, Pedreschi E, Di Colo G. Is dialysis a reliable method for studying drug release from nanoparticulate systems?—A case study. Int. J. Pharm. 2012;434:28–34. doi: 10.1016/j.ijpharm.2012.05.020. PubMed DOI

Wallace SJ, Li J, Nation RL, Boyd BJ. Drug release from nanomedicines: selection of appropriate encapsulation and release methodology. Drug Deliv. Transl. Res. 2012;2:284–292. doi: 10.1007/s13346-012-0064-4. PubMed DOI PMC

Bocková M, Slabý J, Špringer T, Homola J. Advances in surface plasmon resonance imaging and microscopy and their biological applications. Annu. Rev. Anal. Chem. 2019;12:151–176. doi: 10.1146/annurev-anchem-061318-115106. PubMed DOI

Olaru A, Bala C, Jaffrezic-Renault N, Aboul-Enein HY. Surface plasmon resonance (SPR) biosensors in pharmaceutical analysis. Crit. Rev. Anal. Chem. 2015;45:97–105. doi: 10.1080/10408347.2014.881250. PubMed DOI

Korhonen K, Granqvist N, Ketolainen J, Laitinen R. Monitoring of drug release kinetics from thin polymer films by multi-parametric surface plasmon resonance. Int. J. Pharm. 2015;494:531–536. doi: 10.1016/j.ijpharm.2015.08.071. PubMed DOI

Simó C, Cifuentes A, Gallardo A. Drug delivery systems: polymers and drugs monitored by capillary electromigration methods. J. Chromatogr. B. 2003;797:37–49. doi: 10.1016/S1570-0232(03)00430-6. PubMed DOI

Darwish KA, Mrestani Y, Rüttinger H-H, Neubert RHH. Drug release from ß-cyclodextrin complexes and drug transfer into model membranes studied by affinity capillary electrophoresis. Pharm. Res. 2016;33:1175–1181. doi: 10.1007/s11095-016-1862-z. PubMed DOI

Kepinska M, Kizek R, Milnerowicz H. Fullerene as a doxorubicin nanotransporter for targeted breast cancer therapy: capillary electrophoresis analysis. Electrophoresis. 2018;39:2370–2379. doi: 10.1002/elps.201800148. PubMed DOI

Nguyen TTTN, Ostergaard J, Stürup S, Gammelgaard B. Determination of platinum drug release and liposome stability in human plasma by CE-ICP-MS. Int. J. Pharm. 2013;449:95–102. doi: 10.1016/j.ijpharm.2013.03.055. PubMed DOI

Gallardo A, et al. Modulated release of cyclosporine from soluble vinyl pyrrolidone-hydroxyethyl methacrylate copolymer hydrogels. A correlation of “in vitro” and “in vivo” experiments. J. Control. Release. 2001;72:1–11. doi: 10.1016/S0168-3659(01)00257-7. PubMed DOI

Gallardo A, et al. Controlled release of cyclosporine from VP-HEMA copolymer systems of adjustable resorption monitorized by MEKC. Biomaterials. 2000;21:915–921. doi: 10.1016/S0142-9612(99)00259-8. PubMed DOI

Simó C, Gallardo A, San RJ, Barbas C, Cifuentes A. Fast and sensitive capillary electrophoresis method to quantitatively monitor ibuprofen enantiomers released from polymeric drug delivery systems. J. Chromatogr. B Anal. Technol. Biomed. Life Sci. 2002;767:35–43. doi: 10.1016/S0378-4347(01)00533-3. PubMed DOI

Park S-J, Kim K-S. Investigation of drug delivery behaviors by NMR spectroscopy. Struct. Relatsh. Stud. Drug Dev. NMR Spectrosc. 2011;1:36–66.

Chatzigiannis, C. M., Kiriakidi, S., Tzakos, A. G., Mavromoustakos, T. 2D DOSY NMR: a valuable tool to confirm the complexation in drug delivery systems. In Supramolecules in Drug Discovery and Drug Delivery: Methods and Protocols (eds. Mavromoustakos, T., Tzakos, A. G., Durdagi, S.) 235–246 (Springer US, 2021). PubMed

Occhipinti P, Griffiths PC. Quantifying diffusion in mucosal systems by pulsed-gradient spin-echo NMR. Adv. Drug Deliv. Rev. 2008;60:1570–1582. doi: 10.1016/j.addr.2008.08.006. PubMed DOI

Ferrero C, Massuelle D, Jeannerat D, Doelker E. Towards elucidation of the drug release mechanism from compressed hydrophilic matrices made of cellulose ethers. I. Pulse-field-gradient spin-echo NMR study of sodium salicylate diffusivity in swollen hydrogels with respect to polymer matrix physical stru. J. Control. Release. 2008;128:71–79. doi: 10.1016/j.jconrel.2008.02.006. PubMed DOI

Chytil P, Kostka L, Etrych T. HPMA copolymer-based nanomedicines in controlled drug delivery. J. Pers. Med. 2021;11:115. doi: 10.3390/jpm11020115. PubMed DOI PMC

Rosen H, Abribat T. The rise and rise of drug delivery. Nat. Rev. Drug Discov. 2005;4:381–385. doi: 10.1038/nrd1721. PubMed DOI

Kopeček J. Polymer–drug conjugates: origins, progress to date and future directions. Adv. Drug Deliv. Rev. 2013;65:49–59. doi: 10.1016/j.addr.2012.10.014. PubMed DOI PMC

Kopeček J, Kopečková P. HPMA copolymers: origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Veeranna B, et al. pH sensitive drug delivery systems: a review. Am. J. Drug Discov. Dev. 2011;1:24–48.

Oliveira, L. C., Lima, A. M. N., Thirstrup, C., Neff, H. F. Surface Plasmon Resonance Sensors: A Materials Guide to Design, Characterisation, Optimisation, and Usage (Springer, 2019).

Holycross DR, Chai M. Comprehensive NMR studies of the structures and properties of PEI polymers. Macromolecules. 2013;46:6891–6897. doi: 10.1021/ma4011796. DOI

Groves P. Diffusion ordered spectroscopy (DOSY) as applied to polymers. Polym. Chem. 2017;8:6700–6708. doi: 10.1039/C7PY01577A. DOI

F. Espinola-Portilla, et al. Rational understanding of loading and release of doxorubicin by UV-light- and pH-responsive poly(NIPAM-co-SPMA) micelle-like aggregates. Mol. Pharm. 10.1021/acs.molpharmaceut.2c00690 (2022). PubMed

Kumar D, et al. Isolation and characterisation of degradation impurities in docetaxel drug substance and its formulation. J. Pharm. Biomed. Anal. 2007;43:1228–1235. doi: 10.1016/j.jpba.2006.10.015. PubMed DOI

Kingston, D. G. I. Recent advances in the chemistry and structure—activity relationships of paclitaxel, in Taxane Anticancer Agents (eds. Georg, G. I., Chen, T.T., Ojima, I., Vyas, D.M.) 203–216 (1994).

Špačková B, Lynn NS, Slabý J, Šípová H, Homola J. A route to superior performance of a nanoplasmonic biosensor: consideration of both photonic and mass transport aspects. ACS Photonics. 2018;5:1019–1025. doi: 10.1021/acsphotonics.7b01319. DOI

Špringer T, Piliarik M, Homola J. Surface plasmon resonance sensor with dispersionless microfluidics for direct detection of nucleic acids at the low femtomole level. Sens. Actuators B Chem. 2010;145:588–591. doi: 10.1016/j.snb.2009.11.018. DOI

Špringer T, Chadtová Song X, Ermini ML, Lamačová J, Homola J. Functional gold nanoparticles for optical affinity biosensing. Anal. Bioanal. Chem. 2017;409:4087–4097. doi: 10.1007/s00216-017-0355-1. PubMed DOI

Stejskal EO, Tanner JE. Spin diffusion measurements: spin echoes in the presence of a time‐dependent field gradient. J. Chem. Phys. 1965;42:288–292. doi: 10.1063/1.1695690. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace