HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, přehledy
Grantová podpora
20-04790S
Grantová Agentura České Republiky
NU20-08-00255
Ministerstvo Zdravotnictví Ceské Republiky
PubMed
33578756
PubMed Central
PMC7916469
DOI
10.3390/jpm11020115
PII: jpm11020115
Knihovny.cz E-zdroje
- Klíčová slova
- EPR effect, HPMA copolymers, controlled release, drug delivery, nanomedicines,
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Recently, numerous polymer materials have been employed as drug carrier systems in medicinal research, and their detailed properties have been thoroughly evaluated. Water-soluble polymer carriers play a significant role between these studied polymer systems as they are advantageously applied as carriers of low-molecular-weight drugs and compounds, e.g., cytostatic agents, anti-inflammatory drugs, antimicrobial molecules, or multidrug resistance inhibitors. Covalent attachment of carried molecules using a biodegradable spacer is strongly preferred, as such design ensures the controlled release of the drug in the place of a desired pharmacological effect in a reasonable time-dependent manner. Importantly, the synthetic polymer biomaterials based on N-(2-hydroxypropyl) methacrylamide (HPMA) copolymers are recognized drug carriers with unique properties that nominate them among the most serious nanomedicines candidates for human clinical trials. This review focuses on advances in the development of HPMA copolymer-based nanomedicines within the passive and active targeting into the place of desired pharmacological effect, tumors, inflammation or bacterial infection sites. Specifically, this review highlights the safety issues of HPMA polymer-based drug carriers concerning the structure of nanomedicines. The main impact consists of the improvement of targeting ability, especially concerning the enhanced and permeability retention (EPR) effect.
Zobrazit více v PubMed
Farokhzad O.C., Langer R. Impact of nanotechnology on drug delivery. ACS Nano. 2009;3:16–20. doi: 10.1021/nn900002m. PubMed DOI
Ulbrich K., Šubr V. Structural and chemical aspects of HPMA copolymers as drug carriers. Adv. Drug Deliv. Rev. 2010;62:150–166. doi: 10.1016/j.addr.2009.10.007. PubMed DOI
Chytil P., Koziolová E., Etrych T., Ulbrich K. HPMA Copolymer-Drug Conjugates with Controlled Tumor-Specific Drug Release. Macromol. Biosci. 2018;18 doi: 10.1002/mabi.201700209. PubMed DOI
Venditto V.J., Szoka F.C. Cancer nanomedicines: So many papers and so few drugs! Adv. Drug Deliv. Rev. 2013;65:80–88. doi: 10.1016/j.addr.2012.09.038. PubMed DOI PMC
Chytil P., Kostka L., Etrych T. Structural design and synthesis of polymer prodrugs. In: Scholz C., editor. Polymers for Biomedicine: Synthesis, Characterization, and Applications. John Wiley and Sons; Hoboken, NJ, USA: 2017. p. 624.
Ulbrich K., Holá K., Šubr V., Bakandritsos A., Tuček J., Zbořil R. Targeted Drug Delivery with Polymers and Magnetic Nanoparticles: Covalent and Noncovalent Approaches, Release Control, and Clinical Studies. Chem. Rev. 2016;116:5338–5431. doi: 10.1021/acs.chemrev.5b00589. PubMed DOI
Bag M.A., Valenzuela L.M. Impact of the Hydration States of Polymers on Their Hemocompatibility for Medical Applications: A Review. Int. J. Mol. Sci. 2017;18:1422. doi: 10.3390/ijms18081422. PubMed DOI PMC
Lin W., Klein J. Control of surface forces through hydrated boundary layers. Curr. Opin. Colloid Interface Sci. 2019;44:94–106. doi: 10.1016/j.cocis.2019.10.001. DOI
Maeda H., Nakamura H., Fang J. The EPR effect for macromolecular drug delivery to solid tumors: Improvement of tumor uptake, lowering of systemic toxicity, and distinct tumor imaging in vivo. Adv. Drug Deliv. Rev. 2013;65:71–79. doi: 10.1016/j.addr.2012.10.002. PubMed DOI
Šírová M., Mrkvan T., Etrych T., Chytil P., Rossmann P., Ibrahimová M., Kovář L., Ulbrich K., Říhová B. Preclinical Evaluation of Linear HPMA-Doxorubicin Conjugates with pH-Sensitive Drug Release: Efficacy, Safety, and Immunomodulating Activity in Murine Model. Pharm. Res. 2010;27:200–208. doi: 10.1007/s11095-009-9999-7. PubMed DOI
Etrych T., Šírová M., Starovoytova L., Říhová B., Ulbrich K. HPMA Copolymer Conjugates of Paclitaxel and Docetaxel with pH-Controlled Drug Release. Mol. Pharm. 2010;7:1015–1026. doi: 10.1021/mp100119f. PubMed DOI
Nakamura H., Etrych T., Chytil P., Ohkubo M., Fang J., Ulbrich K., Maeda H. Two step mechanisms of tumor selective delivery of N-(2-hydroxypropyl)methacrylamide copolymer conjugated with pirarubicin via an acid-cleavable linkage. J. Control. Release. 2014;174:81–87. doi: 10.1016/j.jconrel.2013.11.011. PubMed DOI
Noguchi Y., Wu J., Duncan R., Strohalm J., Ulbrich K., Akaike T., Maeda H. Early Phase Tumor Accumulation of Macromolecules: A Great Difference in Clearance Rate between Tumor and Normal Tissues. Jpn. J. Cancer Res. 1998;89:307–314. doi: 10.1111/j.1349-7006.1998.tb00563.x. PubMed DOI PMC
Etrych T., Kovář L., Strohalm J., Chytil P., Říhová B., Ulbrich K. Biodegradable star HPMA polymer-drug conjugates: Biodegradability, distribution and anti-tumor efficacy. J. Control. Release. 2011;154:241–248. doi: 10.1016/j.jconrel.2011.06.015. PubMed DOI
Duncan R., Vicent M.J. Polymer therapeutics-prospects for 21st century: The end of the beginning. Adv. Drug Deliv. Rev. 2013;65:60–70. doi: 10.1016/j.addr.2012.08.012. PubMed DOI
Seymour L.W., Duncan R., Strohalm J., Kopeček J. Effect of Molecular-Weight (Mw) of N-(2-Hydroxypropyl)Methacrylamide Copolymers on Body Distribution and Rate of Excretion after Subcutaneous, Intraperitoneal, and Intravenous Administration to Rats. J. Biomed. Mater. Res. 1987;21:1341–1358. doi: 10.1002/jbm.820211106. PubMed DOI
Etrych T., Šubr V., Strohalm J., Šírová M., Říhová B., Ulbrich K. HPMA copolymer-doxorubicin conjugates: The effects of molecular weight and architecture on biodistribution and in vivo activity. J. Control. Release. 2012;164:346–354. doi: 10.1016/j.jconrel.2012.06.029. PubMed DOI
Drobník J., Kopecek J., Labský J., Rejmanová P., Exner J., Kálal J. Preparation of Biologically Active Substances Bearing NH2 Groups in a Form Releasable by Enzymatic Cleavage. 4 097,470. U.S. Patent. 1978 Jun 27;
Kopeček J., Ulbrich K., Vacík J., Strohalm J., Chytrý V., Drobník J., Kálal J. Copolymers Based on N-Substituted Acrylamides, N-Substituted Methacrylamides and N,N-Disubstituted Acrylamides and the Method of Their Manufacturing. 4,062,831. U.S. Patent. 1977 Dec 13;
Štěrba O., Uhlířová Z., Petz R. Duxon—A new Czechoslovak-made infusion solution—An experimental contribution to biological evaluation. Cas. Lek. Cesk. 1980;119:994–997. PubMed
Šprincl L., Exner J., Štěrba O., Kopeček J. New types of synthetic infusion solutions. III. Elimination and retention of poly-[N-(2-hydroxypropyl)methacrylamide] in a test organism. J. Biomed. Mater. Res. 1976;10:953–963. doi: 10.1002/jbm.820100612. PubMed DOI
Uhlířová Z., Jirásek A., Štěrba O. Newly developed Czechoslovak colloid infusion solution Duxon. Preclinical trial. Cas. Lek. Cesk. 1981;120:1553–1556. PubMed
Cinátl J., Štěrba O., Paluska E. New types of synthetic infusion solutions. The effect of Duxon on the proliferation of cells in vitro. Cesko-Slov. Farm. 1980;29:134–138. PubMed
Korcáková L., Paluska E., Hašková V., Kopeček J. A simple test for immunogenicity of colloidal infusion solutions; the draining lymph node activation. Z. Immun. 1976;151:219–223. doi: 10.1016/S0300-872X(76)80036-4. PubMed DOI
Paluska E., Cinátl J., Korcáková L., Štěrba O., Kopeček J., Hrubá A., Nezvalová J., Staněk R. Immunosuppressive Effects of a Synthetic-Polymer Poly N-(2-Hydroxypropyl)Methacrylamide (Duxon) Folia Biol-Prague. 1980;26:304–311. PubMed
Petz R., Štěrba O., Jirásek A., Foltinská Z., Kostírová D., Kopeček J. Pharmacological evaluation of the toxicity after repeated administration of synthetic colloid solution of Duxon. Cas. Lek. Cesk. 1988;127:553–555. PubMed
Štěrba O., Paluska E., Jozová O. New types of synthetic infusion solutions. Basic biological properties of poly(N-(2 hydroxypropyl) methacrylamide) (Czech) Cas. Lek. Cesk. 1975;114:1268–1270. PubMed
Uhlířová Z., Štěrba O., Petz R., Viktora L. Czechoslovak infusion solution Duxon—Preclinical tests. Effect on the haemogram of some laboratory animals (author‘s transl) Cas. Lek. Cesk. 1980;119:1091–1094. PubMed
Štěrba O., Paluska E., Jozová O., Spunda J., Nezvalová J., Šprincl L., Kopeček J., Cinátl J. New types of synthetic infusion solutions. Basic biological properties of poly N (2 hydroxypropyl) methacrylamide. Rev. Czech. Med. 1976;22:152–156. PubMed
Paluska E., Hrubá A., Štěrba O., Kopeček J. Effect of a synthetic poly N-(2-hydroxypropyl)methacrylamide (Duxon) on haemopoiesis and graft-versus-host reaction. Folia Biol-Prague. 1986;32:91–102. PubMed
Řihová B., Kopeček J., Ulbrich K., Pospíšil M., Mančal P. Effect of the chemical structure of N-(2-hydroxypropyl) methacrylajnide copolymers on their ability to induce antibody formation in inbred strains of mice. Biomaterials. 1984;5:143–148. doi: 10.1016/0142-9612(84)90048-6. PubMed DOI
Hoffmann S., Vystrčilová L., Ulbrich K., Etrych T., Caysa H., Mueller T., Mäder K. Dual Fluorescent HPMA Copolymers for Passive Tumor Targeting with pH-Sensitive Drug Release: Synthesis and Characterization of Distribution and Tumor Accumulation in Mice by Noninvasive Multispectral Optical Imaging. Biomacromolecules. 2012;13:652–663. doi: 10.1021/bm2015027. PubMed DOI
Chytil P., Hoffmann S., Schindler L., Kostka L., Ulbrich K., Caysa H., Mueller T., Mader K., Etrych T. Dual fluorescent HPMA copolymers for passive tumor targeting with pH- sensitive drug release II: Impact of release rate on biodistribution. J. Control. Release. 2013;172:504–512. doi: 10.1016/j.jconrel.2013.05.008. PubMed DOI
Liu X.-M., Quan L.-D., Tian J., Alnouti Y., Fu K., Thiele G., Wang D. Synthesis and Evaluation of a Well-defined HPMA Copolymer–Dexamethasone Conjugate for Effective Treatment of Rheumatoid Arthritis. Pharm. Res. 2008;25:2910–2919. doi: 10.1007/s11095-008-9683-3. PubMed DOI PMC
Pan H., Sima M., Kopečková P., Wu K., Gao S., Liu J., Wang D., Miller S.C., Kopeček J. Biodistribution and Pharmacokinetic Studies of Bone-Targeting N-(2-Hydroxypropyl)methacrylamide Copolymer—Alendronate Conjugates. Mol. Pharm. 2008;5:548–558. doi: 10.1021/mp800003u. PubMed DOI PMC
Chytil P., Etrych T., Kříž J., Šubr V., Ulbrich K. N-(2-Hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin for cell-specific or passive tumour targeting. Synthesis by RAFT polymerisation and physicochemical characterisation. Eur. J. Pharm. Sci. 2010;41:473–482. doi: 10.1016/j.ejps.2010.08.003. PubMed DOI
Raus V., Kostka L. Optimizing the Cu-RDRP of N-(2-hydroxypropyl) methacrylamide toward biomedical applications. Polym. Chem. 2019;10:564–568. doi: 10.1039/C8PY01569D. DOI
Chytil P., Šírová M., Koziolová E., Ulbrich K., Říhová B., Etrych T. The Comparison of In Vivo Properties of Water-Soluble HPMA-Based Polymer Conjugates with Doxorubicin Prepared by Controlled RAFT or Free Radical Polymerization. Physiol. Res. 2015;64:S41–S49. doi: 10.33549/physiolres.933137. PubMed DOI
Koziolová E., Goel S., Chytil P., Janoušková O., Barnhart T.E., Cai W.B., Etrych T. A tumor-targeted polymer theranostics platform for positron emission tomography and fluorescence imaging. Nanoscale. 2017;9:10906–10918. doi: 10.1039/C7NR03306K. PubMed DOI PMC
Randárová E., Nakamura H., Islam R., Studenovský M., Mamoru H., Fang J., Chytil P., Etrych T. Highly effective anti-tumor nanomedicines based on HPMA copolymer conjugates with pirarubicin prepared by controlled RAFT polymerization. Acta Biomater. 2020;106:256–266. doi: 10.1016/j.actbio.2020.02.011. PubMed DOI
Quan L.D., Zhang Y.J., Crielaard B.J., Dusad A., Lele S.M., Rijcken C.J.F., Metselaar J.M., Kostková H., Etrych T., Ulbrich K., et al. Nanomedicines for Inflammatory Arthritis: Head-to-Head Comparison of Glucocorticoid-Containing Polymers, Micelles, and Liposomes. ACS Nano. 2014;8:458–466. doi: 10.1021/nn4048205. PubMed DOI PMC
Libánská A., Randárová E., Lager F., Renault G., Scherman D., Etrych T. Polymer Nanomedicines with pH-Sensitive Release of Dexamethasone for the Localized Treatment of Inflammation. Pharmaceutics. 2020;12:700. doi: 10.3390/pharmaceutics12080700. PubMed DOI PMC
Etrych T., Šubr V., Laga R., Říhová B., Ulbrich K. Polymer conjugates of doxorubicin bound through an amide and hydrazone bond: Impact of the carrier structure onto synergistic action in the treatment of solid tumours. Eur. J. Pharm. Sci. 2014;58:1–12. doi: 10.1016/j.ejps.2014.02.016. PubMed DOI
Zhang R., Luo K., Yang J., Sima M., Sun Y., Janát-Amsbury M.M., Kopeček J. Synthesis and evaluation of a backbone biodegradable multiblock HPMA copolymer nanocarrier for the systemic delivery of paclitaxel. J. Control. Release. 2013;166:66–74. doi: 10.1016/j.jconrel.2012.12.009. PubMed DOI PMC
Luo K., Yang J., Kopečková P., Kopeček J. Biodegradable Multiblock Poly[N-(2-hydroxypropyl)methacrylamide] via Reversible Addition−Fragmentation Chain Transfer Polymerization and Click Chemistry. Macromolecules. 2011;44:2481–2488. doi: 10.1021/ma102574e. PubMed DOI PMC
Larson N., Yang J.Y., Ray A., Cheney D.L., Ghandehari H., Kopeček J. Biodegradable multiblock poly(N-2-hydroxypropyl)methacrylamide gemcitabine and paclitaxel conjugates for ovarian cancer cell combination treatment. Int. J. Pharm. 2013;454:435–443. doi: 10.1016/j.ijpharm.2013.06.046. PubMed DOI PMC
Pan H.Z., Yang J.Y., Kopečková P., Kopeček J. Backbone Degradable Multiblock N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates via Reversible Addition-Fragmentation Chain Transfer Polymerization and Thiol-ene Coupling Reaction. Biomacromolecules. 2011;12:247–252. doi: 10.1021/bm101254e. PubMed DOI PMC
Etrych T., Chytil P., Mrkvan T., Šírová M., Říhová B., Ulbrich K. Conjugates of doxorubicin with graft HPMA copolymers for passive tumor targeting. J. Control. Release. 2008;132:184–192. doi: 10.1016/j.jconrel.2008.04.017. PubMed DOI
Etrych T., Strohalm J., Chytil P., Černoch P., Starovoytova L., Pechar M., Ulbrich K. Biodegradable star HPMA polymer conjugates of doxorubicin for passive tumor targeting. Eur. J. Pharm. Sci. 2011;42:527–539. doi: 10.1016/j.ejps.2011.03.001. PubMed DOI
Wang D., Kopečková P., Minko T., Nanayakkara V., Kopeček J. Synthesis of starlike N-(2-hydroxypropyl)methacrylamide copolymers: Potential drug carriers. Biomacromolecules. 2000;1:313–319. doi: 10.1021/bm0000236. PubMed DOI
Chytil P., Koziolová E., Janoušková O., Kostka L., Ulbrich K., Etrych T. Synthesis and Properties of Star HPMA Copolymer Nanocarriers Synthesised by RAFT Polymerisation Designed for Selective Anticancer Drug Delivery and Imaging. Macromol. Biosci. 2015;15:839–850. doi: 10.1002/mabi.201400510. PubMed DOI
Kostka L., Kotrchová L., Šubr V., Libánská A., Ferreira C.A., Malátová I., Lee H.J., Barnhart T.E., Engle J.W., Cai W.B., et al. HPMA-based star polymer biomaterials with tuneable structure and biodegradability tailored for advanced drug delivery to solid tumours. Biomaterials. 2020;235:119728. doi: 10.1016/j.biomaterials.2019.119728. PubMed DOI PMC
Pan H.Z., Sima M., Yang J.Y., Kopeček J. Synthesis of Long-Circulating, Backbone Degradable HPMA CopolymerDoxorubicin Conjugates and Evaluation of Molecular-Weight-Dependent Antitumor Efficacy. Macromol. Biosci. 2013;13:155–160. doi: 10.1002/mabi.201200353. PubMed DOI PMC
Etrych T., Tsukigawa K., Nakamura H., Chytil P., Fang J., Ulbrich K., Otagiri M., Maeda H. Comparison of the pharmacological and biological properties of HPMA copolymer-pirarubicin conjugates: A single-chain copolymer conjugate and its biodegradable tandem-diblock copolymer conjugate. Eur. J. Pharm. Sci. 2017;106:10–19. doi: 10.1016/j.ejps.2017.05.031. PubMed DOI
Duan Z., Zhang Y., Zhu H., Sun L., Cai H., Li B., Gong Q., Gu Z., Luo K. Stimuli-Sensitive Biodegradable and Amphiphilic Block Copolymer-Gemcitabine Conjugates Self-Assemble into a Nanoscale Vehicle for Cancer Therapy. ACS Appl. Mater. Interfaces. 2017;9:3474–3486. doi: 10.1021/acsami.6b15232. PubMed DOI
Krakovičová H., Etrych T., Ulbrich K. HPMA-based polymer conjugates with drug combination. Eur. J. Pharm. Sci. 2009;37:405–412. doi: 10.1016/j.ejps.2009.03.011. PubMed DOI
Kostková H., Etrych T., Říhová B., Ulbrich K. Synergistic effect of HPMA copolymer-bound doxorubicin and dexamethasone in vivo on mouse lymphomas. J. Bioact. Compat. Polym. 2011;26:270–286. doi: 10.1177/0883911511406326. DOI
Říhová B., Etrych T., Šírová M., Kovář L., Hovorka O., Kovář M., Benda A., Ulbrich K. Synergistic Action of Doxorubicin Bound to the Polymeric Carrier Based on N-(2-Hydroxypropyl)methacrylamide Copolymers through an Amide or Hydrazone Bond. Mol. Pharm. 2010;7:1027–1040. doi: 10.1021/mp100121g. PubMed DOI
Yang J., Kopeček J. Macromolecular therapeutics. J. Control. Release. 2014;190:288–303. doi: 10.1016/j.jconrel.2014.04.013. PubMed DOI PMC
Yang J., Luo K., Pan H., Kopečková P., Kopeček J. Synthesis of biodegradable multiblock copolymers by click coupling of RAFT-generated heterotelechelic polyHPMA conjugates. React. Funct. Polym. 2011;71:294–302. doi: 10.1016/j.reactfunctpolym.2010.10.005. PubMed DOI PMC
Kopeček J., Yang J.Y. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC
Yang J.Y., Zhang R., Pan H.Z., Li Y.L., Fang Y.X., Zhang L.B., Kopeček J. Backbone Degradable N-(2-Hydroxypropyl)methacrylamide Copolymer Conjugates with Gemcitabine and Paclitaxel: Impact of Molecular Weight on Activity toward Human Ovarian Carcinoma Xenografts. Mol. Pharm. 2017;14:1384–1394. doi: 10.1021/acs.molpharmaceut.6b01005. PubMed DOI PMC
Koziolová E., Kostka L., Kotrchová L., Šubr V., Konefal R., Nottelet B., Etrych T. N-(2-Hydroxypropyl)methacrylamide-Based Linear, Diblock, and Starlike Polymer Drug Carriers: Advanced Process for Their Simple Production. Biomacromolecules. 2018;19:4003–4013. doi: 10.1021/acs.biomac.8b00973. PubMed DOI
Kostka L., Etrych T. High-Molecular-Weight HPMA-Based Polymer Drug Carriers for Delivery to Tumor. Physiol. Res. 2016;65:S179–S190. doi: 10.33549/physiolres.933420. PubMed DOI
Pearce A.K., Anane-Adjei A.B., Cavanagh R.J., Monteiro P.F., Bennett T.M., Taresco V., Clarke P.A., Ritchie A.A., Alexander M.R., Grabowska A.M., et al. Effects of Polymer 3D Architecture, Size, and Chemistry on Biological Transport and Drug Delivery In Vitro and in Orthotopic Triple Negative Breast Cancer Models. Adv. Healthc. Mater. 2020;9:2000892. doi: 10.1002/adhm.202000892. PubMed DOI
Kotrchová L., Kostka L., Etrych T. Drug carriers with star polymer structures. Physiol. Res. 2018;67:S293–S303. doi: 10.33549/physiolres.933978. PubMed DOI
Kostková H., Schindler L., Kotrchová L., Kovář M., Šírová M., Kostka L., Etrych T. Star Polymer-Drug Conjugates with pH-Controlled Drug Release and Carrier Degradation. J. Nanomater. 2017;2017:8675435. doi: 10.1155/2017/8675435. DOI
Kudláčová J., Kotrchová L., Kostka L., Randárová E., Filipová M., Janoušková O., Fang J., Etrych T. Structure-to-Efficacy Relationship of HPMA-Based Nanomedicines: The Tumor Spheroid Penetration Study. Pharmaceutics. 2020;12:1242. doi: 10.3390/pharmaceutics12121242. PubMed DOI PMC
Kotrchová L., Etrych T. Synthesis of Water-Soluble Star Polymers Based on Cyclodextrins. Physiol. Res. 2018;67:S357–S365. doi: 10.33549/physiolres.933981. PubMed DOI
Talelli M., Rijcken C.J.F., van Nostrum C.F., Storm G., Hennink W.E. Micelles based on HPMA copolymers. Adv. Drug Deliv. Rev. 2010;62:231–239. doi: 10.1016/j.addr.2009.11.029. PubMed DOI
Barz M., Tarantola M., Fischer K., Schmidt M., Luxenhofer R., Janshoff A., Theato P., Zentel R. From Defined Reactive Diblock Copolymers to Functional HPMA-Based Self-Assembled Nanoaggregates. Biomacromolecules. 2008;9:3114–3118. doi: 10.1021/bm800684b. PubMed DOI
Lele B.S., Leroux J.C. Synthesis and micellar characterization of novel Amphiphilic A-B-A triblock copolymers of N-(2-hydroxypropyl)methacrylamide or N-vinyl-2-pyrrolidone with poly(is an element of-caprolactone) Macromolecules. 2002;35:6714–6723. doi: 10.1021/ma020433h. DOI
Barz M., Wolf F.K., Canal F., Koynov K., Vicent M.J., Frey H., Zentel R. Synthesis, Characterization and Preliminary Biological Evaluation of P(HPMA)-b-P(LLA) Copolymers: A New Type of Functional Biocompatible Block Copolymer. Macromol. Rapid Commun. 2010;31:1492–1500. doi: 10.1002/marc.201000090. PubMed DOI
Braunová A., Kostka L., Sivák L., Cuchalová L., Hvězdová Z., Laga R., Filippov S., Černoch P., Pechar M., Janoušková O., et al. Tumor-targeted micelle-forming block copolymers for overcoming of multidrug resistance. J. Control. Release. 2017;245:41–51. doi: 10.1016/j.jconrel.2016.11.020. PubMed DOI
Alfurhood J.A., Sun H., Kabb C.P., Tucker B.S., Matthews J.H., Luesch H., Sumerlin B.S. Poly(N-(2-hydroxypropyl)methacrylamide)–valproic acid conjugates as block copolymer nanocarriers. Polym. Chem. 2017;8:4983–4987. doi: 10.1039/C7PY00196G. PubMed DOI PMC
Naksuriya O., Shi Y., van Nostrum C.F., Anuchapreeda S., Hennink W.E., Okonogi S. HPMA-based polymeric micelles for curcumin solubilization and inhibition of cancer cell growth. Eur. J. Pharm. Biopharm. 2015;94:501–512. doi: 10.1016/j.ejpb.2015.06.010. PubMed DOI
Bláhová M., Randárová E., Konefal R., Nottelet B., Etrych T. Graft copolymers with tunable amphiphilicity tailored for efficient dual drug deliveryviaencapsulation and pH-sensitive drug conjugation. Polym. Chem. 2020;11:4438–4453. doi: 10.1039/D0PY00609B. DOI
Chytil P., Etrych T., Koňák Č., Šírová M., Mrkvan T., Bouček J., Říhová B., Ulbrich K. New HPMA copolymer-based drug carriers with covalently bound hydrophobic substituents for solid tumour targeting. J. Control. Release. 2008;127:121–130. doi: 10.1016/j.jconrel.2008.01.007. PubMed DOI
Chytil P., Etrych T., Kostka L., Ulbrich K. Hydrolytically Degradable Polymer Micelles for Anticancer Drug Delivery to Solid Tumors. Macromol. Chem. Phys. 2012;213:858–867. doi: 10.1002/macp.201100632. DOI
Zhou Z., Li L., Yang Y., Xu X., Huang Y. Tumor targeting by pH-sensitive, biodegradable, cross-linked N-(2-hydroxypropyl) methacrylamide copolymer micelles. Biomaterials. 2014;35:6622–6635. doi: 10.1016/j.biomaterials.2014.04.059. PubMed DOI
Koziolová E., Machová D., Pola R., Janoušková O., Chytil P., Laga R., Filippov S.K., Šubr V., Etrych T., Pechar M. Micelle-forming HPMA copolymer conjugates of ritonavir bound via a pH-sensitive spacer with improved cellular uptake designed for enhanced tumor accumulation. J. Mater. Chem. B. 2016;4:7620–7629. doi: 10.1039/C6TB02225A. PubMed DOI
Chytil P., Šírová M., Kudláčová J., Říhová B., Ulbrich K., Etrych T. Bloodstream Stability Predetermines the Antitumor Efficacy of Micellar Polymer-Doxorubicin Drug Conjugates with pH-Triggered Drug Release. Mol. Pharm. 2018;15:3654–3663. doi: 10.1021/acs.molpharmaceut.8b00156. PubMed DOI
Jia Z., Wong L., Davis T.P., Bulmus V. One-Pot Conversion of RAFT-Generated Multifunctional Block Copolymers of HPMA to Doxorubicin Conjugated Acid- and Reductant-Sensitive Crosslinked Micelles. Biomacromolecules. 2008;9:3106–3113. doi: 10.1021/bm800657e. PubMed DOI
Klepac D., Kostková H., Petrova S., Chytil P., Etrych T., Kereiche S., Raska I., Weitz D.A., Filippov S.K. Interaction of spin-labeled HPMA-based nanoparticles with human blood plasma proteins—The introduction of protein-corona-free polymer nanomedicine. Nanoscale. 2018;10:6194–6204. doi: 10.1039/C7NR09355A. PubMed DOI
Janisová L., Gruzinov A., Zaborova O.V., Velychkivska N., Vaněk O., Chytil P., Etrych T., Janoušková O., Zhang X.H., Blanchet C., et al. Molecular Mechanisms of the Interactions of N-(2-Hydroxypropyl)methacrylamide Copolymers Designed for Cancer Therapy with Blood Plasma Proteins. Pharmaceutics. 2020;12:106. doi: 10.3390/pharmaceutics12020106. PubMed DOI PMC
Zhang X.H., Niebuur B.J., Chytil P., Etrych T., Filippov S.K., Kikhney A., Wieland D.C.F., Svergun D.I., Papadakis C.M. Macromolecular pHPMA-Based Nanoparticles with Cholesterol for Solid Tumor Targeting: Behavior in HSA Protein Environment. Biomacromolecules. 2018;19:470–480. doi: 10.1021/acs.biomac.7b01579. PubMed DOI
Etrych T., Mrkvan T., Chytil P., Koňák Č., Říhová B., Ulbrich K. N-(2-hydroxypropyl)methacrylamide-based polymer conjugates with pH-controlled activation of doxorubicin. I. New synthesis, physicochemical characterization and preliminary biological evaluation. J. Appl. Polym. Sci. 2008;109:3050–3061. doi: 10.1002/app.28466. DOI
Lomkova E.A., Chytil P., Janoušková O., Mueller T., Lucas H., Filippov S.K., Trhlíková O., Aleshunin P.A., Skorik Y.A., Ulbrich K., et al. Biodegradable Micellar HPMA-Based Polymer-Drug Conjugates with Betulinic Acid for Passive Tumor Targeting. Biomacromolecules. 2016;17:3493–3507. doi: 10.1021/acs.biomac.6b00947. PubMed DOI
Luan B., Muir B.W., Zhu J., Hao X. A RAFT copolymerization of NIPAM and HPMA and evaluation of thermo-responsive properties of poly(NIPAM-co-HPMA) RSC Adv. 2016;6:89925–89933. doi: 10.1039/C6RA22722H. DOI
Laga R., Janoušková O., Ulbrich K., Pola R., Blažková J., Filippov S.K., Etrych T., Pechar M. Thermoresponsive Polymer Micelles as Potential Nanosized Cancerostatics. Biomacromolecules. 2015;16:2493–2505. doi: 10.1021/acs.biomac.5b00764. PubMed DOI
Truong N.P., Whittaker M.R., Anastasaki A., Haddleton D.M., Quinn J.F., Davis T.P. Facile production of nanoaggregates with tuneable morphologies from thermoresponsive P(DEGMA-co-HPMA) Polym. Chem. 2016;7:430–440. doi: 10.1039/C5PY01467K. DOI
Shi Y., van den Dungen E.T.A., Klumperman B., van Nostrum C.F., Hennink W.E. Reversible Addition–Fragmentation Chain Transfer Synthesis of a Micelle-Forming, Structure Reversible Thermosensitive Diblock Copolymer Based on the N-(2-Hydroxy propyl) Methacrylamide Backbone. ACS Macro Lett. 2013;2:403–408. doi: 10.1021/mz300662b. PubMed DOI
Maeda H., Khatami M. Analyses of repeated failures in cancer therapy for solid tumors: Poor tumor-selective drug delivery, low therapeutic efficacy and unsustainable costs. Clin. Transl. Med. 2018;7:11. doi: 10.1186/s40169-018-0185-6. PubMed DOI PMC
Sosman J.A., Kim K.B., Schuchter L., Gonzalez R., Pavlick A.C., Weber J.S., McArthur G.A., Hutson T.E., Moschos S.J., Flaherty K.T., et al. Survival in BRAF V600–Mutant Advanced Melanoma Treated with Vemurafenib. N. Engl. J. Med. 2012;366:707–714. doi: 10.1056/NEJMoa1112302. PubMed DOI PMC
Gerlinger M., Rowan A.J., Horswell S., Larkin J., Endesfelder D., Gronroos E., Martinez P., Matthews N., Stewart A., Tarpey P., et al. Intratumor Heterogeneity and Branched Evolution Revealed by Multiregion Sequencing. N. Engl. J. Med. 2012;366:883–892. doi: 10.1056/NEJMoa1113205. PubMed DOI PMC
Hernández-Camarero P., Amezcua-Hernández V., Jiménez G., García M.A., Marchal J.A., Perán M. Clinical failure of nanoparticles in cancer: Mimicking nature’s solutions. Nanomedicine. 2020;15:2311–2324. doi: 10.2217/nnm-2020-0234. PubMed DOI
He H.L., Liu L.S., Morin E.E., Liu M., Schwendeman A. Survey of Clinical Translation of Cancer Nanomedicines-Lessons Learned from Successes and Failures. Acc. Chem. Res. 2019;52:2445–2461. doi: 10.1021/acs.accounts.9b00228. PubMed DOI
Hare J.I., Lammers T., Ashford M.B., Puri S., Storm G., Barry S.T. Challenges and strategies in anti-cancer nanomedicine development: An industry perspective. Adv. Drug Deliv. Rev. 2017;108:25–38. doi: 10.1016/j.addr.2016.04.025. PubMed DOI
Shi J.J., Kantoff P.W., Wooster R., Farokhzad O.C. Cancer nanomedicine: Progress, challenges and opportunities. Nat. Rev. Cancer. 2017;17:20–37. doi: 10.1038/nrc.2016.108. PubMed DOI PMC
Folkman J. What Is the Evidence That Tumors Are Angiogenesis Dependent? JNCI J. Natl. Cancer Inst. 1990;82:4–7. doi: 10.1093/jnci/82.1.4. PubMed DOI
Fang J., Islam W., Maeda H. Exploiting the dynamics of the EPR effect and strategies to improve the therapeutic effects of nanomedicines by using EPR effect enhancers. Adv. Drug Deliv. Rev. 2020;157:142–160. doi: 10.1016/j.addr.2020.06.005. PubMed DOI
Navi B.B., Reiner A.S., Kamel H., Iadecola C., Okin P.M., Tagawa S.T., Panageas K.S., DeAngelis L.M. Arterial thromboembolic events preceding the diagnosis of cancer in older persons. Blood. 2019;133:781–789. doi: 10.1182/blood-2018-06-860874. PubMed DOI PMC
Young A., Chapman O., Connor C., Poole C., Rose P., Kakkar A.K. Thrombosis and cancer. Nat. Rev. Clin. Oncol. 2012;9:437–449. doi: 10.1038/nrclinonc.2012.106. PubMed DOI
Jain R.K. Transport of molecules across tumor vasculature. Cancer Metastasis Rev. 1987;6:559–593. doi: 10.1007/BF00047468. PubMed DOI
Islam W., Fang J., Imamura T., Etrych T., Šubr V., Ulbrich K., Maeda H. Augmentation of the Enhanced Permeability and Retention Effect with Nitric Oxide–Generating Agents Improves the Therapeutic Effects of Nanomedicines. Mol. Cancer Ther. 2018;17:2643–2653. doi: 10.1158/1535-7163.MCT-18-0696. PubMed DOI
Seki T., Fang J., Maeda H. Enhanced delivery of macromolecular antitumor drugs to tumors by nitroglycerin application. Cancer Sci. 2009;100:2426–2430. doi: 10.1111/j.1349-7006.2009.01323.x. PubMed DOI PMC
Jiang J., Jordan S.J., Barr D.P., Gunther M.R., Maeda H., Mason R.P. In Vivo Production of Nitric Oxide in Rats after Administration of Hydroxyurea. Mol. Pharm. 1997;52:1081–1086. doi: 10.1124/mol.52.6.1081. PubMed DOI
Dozono H., Yanazume S., Nakamura H., Etrych T., Chytil P., Ulbrich K., Fang J., Arimura T., Douchi T., Kobayashi H., et al. HPMA Copolymer-Conjugated Pirarubicin in Multimodal Treatment of a Patient with Stage IV Prostate Cancer and Extensive Lung and Bone Metastases. Target Oncol. 2016;11:101–106. doi: 10.1007/s11523-015-0379-4. PubMed DOI
Fang J., Islam R., Islam W., Yin H.Z., Šubr V., Etrych T., Ulbrich K., Maeda H. Augmentation of EPR Effect and Efficacy of Anticancer Nanomedicine by Carbon Monoxide Generating Agents. Pharmaceutics. 2019;11:343. doi: 10.3390/pharmaceutics11070343. PubMed DOI PMC
Studenovský M., Sivák L., Sedláček O., Konefal R., Horková V., Etrych T., Kovář M., Říhová B., Šírová M. Polymer nitric oxide donors potentiate the treatment of experimental solid tumours by increasing drug accumulation in the tumour tissue. J. Control. Release. 2018;269:214–224. doi: 10.1016/j.jconrel.2017.11.017. PubMed DOI
Kinoshita R., Ishima Y., Chuang V.T.G., Nakamura H., Fang J., Watanabe H., Shimizu T., Okuhira K., Ishida T., Maeda H., et al. Improved anticancer effects of albumin-bound paclitaxel nanoparticle via augmentation of EPR effect and albumin-protein interactions using S-nitrosated human serum albumin dimer. Biomaterials. 2017;140:162–169. doi: 10.1016/j.biomaterials.2017.06.021. PubMed DOI
Kang Y., Kim J., Lee Y.M., Im S., Park H., Kim W.J. Nitric oxide-releasing polymer incorporated ointment for cutaneous wound healing. J. Control. Release. 2015;220:624–630. doi: 10.1016/j.jconrel.2015.08.057. PubMed DOI
Danhier F., Feron O., Préat V. To exploit the tumor microenvironment: Passive and active tumor targeting of nanocarriers for anti-cancer drug delivery. J. Control. Release. 2010;148:135–146. doi: 10.1016/j.jconrel.2010.08.027. PubMed DOI
Samuli H., Catherine P., Jean-Pierre B. Passive and Active Tumour Targeting with Nanocarriers. Curr. Drug Discov. Technol. 2011;8:188–196. doi: 10.2174/157016311796798991. PubMed DOI
Attia M.F., Anton N., Wallyn J., Omran Z., Vandamme T.F. An overview of active and passive targeting strategies to improve the nanocarriers efficiency to tumour sites. J. Pharm. Pharmacol. 2019;71:1185–1198. doi: 10.1111/jphp.13098. PubMed DOI
Seymour L.W., Miyamoto Y., Maeda H., Brereton M., Strohalm J., Ulbrich K., Duncan R. Influence of molecular weight on passive tumour accumulation of a soluble macromolecular drug carrier. Eur. J. Cancer. 1995;31:766–770. doi: 10.1016/0959-8049(94)00514-6. PubMed DOI
Kopeček J., Kopečková P. HPMA copolymers: Origins, early developments, present, and future. Adv. Drug Deliv. Rev. 2010;62:122–149. doi: 10.1016/j.addr.2009.10.004. PubMed DOI PMC
Yang J., Kopeček J. Design of smart HPMA copolymer-based nanomedicines. J. Control. Release. 2016;240:9–23. doi: 10.1016/j.jconrel.2015.10.003. PubMed DOI PMC
Pola R., Böhmová E., Filipová M., Pechar M., Pankrác J., Větvička D., Olejár T., Kabešová M., Poučková P., Šefc L., et al. Targeted Polymer-Based Probes for Fluorescence Guided Visualization and Potential Surgery of EGFR-Positive Head-and-Neck Tumors. Pharmaceutics. 2020;12:31. doi: 10.3390/pharmaceutics12010031. PubMed DOI PMC
Randárová E., Kudláčová J., Etrych T. HPMA copolymer-antibody constructs in neoplastic treatment: An overview of therapeutics, targeted diagnostics, and drug-free systems. J. Control. Release. 2020;325:304–322. doi: 10.1016/j.jconrel.2020.06.040. PubMed DOI
Ulbrich K., Šubr V., Strohalm J., Plocová D., Jelínková M., Říhová B. Polymeric drugs based on conjugates of synthetic and natural macromolecules I. Synthesis and physico-chemical characterisation. J. Control. Release. 2000;64:63–79. doi: 10.1016/S0168-3659(99)00141-8. PubMed DOI
Lidický O., Klener P., Machová D., Vočková P., Pokorná E., Helman K., Mavis C., Janoušková O., Etrych T. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J. Control. Release. 2020;328:160–170. doi: 10.1016/j.jconrel.2020.08.042. PubMed DOI
Kovář M., Mrkvan T., Strohalm J., Etrych T., Ulbrich K., Štastný M., Říhová B. HPMA copolymer-bound doxorubicin targeted to tumor-specific antigen of BCL1 mouse B cell leukemia. J. Control. Release. 2003;92:315–330. doi: 10.1016/S0168-3659(03)00340-7. PubMed DOI
Kovář M., Strohalm J., Etrych T., Ulbrich K., Říhová B. Star structure of antibody-targeted HPMA copolymer-bound doxorubicin: A novel type of polymeric conjugate for targeted drug delivery with potent antitumor effect. Bioconj. Chem. 2002;13:206–215. doi: 10.1021/bc010063m. PubMed DOI
Kunjachan S., Pola R., Gremse F., Theek B., Ehling J., Moeckel D., Hermanns-Sachweh B., Pechar M., Ulbrich K., Hennink W.E., et al. Passive versus Active Tumor Targeting Using RGD- and NGR-Modified Polymeric Nanomedicines. Nano Lett. 2014;14:972–981. doi: 10.1021/nl404391r. PubMed DOI PMC
Sindhwani S., Syed A.M., Ngai J., Kingston B.R., Maiorino L., Rothschild J., MacMillan P., Zhang Y., Rajesh N.U., Hoang T., et al. The entry of nanoparticles into solid tumours. Nat. Mater. 2020;19:566–575. doi: 10.1038/s41563-019-0566-2. PubMed DOI
Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas