HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery

. 2021 Feb 10 ; 11 (2) : . [epub] 20210210

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid33578756

Grantová podpora
20-04790S Grantová Agentura České Republiky
NU20-08-00255 Ministerstvo Zdravotnictví Ceské Republiky

Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.

Zobrazit více v PubMed

Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI

Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI

Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700209. PubMed DOI

Venditto V.J., Szoka F.C. Cancer nanomedicines: So many papers and so few drugs! Adv. Drug Deliv. Rev. 2013;65:80–88. doi: 10.1016/j.addr.2012.09.038. PubMed DOI PMC

Chytil P., Kostka L., Etrych T. Structural design and synthesis of polymer prodrugs. In: Scholz C., editor. Polymers for Biomedicine: Synthesis, Characterization, and Applications. John Wiley and Sons; Hoboken, NJ, USA: 2017. p. 624.

Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI

Bag M.A., Valenzuela L.M. Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. Int. J. Mol. Sci. 2017;18:1422. doi: 10.3390/ijms18081422. PubMed DOI PMC

Lin W., Klein J. Control of surface forces through hydrated boundary layers. Curr. Opin. Colloid Interface Sci. 2019;44:94–106. doi: 10.1016/j.cocis.2019.10.001. DOI

Maeda H., Nakamura H., Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013;65:71–79. doi: 10.1016/j.addr.2012.10.002. PubMed DOI

Šírová M., Mrkvan T., Etrych T., Chytil P., Rossmann P., Ibrahimová M., Kovář L., Ulbrich K., Říhová B. Preclinical Evaluation of Linear HPMA-Doxorubicin Conjugates with pH-Sensitive Drug Release: Efficacy, Safety, and Immunomodulating Activity in Murine Model. Pharm. Res. 2010;27:200–208. doi: 10.1007/s11095-009-9999-7. PubMed DOI

Etrych T., Šírová M., Starovoytova L., Říhová B., Ulbrich K. HPMA Copolymer Conjugates of Paclitaxel and Docetaxel with pH-Controlled Drug Release. Mol. Pharm. 2010;7:1015–1026. doi: 10.1021/mp100119f. PubMed DOI

Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI

Noguchi Y., Wu J., Duncan R., Strohalm J., Ulbrich K., Akaike T., Maeda H. Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues. Jpn. J. Cancer Res. 1998;89:307–314. doi: 10.1111/j.1349-7006.1998.tb00563.x. PubMed DOI PMC

Etrych T., Kovář L., Strohalm J., Chytil P., Říhová B., Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J. Control. Release. 2011;154:241–248. doi: 10.1016/j.jconrel.2011.06.015. PubMed DOI

Duncan R., Vicent M.J. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2013;65:60–70. doi: 10.1016/j.addr.2012.08.012. PubMed DOI

Seymour L.W., Duncan R., Strohalm J., Kopeček J. Effect of Molecular-Weight (Mw) of N-(2-Hydroxypropyl)Methacrylamide Copolymers on Body Distribution and Rate of Excretion after Subcutaneous, Intraperitoneal, and Intravenous Administration to Rats. J. Biomed. Mater. Res. 1987;21:1341–1358. doi: 10.1002/jbm.820211106. PubMed DOI

Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI

Drobník J., Kopecek J., Labský J., Rejmanová P., Exner J., Kálal J. Preparation of Biologically Active Substances Bearing NH2 Groups in a Form Releasable by Enzymatic Cleavage. 4 097,470. U.S. Patent. 1978 Jun 27;

Kopeček J., Ulbrich K., Vacík J., Strohalm J., Chytrý V., Drobník J., Kálal J. Copolymers Based on N-Substituted Acrylamides, N-Substituted Methacrylamides and N,N-Disubstituted Acrylamides and the Method of Their Manufacturing. 4,062,831. U.S. Patent. 1977 Dec 13;

Štěrba O., Uhlířová Z., Petz R. Duxon—A new Czechoslovak-made infusion solution—An experimental contribution to biological evaluation. Cas. Lek. Cesk. 1980;119:994–997. PubMed

Šprincl L., Exner J., Štěrba O., Kopeček J. New types of synthetic infusion solutions. III. Elimination and retention of poly-[N-(2-hydroxypropyl)methacrylamide] in a test organism. J. Biomed. Mater. Res. 1976;10:953–963. doi: 10.1002/jbm.820100612. PubMed DOI

Uhlířová Z., Jirásek A., Štěrba O. Newly developed Czechoslovak colloid infusion solution Duxon. Preclinical trial. Cas. Lek. Cesk. 1981;120:1553–1556. PubMed

Cinátl J., Štěrba O., Paluska E. New types of synthetic infusion solutions. The effect of Duxon on the proliferation of cells in vitro. Cesko-Slov. Farm. 1980;29:134–138. PubMed

Korcáková L., Paluska E., Hašková V., Kopeček J. A simple test for immunogenicity of colloidal infusion solutions; the draining lymph node activation. Z. Immun. 1976;151:219–223. doi: 10.1016/S0300-872X(76)80036-4. PubMed DOI

Paluska E., Cinátl J., Korcáková L., Štěrba O., Kopeček J., Hrubá A., Nezvalová J., Staněk R. Immunosuppressive Effects of a Synthetic-Polymer Poly N-(2-Hydroxypropyl)Methacrylamide (Duxon) Folia Biol-Prague. 1980;26:304–311. PubMed

Petz R., Štěrba O., Jirásek A., Foltinská Z., Kostírová D., Kopeček J. Pharmacological evaluation of the toxicity after repeated administration of synthetic colloid solution of Duxon. Cas. Lek. Cesk. 1988;127:553–555. PubMed

Štěrba O., Paluska E., Jozová O. New types of synthetic infusion solutions. Basic biological properties of poly(N-(2 hydroxypropyl) methacrylamide) (Czech) Cas. Lek. Cesk. 1975;114:1268–1270. PubMed

Uhlířová Z., Štěrba O., Petz R., Viktora L. Czechoslovak infusion solution Duxon—Preclinical tests. Effect on the haemogram of some laboratory animals (author‘s transl) Cas. Lek. Cesk. 1980;119:1091–1094. PubMed

Štěrba O., Paluska E., Jozová O., Spunda J., Nezvalová J., Šprincl L., Kopeček J., Cinátl J. New types of synthetic infusion solutions. Basic biological properties of poly N (2 hydroxypropyl) methacrylamide. Rev. Czech. Med. 1976;22:152–156. PubMed

Paluska E., Hrubá A., Štěrba O., Kopeček J. Effect of a synthetic poly N-(2-hydroxypropyl)methacrylamide (Duxon) on haemopoiesis and graft-versus-host reaction. Folia Biol-Prague. 1986;32:91–102. PubMed

Řihová B., Kopeček J., Ulbrich K., Pospíšil M., Mančal P. Effect of the chemical structure of N-(2-hydroxypropyl) methacrylajnide copolymers on their ability to induce antibody formation in inbred strains of mice. Biomaterials. 1984;5:143–148. doi: 10.1016/0142-9612(84)90048-6. PubMed DOI

Hoffmann S., Vystrčilová L., Ulbrich K., Etrych T., Caysa H., Mueller T., Mäder K. Dual Fluorescent HPMA Copolymers for Passive Tumor Targeting with pH-Sensitive Drug Release: Synthesis and Characterization of Distribution and Tumor Accumulation in Mice by Noninvasive Multispectral Optical Imaging. Biomacromolecules. 2012;13:652–663. doi: 10.1021/bm2015027. PubMed DOI

Chytil P., Hoffmann S., Schindler L., Kostka L., Ulbrich K., Caysa H., Mueller T., Mader K., Etrych T. Dual fluorescent HPMA copolymers for passive tumor targeting with pH- sensitive drug release II: Impact of release rate on biodistribution. J. Control. Release. 2013;172:504–512. doi: 10.1016/j.jconrel.2013.05.008. PubMed DOI

Liu X.-M., Quan L.-D., Tian J., Alnouti Y., Fu K., Thiele G., Wang D. Synthesis and Evaluation of a Well-defined HPMA Copolymer–Dexamethasone Conjugate for Effective Treatment of Rheumatoid Arthritis. Pharm. Res. 2008;25:2910–2919. doi: 10.1007/s11095-008-9683-3. PubMed DOI PMC

Pan H., Sima M., Kopečková P., Wu K., Gao S., Liu J., Wang D., Miller S.C., Kopeček J. Biodistribution and Pharmacokinetic Studies of Bone-Targeting N-(2-Hydroxypropyl)methacrylamide Copolymer—Alendronate Conjugates. Mol. Pharm. 2008;5:548–558. doi: 10.1021/mp800003u. PubMed DOI PMC

Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI

Raus V., Kostka L. Optimizing the Cu-RDRP of N-(2-hydroxypropyl) methacrylamide toward biomedical applications. Polym. Chem. 2019;10:564–568. doi: 10.1039/C8PY01569D. DOI

Chytil P., Šírová M., Koziolová E., Ulbrich K., Říhová B., Etrych T. The Comparison of In Vivo Properties of Water-Soluble HPMA-Based Polymer Conjugates with Doxorubicin Prepared by Controlled RAFT or Free Radical Polymerization. Physiol. Res. 2015;64:S41–S49. doi: 10.33549/physiolres.933137. PubMed DOI

Koziolová E., Goel S., Chytil P., Janoušková O., Barnhart T.E., Cai W.B., Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC

Randárová E., Nakamura H., Islam R., Studenovský M., Mamoru H., Fang J., Chytil P., Etrych T. Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomater. 2020;106:256–266. doi: 10.1016/j.actbio.2020.02.011. PubMed DOI

Quan L.D., Zhang Y.J., Crielaard B.J., Dusad A., Lele S.M., Rijcken C.J.F., Metselaar J.M., Kostková H., Etrych T., Ulbrich K., et al. Nanomedicines for Inflammatory Arthritis: Head-to-Head Comparison of Glucocorticoid-Containing Polymers, Micelles, and Liposomes. ACS Nano. 2014;8:458–466. doi: 10.1021/nn4048205. PubMed DOI PMC

Libánská A., Randárová E., Lager F., Renault G., Scherman D., Etrych T. Polymer Nanomedicines with pH-Sensitive Release of Dexamethasone for the Localized Treatment of Inflammation. Pharmaceutics. 2020;12:700. doi: 10.3390/pharmaceutics12080700. PubMed DOI PMC

Etrych T., Šubr V., Laga R., Říhová B., Ulbrich K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur. J. Pharm. Sci. 2014;58:1–12. doi: 10.1016/j.ejps.2014.02.016. PubMed DOI

Zhang R., Luo K., Yang J., Sima M., Sun Y., Janát-Amsbury M.M., Kopeček J. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release. 2013;166:66–74. doi: 10.1016/j.jconrel.2012.12.009. PubMed DOI PMC

Luo K., Yang J., Kopečková P., Kopeček J. Biodegradable Multiblock Poly[N-(2-hydroxypropyl)methacrylamide] via Reversible Addition−Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules. 2011;44:2481–2488. doi: 10.1021/ma102574e. PubMed DOI PMC

Larson N., Yang J.Y., Ray A., Cheney D.L., Ghandehari H., Kopeček J. Biodegradable multiblock poly(N-2-hydroxypropyl)methacrylamide gemcitabine and paclitaxel conjugates for ovarian cancer cell combination treatment. Int. J. Pharm. 2013;454:435–443. doi: 10.1016/j.ijpharm.2013.06.046. PubMed DOI PMC

Pan H.Z., Yang J.Y., Kopečková P., Kopeček J. Backbone Degradable Multiblock N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates via Reversible Addition-Fragmentation Chain Transfer Polymerization and Thiol-ene Coupling Reaction. Biomacromolecules. 2011;12:247–252. doi: 10.1021/bm101254e. PubMed DOI PMC

Etrych T., Chytil P., Mrkvan T., Šírová M., Říhová B., Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release. 2008;132:184–192. doi: 10.1016/j.jconrel.2008.04.017. PubMed DOI

Etrych T., Strohalm J., Chytil P., Černoch P., Starovoytova L., Pechar M., Ulbrich K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011;42:527–539. doi: 10.1016/j.ejps.2011.03.001. PubMed DOI

Wang D., Kopečková P., Minko T., Nanayakkara V., Kopeček J. Synthesis of starlike N-(2-hydroxypropyl)methacrylamide copolymers: Potential drug carriers. Biomacromolecules. 2000;1:313–319. doi: 10.1021/bm0000236. PubMed DOI

Chytil P., Koziolová E., Janoušková O., Kostka L., Ulbrich K., Etrych T. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging. Macromol. Biosci. 2015;15:839–850. doi: 10.1002/mabi.201400510. PubMed DOI

Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C.A., Malátová I., Lee H.J., Barnhart T.E., Engle J.W., Cai W.B., et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC

Pan H.Z., Sima M., Yang J.Y., Kopeček J. Synthesis of Long-Circulating, Backbone Degradable HPMA CopolymerDoxorubicin Conjugates and Evaluation of Molecular-Weight-Dependent Antitumor Efficacy. Macromol. Biosci. 2013;13:155–160. doi: 10.1002/mabi.201200353. PubMed DOI PMC

Etrych T., Tsukigawa K., Nakamura H., Chytil P., Fang J., Ulbrich K., Otagiri M., Maeda H. Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate. Eur. J. Pharm. Sci. 2017;106:10–19. doi: 10.1016/j.ejps.2017.05.031. PubMed DOI

Duan Z., Zhang Y., Zhu H., Sun L., Cai H., Li B., Gong Q., Gu Z., Luo K. Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy. ACS Appl. Mater. Interfaces. 2017;9:3474–3486. doi: 10.1021/acsami.6b15232. PubMed DOI

Krakovičová H., Etrych T., Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009;37:405–412. doi: 10.1016/j.ejps.2009.03.011. PubMed DOI

Kostková H., Etrych T., Říhová B., Ulbrich K. Synergistic effect of HPMA copolymer-bound doxorubicin and dexamethasone in vivo on mouse lymphomas. J. Bioact. Compat. Polym. 2011;26:270–286. doi: 10.1177/0883911511406326. DOI

Říhová B., Etrych T., Šírová M., Kovář L., Hovorka O., Kovář M., Benda A., Ulbrich K. Synergistic Action of Doxorubicin Bound to the Polymeric Carrier Based on N-(2-Hydroxypropyl)methacrylamide Copolymers through an Amide or Hydrazone Bond. Mol. Pharm. 2010;7:1027–1040. doi: 10.1021/mp100121g. PubMed DOI

Yang J., Kopeček J. Macromolecular therapeutics. J. Control. Release. 2014;190:288–303. doi: 10.1016/j.jconrel.2014.04.013. PubMed DOI PMC

Yang J., Luo K., Pan H., Kopečková P., Kopeček J. Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic polyHPMA conjugates. React. Funct. Polym. 2011;71:294–302. doi: 10.1016/j.reactfunctpolym.2010.10.005. PubMed DOI PMC

Kopeček J., Yang J.Y. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC

Yang J.Y., Zhang R., Pan H.Z., Li Y.L., Fang Y.X., Zhang L.B., Kopeček J. Backbone Degradable N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Mol. Pharm. 2017;14:1384–1394. doi: 10.1021/acs.molpharmaceut.6b01005. PubMed DOI PMC

Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI

Kostka L., Etrych T. High-Molecular-Weight HPMA-Based Polymer Drug Carriers for Delivery to Tumor. Physiol. Res. 2016;65:S179–S190. doi: 10.33549/physiolres.933420. PubMed DOI

Pearce A.K., Anane-Adjei A.B., Cavanagh R.J., Monteiro P.F., Bennett T.M., Taresco V., Clarke P.A., Ritchie A.A., Alexander M.R., Grabowska A.M., et al. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv. Healthc. Mater. 2020;9:2000892. doi: 10.1002/adhm.202000892. PubMed DOI

Kotrchová L., Kostka L., Etrych T. Drug carriers with star polymer structures. Physiol. Res. 2018;67:S293–S303. doi: 10.33549/physiolres.933978. PubMed DOI

Kostková H., Schindler L., Kotrchová L., Kovář M., Šírová M., Kostka L., Etrych T. Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. J. Nanomater. 2017;2017:8675435. doi: 10.1155/2017/8675435. DOI

Kudláčová J., Kotrchová L., Kostka L., Randárová E., Filipová M., Janoušková O., Fang J., Etrych T. Structure-to-Efficacy Relationship of HPMA-Based Nanomedicines: The Tumor Spheroid Penetration Study. Pharmaceutics. 2020;12:1242. doi: 10.3390/pharmaceutics12121242. PubMed DOI PMC

Kotrchová L., Etrych T. Synthesis of Water-Soluble Star Polymers Based on Cyclodextrins. Physiol. Res. 2018;67:S357–S365. doi: 10.33549/physiolres.933981. PubMed DOI

Talelli M., Rijcken C.J.F., van Nostrum C.F., Storm G., Hennink W.E. Micelles based on HPMA copolymers. Adv. Drug Deliv. Rev. 2010;62:231–239. doi: 10.1016/j.addr.2009.11.029. PubMed DOI

Barz M., Tarantola M., Fischer K., Schmidt M., Luxenhofer R., Janshoff A., Theato P., Zentel R. From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates. Biomacromolecules. 2008;9:3114–3118. doi: 10.1021/bm800684b. PubMed DOI

Lele B.S., Leroux J.C. Synthesis and micellar characterization of novel Amphiphilic A-B-A triblock copolymers of N-(2-hydroxypropyl)methacrylamide or N-vinyl-2-pyrrolidone with poly(is an element of-caprolactone) Macromolecules. 2002;35:6714–6723. doi: 10.1021/ma020433h. DOI

Barz M., Wolf F.K., Canal F., Koynov K., Vicent M.J., Frey H., Zentel R. Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromol. Rapid Commun. 2010;31:1492–1500. doi: 10.1002/marc.201000090. PubMed DOI

Braunová A., Kostka L., Sivák L., Cuchalová L., Hvězdová Z., Laga R., Filippov S., Černoch P., Pechar M., Janoušková O., et al. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release. 2017;245:41–51. doi: 10.1016/j.jconrel.2016.11.020. PubMed DOI

Alfurhood J.A., Sun H., Kabb C.P., Tucker B.S., Matthews J.H., Luesch H., Sumerlin B.S. Poly(N-(2-hydroxypropyl)methacrylamide)–valproic acid conjugates as block copolymer nanocarriers. Polym. Chem. 2017;8:4983–4987. doi: 10.1039/C7PY00196G. PubMed DOI PMC

Naksuriya O., Shi Y., van Nostrum C.F., Anuchapreeda S., Hennink W.E., Okonogi S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur. J. Pharm. Biopharm. 2015;94:501–512. doi: 10.1016/j.ejpb.2015.06.010. PubMed DOI

Bláhová M., Randárová E., Konefal R., Nottelet B., Etrych T. Graft copolymers with tunable amphiphilicity tailored for efficient dual drug deliveryviaencapsulation and pH-sensitive drug conjugation. Polym. Chem. 2020;11:4438–4453. doi: 10.1039/D0PY00609B. DOI

Chytil P., Etrych T., Koňák Č., Šírová M., Mrkvan T., Bouček J., Říhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI

Chytil P., Etrych T., Kostka L., Ulbrich K. Hydrolytically Degradable Polymer Micelles for Anticancer Drug Delivery to Solid Tumors. Macromol. Chem. Phys. 2012;213:858–867. doi: 10.1002/macp.201100632. DOI

Zhou Z., Li L., Yang Y., Xu X., Huang Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials. 2014;35:6622–6635. doi: 10.1016/j.biomaterials.2014.04.059. PubMed DOI

Koziolová E., Machová D., Pola R., Janoušková O., Chytil P., Laga R., Filippov S.K., Šubr V., Etrych T., Pechar M. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J. Mater. Chem. B. 2016;4:7620–7629. doi: 10.1039/C6TB02225A. PubMed DOI

Chytil P., Šírová M., Kudláčová J., Říhová B., Ulbrich K., Etrych T. Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer-Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Mol. Pharm. 2018;15:3654–3663. doi: 10.1021/acs.molpharmaceut.8b00156. PubMed DOI

Jia Z., Wong L., Davis T.P., Bulmus V. One-Pot Conversion of RAFT-Generated Multifunctional Block Copolymers of HPMA to Doxorubicin Conjugated Acid- and Reductant-Sensitive Crosslinked Micelles. Biomacromolecules. 2008;9:3106–3113. doi: 10.1021/bm800657e. PubMed DOI

Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereiche S., Raska I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI

Janisová L., Gruzinov A., Zaborova O.V., Velychkivska N., Vaněk O., Chytil P., Etrych T., Janoušková O., Zhang X.H., Blanchet C., et al. Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics. 2020;12:106. doi: 10.3390/pharmaceutics12020106. PubMed DOI PMC

Zhang X.H., Niebuur B.J., Chytil P., Etrych T., Filippov S.K., Kikhney A., Wieland D.C.F., Svergun D.I., Papadakis C.M. Macromolecular pHPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules. 2018;19:470–480. doi: 10.1021/acs.biomac.7b01579. PubMed DOI

Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI

Lomkova E.A., Chytil P., Janoušková O., Mueller T., Lucas H., Filippov S.K., Trhlíková O., Aleshunin P.A., Skorik Y.A., Ulbrich K., et al. Biodegradable Micellar HPMA-Based Polymer-Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules. 2016;17:3493–3507. doi: 10.1021/acs.biomac.6b00947. PubMed DOI

Luan B., Muir B.W., Zhu J., Hao X. A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly(NIPAM-co-HPMA) RSC Adv. 2016;6:89925–89933. doi: 10.1039/C6RA22722H. DOI

Laga R., Janoušková O., Ulbrich K., Pola R., Blažková J., Filippov S.K., Etrych T., Pechar M. Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules. 2015;16:2493–2505. doi: 10.1021/acs.biomac.5b00764. PubMed DOI

Truong N.P., Whittaker M.R., Anastasaki A., Haddleton D.M., Quinn J.F., Davis T.P. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA) Polym. Chem. 2016;7:430–440. doi: 10.1039/C5PY01467K. DOI

Shi Y., van den Dungen E.T.A., Klumperman B., van Nostrum C.F., Hennink W.E. Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Lett. 2013;2:403–408. doi: 10.1021/mz300662b. PubMed DOI

Maeda H., Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 2018;7:11. doi: 10.1186/s40169-018-0185-6. PubMed DOI PMC

Sosman J.A., Kim K.B., Schuchter L., Gonzalez R., Pavlick A.C., Weber J.S., McArthur G.A., Hutson T.E., Moschos S.J., Flaherty K.T., et al. Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. N. Engl. J. Med. 2012;366:707–714. doi: 10.1056/NEJMoa1112302. PubMed DOI PMC

Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., Tarpey P., et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. PubMed DOI PMC

Hernández-Camarero P., Amezcua-Hernández V., Jiménez G., García M.A., Marchal J.A., Perán M. Clinical failure of nanoparticles in cancer: Mimicking nature’s solutions. Nanomedicine. 2020;15:2311–2324. doi: 10.2217/nnm-2020-0234. PubMed DOI

He H.L., Liu L.S., Morin E.E., Liu M., Schwendeman A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Acc. Chem. Res. 2019;52:2445–2461. doi: 10.1021/acs.accounts.9b00228. PubMed DOI

Hare J.I., Lammers T., Ashford M.B., Puri S., Storm G., Barry S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017;108:25–38. doi: 10.1016/j.addr.2016.04.025. PubMed DOI

Shi J.J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC

Folkman J. What Is the Evidence That Tumors Are Angiogenesis Dependent? JNCI J. Natl. Cancer Inst. 1990;82:4–7. doi: 10.1093/jnci/82.1.4. PubMed DOI

Fang J., Islam W., Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020;157:142–160. doi: 10.1016/j.addr.2020.06.005. PubMed DOI

Navi B.B., Reiner A.S., Kamel H., Iadecola C., Okin P.M., Tagawa S.T., Panageas K.S., DeAngelis L.M. Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood. 2019;133:781–789. doi: 10.1182/blood-2018-06-860874. PubMed DOI PMC

Young A., Chapman O., Connor C., Poole C., Rose P., Kakkar A.K. Thrombosis and cancer. Nat. Rev. Clin. Oncol. 2012;9:437–449. doi: 10.1038/nrclinonc.2012.106. PubMed DOI

Jain R.K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6:559–593. doi: 10.1007/BF00047468. PubMed DOI

Islam W., Fang J., Imamura T., Etrych T., Šubr V., Ulbrich K., Maeda H. Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide–Generating Agents Improves the Therapeutic Effects of Nanomedicines. Mol. Cancer Ther. 2018;17:2643–2653. doi: 10.1158/1535-7163.MCT-18-0696. PubMed DOI

Seki T., Fang J., Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci. 2009;100:2426–2430. doi: 10.1111/j.1349-7006.2009.01323.x. PubMed DOI PMC

Jiang J., Jordan S.J., Barr D.P., Gunther M.R., Maeda H., Mason R.P. In Vivo Production of Nitric Oxide in Rats after Administration of Hydroxyurea. Mol. Pharm. 1997;52:1081–1086. doi: 10.1124/mol.52.6.1081. PubMed DOI

Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI

Fang J., Islam R., Islam W., Yin H.Z., Šubr V., Etrych T., Ulbrich K., Maeda H. Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents. Pharmaceutics. 2019;11:343. doi: 10.3390/pharmaceutics11070343. PubMed DOI PMC

Studenovský M., Sivák L., Sedláček O., Konefal R., Horková V., Etrych T., Kovář M., Říhová B., Šírová M. Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. J. Control. Release. 2018;269:214–224. doi: 10.1016/j.jconrel.2017.11.017. PubMed DOI

Kinoshita R., Ishima Y., Chuang V.T.G., Nakamura H., Fang J., Watanabe H., Shimizu T., Okuhira K., Ishida T., Maeda H., et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials. 2017;140:162–169. doi: 10.1016/j.biomaterials.2017.06.021. PubMed DOI

Kang Y., Kim J., Lee Y.M., Im S., Park H., Kim W.J. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing. J. Control. Release. 2015;220:624–630. doi: 10.1016/j.jconrel.2015.08.057. PubMed DOI

Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI

Samuli H., Catherine P., Jean-Pierre B. Passive and Active Tumour Targeting with Nanocarriers. Curr. Drug Discov. Technol. 2011;8:188–196. doi: 10.2174/157016311796798991. PubMed DOI

Attia M.F., Anton N., Wallyn J., Omran Z., Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019;71:1185–1198. doi: 10.1111/jphp.13098. PubMed DOI

Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;31:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI

Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC

Yang J., Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J. Control. Release. 2016;240:9–23. doi: 10.1016/j.jconrel.2015.10.003. PubMed DOI PMC

Pola R., Böhmová E., Filipová M., Pechar M., Pankrác J., Větvička D., Olejár T., Kabešová M., Poučková P., Šefc L., et al. Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics. 2020;12:31. doi: 10.3390/pharmaceutics12010031. PubMed DOI PMC

Randárová E., Kudláčová J., Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: An overview of therapeutics, targeted diagnostics, and drug-free systems. J. Control. Release. 2020;325:304–322. doi: 10.1016/j.jconrel.2020.06.040. PubMed DOI

Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI

Lidický O., Klener P., Machová D., Vočková P., Pokorná E., Helman K., Mavis C., Janoušková O., Etrych T. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J. Control. Release. 2020;328:160–170. doi: 10.1016/j.jconrel.2020.08.042. PubMed DOI

Kovář M., Mrkvan T., Strohalm J., Etrych T., Ulbrich K., Štastný M., Říhová B. HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia. J. Control. Release. 2003;92:315–330. doi: 10.1016/S0168-3659(03)00340-7. PubMed DOI

Kovář M., Strohalm J., Etrych T., Ulbrich K., Říhová B. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: A novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconj. Chem. 2002;13:206–215. doi: 10.1021/bc010063m. PubMed DOI

Kunjachan S., Pola R., Gremse F., Theek B., Ehling J., Moeckel D., Hermanns-Sachweh B., Pechar M., Ulbrich K., Hennink W.E., et al. Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Lett. 2014;14:972–981. doi: 10.1021/nl404391r. PubMed DOI PMC

Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., MacMillan P., Zhang Y., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...