Targeted Drug Delivery and Theranostic Strategies in Malignant Lymphomas

. 2022 Jan 26 ; 14 (3) : . [epub] 20220126

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35158894

Grantová podpora
GACR19-01417S Czech Science Foundation
AZV NU21-03-00386 Czech Health Research Council
Center of Excellence UNCE/MED/016 Charles University

Malignant lymphomas represent the most common type of hematologic malignancies. The first clinically approved TDD modalities in lymphoma patients were anti-CD20 radioimmunoconjugates (RIT) 131I-tositumomab and 90Y-ibritumomab-tiuxetan. The later clinical success of the first approved antibody-drug conjugate (ADC) for the treatment of lymphomas, anti-CD30 brentuximab vedotin, paved the path for the preclinical development and clinical testing of several other ADCs, including polatuzumab vedotin and loncastuximab tesirine. Other modalities of TDD are based on new formulations of "old" cytostatic agents and their passive trapping in the lymphoma tissue by means of the enhanced permeability and retention (EPR) effect. Currently, the diagnostic and restaging procedures in aggressive lymphomas are based on nuclear imaging, namely PET. A theranostic approach that combines diagnostic or restaging lymphoma imaging with targeted treatment represents an appealing innovative strategy in personalized medicine. The future of theranostics will require not only the capability to provide suitable disease-specific molecular probes but also expertise on big data processing and evaluation. Here, we review the concept of targeted drug delivery in malignant lymphomas from RIT and ADC to a wide array of passively and actively targeted nano-sized investigational agents. We also discuss the future of molecular imaging with special focus on monoclonal antibody-based and monoclonal antibody-derived theranostic strategies.

Zobrazit více v PubMed

Nogai H., Dorken B., Lenz G. Pathogenesis of non-Hodgkin’s lymphoma. J. Clin. Oncol. 2011;29:1803–1811. doi: 10.1200/JCO.2010.33.3252. PubMed DOI

Swerdlow S.H., Campo E., Pileri S.A., Harris N.L., Stein H., Siebert R., Advani R., Ghielmini M., Salles G.A., Zelenetz A.D., et al. The 2016 revision of the World Health Organization classification of lymphoid neoplasms. Blood. 2016;127:2375–2390. doi: 10.1182/blood-2016-01-643569. PubMed DOI PMC

Swerdlow S.H., Cook J.R. As the world turns, evolving lymphoma classifications-past, present and future. Hum. Pathol. 2019;95:55–77. doi: 10.1016/j.humpath.2019.08.019. PubMed DOI

Salles G., Barrett M., Foà R., Maurer J., O’Brien S., Valente N., Wenger M., Maloney D.G. Rituximab in B-Cell Hematologic Malignancies: A Review of 20 Years of Clinical Experience. Adv. Ther. 2017;34:2232–2273. doi: 10.1007/s12325-017-0612-x. PubMed DOI PMC

Horwitz S., O’Connor O.A., Pro B., Illidge T., Fanale M., Advani R., Bartlett N.L., Christensen J.H., Morschhauser F., Domingo-Domenech E., et al. Brentuximab vedotin with chemotherapy for CD30-positive peripheral T-cell lymphoma (ECHELON-2): A global, double-blind, randomised, phase 3 trial. Lancet. 2019;393:229–240. doi: 10.1016/S0140-6736(18)32984-2. PubMed DOI PMC

Crump M., Neelapu S.S., Farooq U., Van Den Neste E., Kuruvilla J., Westin J., Link B.K., Hay A., Cerhan J.R., Zhu L., et al. Outcomes in refractory diffuse large B-cell lymphoma: Results from the international SCHOLAR-1 study. Blood. 2017;130:1800–1808. doi: 10.1182/blood-2017-03-769620. PubMed DOI PMC

Hoy S.M. Tafasitamab: First Approval. Drugs. 2020;80:1731–1737. doi: 10.1007/s40265-020-01405-w. PubMed DOI

Salles G., Duell J., González Barca E., Tournilhac O., Jurczak W., Liberati A.M., Nagy Z., Obr A., Gaidano G., André M., et al. Tafasitamab plus lenalidomide in relapsed or refractory diffuse large B-cell lymphoma (L-MIND): A multicentre, prospective, single-arm, phase 2 study. Lancet Oncol. 2020;21:978–988. doi: 10.1016/S1470-2045(20)30225-4. PubMed DOI

Wang M.L., Rule S., Martin P., Goy A., Auer R., Kahl B.S., Jurczak W., Advani R.H., Romaguera J.E., Williams M.E., et al. Targeting BTK with ibrutinib in relapsed or refractory mantle-cell lymphoma. N. Engl. J. Med. 2013;369:507–516. doi: 10.1056/NEJMoa1306220. PubMed DOI PMC

Dreyling M., Jurczak W., Jerkeman M., Silva R.S., Rusconi C., Trneny M., Offner F., Caballero D., Joao C., Witzens-Harig M., et al. Ibrutinib versus temsirolimus in patients with relapsed or refractory mantle-cell lymphoma: An international, randomised, open-label, phase 3 study. Lancet. 2016;387:770–778. doi: 10.1016/S0140-6736(15)00667-4. PubMed DOI

Trneny M., Lamy T., Walewski J., Belada D., Mayer J., Radford J., Jurczak W., Morschhauser F., Alexeeva J., Rule S., et al. Lenalidomide versus investigator’s choice in relapsed or refractory mantle cell lymphoma (MCL-002; SPRINT): A phase 2, randomised, multicentre trial. Lancet Oncol. 2016;17:319–331. doi: 10.1016/S1470-2045(15)00559-8. PubMed DOI

Ansell S.M., Lesokhin A.M., Borrello I., Halwani A., Scott E.C., Gutierrez M., Schuster S.J., Millenson M.M., Cattry D., Freeman G.J., et al. PD-1 blockade with nivolumab in relapsed or refractory Hodgkin’s lymphoma. N. Engl. J. Med. 2015;372:311–319. doi: 10.1056/NEJMoa1411087. PubMed DOI PMC

Chen R., Zinzani P.L., Fanale M.A., Armand P., Johnson N.A., Brice P., Radford J., Ribrag V., Molin D., Vassilakopoulos T.P., et al. Phase II Study of the Efficacy and Safety of Pembrolizumab for Relapsed/Refractory Classic Hodgkin Lymphoma. J. Clin. Oncol. 2017;35:2125–2132. doi: 10.1200/JCO.2016.72.1316. PubMed DOI PMC

Kuruvilla J., Ramchandren R., Santoro A., Paszkiewicz-Kozik E., Gasiorowski R., Johnson N.A., Fogliatto L.M., Goncalves I., de Oliveira J.S.R., Buccheri V., et al. Pembrolizumab versus brentuximab vedotin in relapsed or refractory classical Hodgkin lymphoma (KEYNOTE-204): An interim analysis of a multicentre, randomised, open-label, phase 3 study. Lancet Oncol. 2021;22:512–524. doi: 10.1016/S1470-2045(21)00005-X. PubMed DOI

Wang M., Munoz J., Goy A., Locke F.L., Jacobson C.A., Hill B.T., Timmerman J.M., Holmes H., Jaglowski S., Flinn I.W., et al. KTE-X19 CAR T-Cell Therapy in Relapsed or Refractory Mantle-Cell Lymphoma. N. Engl. J. Med. 2020;382:1331–1342. doi: 10.1056/NEJMoa1914347. PubMed DOI PMC

Neelapu S.S., Locke F.L., Bartlett N.L., Lekakis L.J., Miklos D.B., Jacobson C.A., Braunschweig I., Oluwole O.O., Siddiqi T., Lin Y., et al. Axicabtagene Ciloleucel CAR T-Cell Therapy in Refractory Large B-Cell Lymphoma. N. Engl. J. Med. 2017;377:2531–2544. doi: 10.1056/NEJMoa1707447. PubMed DOI PMC

Abramson J.S., Palomba M.L., Gordon L.I., Lunning M.A., Wang M., Arnason J., Mehta A., Purev E., Maloney D.G., Andreadis C., et al. Lisocabtagene maraleucel for patients with relapsed or refractory large B-cell lymphomas (TRANSCEND NHL 001): A multicentre seamless design study. Lancet. 2020;396:839–852. doi: 10.1016/S0140-6736(20)31366-0. PubMed DOI

Schuster S.J., Bishop M.R., Tam C.S., Waller E.K., Borchmann P., McGuirk J.P., Jäger U., Jaglowski S., Andreadis C., Westin J.R., et al. Tisagenlecleucel in Adult Relapsed or Refractory Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2019;380:45–56. doi: 10.1056/NEJMoa1804980. PubMed DOI

DeVita V.T., Jr., Chu E. A history of cancer chemotherapy. Cancer Res. 2008;68:8643–8653. doi: 10.1158/0008-5472.CAN-07-6611. PubMed DOI

Schwartz R.S. Paul Ehrlich’s magic bullets. N. Engl. J. Med. 2004;350:1079–1080. doi: 10.1056/NEJMp048021. PubMed DOI

Maloney D.G., Grillo-Lopez A.J., Bodkin D.J., White C.A., Liles T.M., Royston I., Varns C., Rosenberg J., Levy R. IDEC-C2B8: Results of a phase I multiple-dose trial in patients with relapsed non-Hodgkin’s lymphoma. J. Clin. Oncol. 1997;15:3266–3274. doi: 10.1200/JCO.1997.15.10.3266. PubMed DOI

Maloney D.G., Grillo-Lopez A.J., White C.A., Bodkin D., Schilder R.J., Neidhart J.A., Janakiraman N., Foon K.A., Liles T.M., Dallaire B.K., et al. IDEC-C2B8 (Rituximab) anti-CD20 monoclonal antibody therapy in patients with relapsed low-grade non-Hodgkin’s lymphoma. Blood. 1997;90:2188–2195. doi: 10.1182/blood.V90.6.2188. PubMed DOI

Marcus R., Davies A., Ando K., Klapper W., Opat S., Owen C., Phillips E., Sangha R., Schlag R., Seymour J.F., et al. Obinutuzumab for the First-Line Treatment of Follicular Lymphoma. N. Engl. J. Med. 2017;377:1331–1344. doi: 10.1056/NEJMoa1614598. PubMed DOI

Weiner L.M., Dhodapkar M.V., Ferrone S. Monoclonal antibodies for cancer immunotherapy. Lancet. 2009;373:1033–1040. doi: 10.1016/S0140-6736(09)60251-8. PubMed DOI PMC

Tong J.T.W., Harris P.W.R., Brimble M.A., Kavianinia I. An Insight into FDA Approved Antibody-Drug Conjugates for Cancer Therapy. Molecules. 2021;26:5847. doi: 10.3390/molecules26195847. PubMed DOI PMC

Jin Y., Schladetsch M.A., Huang X., Balunas M.J., Wiemer A.J. Stepping forward in antibody-drug conjugate development. Pharmacol. Ther. 2021;229:107917. doi: 10.1016/j.pharmthera.2021.107917. PubMed DOI PMC

Bargh J.D., Isidro-Llobet A., Parker J.S., Spring D.R. Cleavable linkers in antibody-drug conjugates. Chem. Soc. Rev. 2019;48:4361–4374. doi: 10.1039/C8CS00676H. PubMed DOI

Maderna A., Leverett C.A. Recent advances in the development of new auristatins: Structural modifications and application in antibody drug conjugates. Mol. Pharm. 2015;12:1798–1812. doi: 10.1021/mp500762u. PubMed DOI

Bross P.F., Beitz J., Chen G., Chen X.H., Duffy E., Kieffer L., Roy S., Sridhara R., Rahman A., Williams G., et al. Approval summary: Gemtuzumab ozogamicin in relapsed acute myeloid leukemia. Clin. Cancer Res. 2001;7:1490–1496. PubMed

Norsworthy K.J., Ko C.W., Lee J.E., Liu J., John C.S., Przepiorka D., Farrell A.T., Pazdur R. FDA Approval Summary: Mylotarg for Treatment of Patients with Relapsed or Refractory CD33-Positive Acute Myeloid Leukemia. Oncologist. 2018;23:1103–1108. doi: 10.1634/theoncologist.2017-0604. PubMed DOI PMC

Younes A., Gopal A.K., Smith S.E., Ansell S.M., Rosenblatt J.D., Savage K.J., Ramchandren R., Bartlett N.L., Cheson B.D., de Vos S., et al. Results of a pivotal phase II study of brentuximab vedotin for patients with relapsed or refractory Hodgkin’s lymphoma. J. Clin. Oncol. 2012;30:2183–2189. doi: 10.1200/JCO.2011.38.0410. PubMed DOI PMC

Prince H.M., Kim Y.H., Horwitz S.M., Dummer R., Scarisbrick J., Quaglino P., Zinzani P.L., Wolter P., Sanches J.A., Ortiz-Romero P.L., et al. Brentuximab vedotin or physician’s choice in CD30-positive cutaneous T-cell lymphoma (ALCANZA): An international, open-label, randomised, phase 3, multicentre trial. Lancet. 2017;390:555–566. doi: 10.1016/S0140-6736(17)31266-7. PubMed DOI

Connors J.M., Jurczak W., Straus D.J., Ansell S.M., Kim W.S., Gallamini A., Younes A., Alekseev S., Illés Á., Picardi M., et al. Brentuximab Vedotin with Chemotherapy for Stage III or IV Hodgkin’s Lymphoma. N. Engl. J. Med. 2018;378:331–344. doi: 10.1056/NEJMoa1708984. PubMed DOI PMC

Forero-Torres A., Leonard J.P., Younes A., Rosenblatt J.D., Brice P., Bartlett N.L., Bosly A., Pinter-Brown L., Kennedy D., Sievers E.L., et al. A Phase II study of SGN-30 (anti-CD30 mAb) in Hodgkin lymphoma or systemic anaplastic large cell lymphoma. Br. J. Haematol. 2009;146:171–179. doi: 10.1111/j.1365-2141.2009.07740.x. PubMed DOI

DiJoseph J.F., Armellino D.C., Boghaert E.R., Khandke K., Dougher M.M., Sridharan L., Kunz A., Hamann P.R., Gorovits B., Udata C., et al. Antibody-targeted chemotherapy with CMC-544: A CD22-targeted immunoconjugate of calicheamicin for the treatment of B-lymphoid malignancies. Blood. 2004;103:1807–1814. doi: 10.1182/blood-2003-07-2466. PubMed DOI

Lamb Y.N. Inotuzumab Ozogamicin: First Global Approval. Drugs. 2017;77:1603–1610. doi: 10.1007/s40265-017-0802-5. PubMed DOI

Kantarjian H.M., DeAngelo D.J., Stelljes M., Martinelli G., Liedtke M., Stock W., Gökbuget N., O’Brien S., Wang K., Wang T., et al. Inotuzumab Ozogamicin versus Standard Therapy for Acute Lymphoblastic Leukemia. N. Engl. J. Med. 2016;375:740–753. doi: 10.1056/NEJMoa1509277. PubMed DOI PMC

DeAngelo D.J., Advani A.S., Marks D.I., Stelljes M., Liedtke M., Stock W., Gökbuget N., Jabbour E., Merchant A., Wang T., et al. Inotuzumab ozogamicin for relapsed/refractory acute lymphoblastic leukemia: Outcomes by disease burden. Blood Cancer J. 2020;10:81. doi: 10.1038/s41408-020-00345-8. PubMed DOI PMC

Dang N.H., Ogura M., Castaigne S., Fayad L.E., Jerkeman M., Radford J., Pezzutto A., Bondarenko I., Stewart D.A., Shnaidman M., et al. Randomized, phase 3 trial of inotuzumab ozogamicin plus rituximab versus chemotherapy plus rituximab for relapsed/refractory aggressive B-cell non-Hodgkin lymphoma. Br. J. Haematol. 2018;182:583–586. doi: 10.1111/bjh.14820. PubMed DOI PMC

Sehn L.H., Herrera A.F., Flowers C.R., Kamdar M.K., McMillan A., Hertzberg M., Assouline S., Kim T.M., Kim W.S., Ozcan M., et al. Polatuzumab Vedotin in Relapsed or Refractory Diffuse Large B-Cell Lymphoma. J. Clin. Oncol. 2020;38:155–165. doi: 10.1200/JCO.19.00172. PubMed DOI PMC

Tilly H., Morschhauser F., Sehn L.H., Friedberg J.W., Trněný M., Sharman J.P., Herbaux C., Burke J.M., Matasar M., Rai S., et al. Polatuzumab Vedotin in Previously Untreated Diffuse Large B-Cell Lymphoma. N. Engl. J. Med. 2021 doi: 10.1056/NEJMoa2115304. PubMed DOI

Goebeler M.E., Knop S., Viardot A., Kufer P., Topp M.S., Einsele H., Noppeney R., Hess G., Kallert S., Mackensen A., et al. Bispecific T-Cell Engager (BiTE) Antibody Construct Blinatumomab for the Treatment of Patients with Relapsed/Refractory Non-Hodgkin Lymphoma: Final Results From a Phase I Study. J. Clin. Oncol. 2016;34:1104–1111. doi: 10.1200/JCO.2014.59.1586. PubMed DOI

Maddocks K. The era of CD19-directed therapy in diffuse large B-cell lymphoma. Lancet Oncol. 2021;22:741–742. doi: 10.1016/S1470-2045(21)00191-1. PubMed DOI

Caimi P.F., Ai W., Alderuccio J.P., Ardeshna K.M., Hamadani M., Hess B., Kahl B.S., Radford J., Solh M., Stathis A., et al. Loncastuximab tesirine in relapsed or refractory diffuse large B-cell lymphoma (LOTIS-2): A multicentre, open-label, single-arm, phase 2 trial. Lancet Oncol. 2021;22:790–800. doi: 10.1016/S1470-2045(21)00139-X. PubMed DOI

Tolcher A.W. The Evolution of Antibody-Drug Conjugates: A Positive Inflexion Point. Am. Soc. Clin. Oncol. Educ. Book. 2020;40:1–8. doi: 10.1200/EDBK_281103. PubMed DOI

Weidle U.H., Tiefenthaler G., Georges G. Proteases as activators for cytotoxic prodrugs in antitumor therapy. Cancer Genom. Proteom. 2014;11:67–79. PubMed

Hinrichs M.J.M., Ryan P.M., Zheng B., Afif-Rider S., Yu X.Q., Gunsior M., Zhong H., Harper J., Bezabeh B., Vashisht K., et al. Fractionated Dosing Improves Preclinical Therapeutic Index of Pyrrolobenzodiazepine-Containing Antibody Drug Conjugates. Clin. Cancer Res. 2017;23:5858–5868. doi: 10.1158/1078-0432.CCR-17-0219. PubMed DOI

Cui B., Ghia E.M., Chen L., Rassenti L.Z., DeBoever C., Widhopf G.F., 2nd, Yu J., Neuberg D.S., Wierda W.G., Rai K.R., et al. High-level ROR1 associates with accelerated disease progression in chronic lymphocytic leukemia. Blood. 2016;128:2931–2940. doi: 10.1182/blood-2016-04-712562. PubMed DOI PMC

Vaisitti T., Arruga F., Vitale N., Lee T.T., Ko M., Chadburn A., Braggio E., Di Napoli A., Iannello A., Allan J.N., et al. ROR1 targeting with the antibody-drug conjugate VLS-101 is effective in Richter syndrome patient-derived xenograft mouse models. Blood. 2021;137:3365–3377. doi: 10.1182/blood.2020008404. PubMed DOI PMC

Desnoyers L.R., Vasiljeva O., Richardson J.H., Yang A., Menendez E.E., Liang T.W., Wong C., Bessette P.H., Kamath K., Moore S.J., et al. Tumor-specific activation of an EGFR-targeting probody enhances therapeutic index. Sci. Transl. Med. 2013;5:207ra144. doi: 10.1126/scitranslmed.3006682. PubMed DOI

Bodyak N.D., Mosher R., Yurkovetskiy A.V., Yin M., Bu C., Conlon P.R., Demady D.R., DeVit M.J., Gumerov D.R., Gurijala V.R., et al. The Dolaflexin-based Antibody-Drug Conjugate XMT-1536 Targets the Solid Tumor Lineage Antigen SLC34A2/NaPi2b. Mol. Cancer Ther. 2021;20:896–905. doi: 10.1158/1535-7163.MCT-20-0183. PubMed DOI

Yurkovetskiy A.V., Bodyak N.D., Yin M., Thomas J.D., Clardy S.M., Conlon P.R., Stevenson C.A., Uttard A., Qin L., Gumerov D.R., et al. Dolaflexin: A Novel Antibody-Drug Conjugate Platform Featuring High Drug Loading and a Controlled Bystander Effect. Mol. Cancer Ther. 2021;20:885–895. doi: 10.1158/1535-7163.MCT-20-0166. PubMed DOI

Hu E.Y., Do P., Goswami S., Nunes J., Chiang C.L., Elgamal S., Ventura A.M., Cheney C., Zapolnik K., Williams E., et al. The ROR1 antibody-drug conjugate huXBR1-402-G5-PNU effectively targets ROR1+ leukemia. Blood Adv. 2021;5:3152–3162. doi: 10.1182/bloodadvances.2020003276. PubMed DOI PMC

Prince H.M., Duvic M., Martin A., Sterry W., Assaf C., Sun Y., Straus D., Acosta M., Negro-Vilar A. Phase III placebo-controlled trial of denileukin diftitox for patients with cutaneous T-cell lymphoma. J. Clin. Oncol. 2010;28:1870–1877. doi: 10.1200/JCO.2009.26.2386. PubMed DOI

Kawai H., Ando K., Maruyama D., Yamamoto K., Kiyohara E., Terui Y., Fukuhara N., Miyagaki T., Tokura Y., Sakata-Yanagimoto M., et al. Phase II study of E7777 in Japanese patients with relapsed/refractory peripheral and cutaneous T-cell lymphoma. Cancer Sci. 2021;112:2426–2435. doi: 10.1111/cas.14906. PubMed DOI PMC

Dhillon S. Moxetumomab Pasudotox: First Global Approval. Drugs. 2018;78:1763–1767. doi: 10.1007/s40265-018-1000-9. PubMed DOI PMC

Kreitman R.J., Dearden C., Zinzani P.L., Delgado J., Karlin L., Robak T., Gladstone D.E., le Coutre P., Dietrich S., Gotic M., et al. Moxetumomab pasudotox in relapsed/refractory hairy cell leukemia. Leukemia. 2018;32:1768–1777. doi: 10.1038/s41375-018-0210-1. PubMed DOI PMC

Matsumura Y., Maeda H. A new concept for macromolecular therapeutics in cancer chemotherapy: Mechanism of tumoritropic accumulation of proteins and the antitumor agent smancs. Cancer Res. 1986;46:6387–6392. PubMed

Elbayoumi T.A., Torchilin V.P. Current trends in liposome research. Methods Mol. Biol. 2010;605:1–27. doi: 10.1007/978-1-60327-360-2_1. PubMed DOI

Maeda H., Wu J., Sawa T., Matsumura Y., Hori K. Tumor vascular permeability and the EPR effect in macromolecular therapeutics: A review. J. Control. Release. 2000;65:271–284. doi: 10.1016/S0168-3659(99)00248-5. PubMed DOI

Bozzuto G., Molinari A. Liposomes as nanomedical devices. Int. J. Nanomed. 2015;10:975–999. doi: 10.2147/IJN.S68861. PubMed DOI PMC

Deshantri A.K., Varela Moreira A., Ecker V., Mandhane S.N., Schiffelers R.M., Buchner M., Fens M. Nanomedicines for the treatment of hematological malignancies. J. Control. Release. 2018;287:194–215. doi: 10.1016/j.jconrel.2018.08.034. PubMed DOI

Monfardini C., Veronese F.M. Stabilization of substances in circulation. Bioconjug. Chem. 1998;9:418–450. doi: 10.1021/bc970184f. PubMed DOI

Olusanya T.O.B., Haj Ahmad R.R., Ibegbu D.M., Smith J.R., Elkordy A.A. Liposomal Drug Delivery Systems and Anticancer Drugs. Molecules. 2018;23:907. doi: 10.3390/molecules23040907. PubMed DOI PMC

Visani G., Isidori A. Doxorubicin variants for hematological malignancies. Nanomedicine. 2011;6:303–306. doi: 10.2217/nnm.10.152. PubMed DOI

Houshmand M., Garello F., Circosta P., Stefania R., Aime S., Saglio G., Giachino C. Nanocarriers as Magic Bullets in the Treatment of Leukemia. Nanomaterials. 2020;10:276. doi: 10.3390/nano10020276. PubMed DOI PMC

Bulbake U., Doppalapudi S., Kommineni N., Khan W. Liposomal Formulations in Clinical Use: An Updated Review. Pharmaceutics. 2017;9:12. doi: 10.3390/pharmaceutics9020012. PubMed DOI PMC

Sercombe L., Veerati T., Moheimani F., Wu S.Y., Sood A.K., Hua S. Advances and Challenges of Liposome Assisted Drug Delivery. Front. Pharmacol. 2015;6:286. doi: 10.3389/fphar.2015.00286. PubMed DOI PMC

Briuglia M.L., Rotella C., McFarlane A., Lamprou D.A. Influence of cholesterol on liposome stability and on in vitro drug release. Drug Deliv. Transl. Res. 2015;5:231–242. doi: 10.1007/s13346-015-0220-8. PubMed DOI

Zylberberg C., Matosevic S. Pharmaceutical liposomal drug delivery: A review of new delivery systems and a look at the regulatory landscape. Drug Deliv. 2016;23:3319–3329. doi: 10.1080/10717544.2016.1177136. PubMed DOI

Mu L.M., Ju R.J., Liu R., Bu Y.Z., Zhang J.Y., Li X.Q., Zeng F., Lu W.L. Dual-functional drug liposomes in treatment of resistant cancers. Adv. Drug Deliv. Rev. 2017;115:46–56. doi: 10.1016/j.addr.2017.04.006. PubMed DOI

Avilés A., Neri N., Castañeda C., Talavera A., Huerta-Guzmán J., González M. Pegylated liposomal doxorubicin in combination chemotherapy in the treatment of previously untreated aggressive diffuse large-B-cell lymphoma. Med. Oncol. 2002;19:55–58. doi: 10.1385/MO:19:1:55. PubMed DOI

Tahover E., Patil Y.P., Gabizon A.A. Emerging delivery systems to reduce doxorubicin cardiotoxicity and improve therapeutic index: Focus on liposomes. Anticancer Drugs. 2015;26:241–258. doi: 10.1097/CAD.0000000000000182. PubMed DOI

Dawidczyk C.M., Kim C., Park J.H., Russell L.M., Lee K.H., Pomper M.G., Searson P.C. State-of-the-art in design rules for drug delivery platforms: Lessons learned from FDA-approved nanomedicines. J. Control. Release. 2014;187:133–144. doi: 10.1016/j.jconrel.2014.05.036. PubMed DOI PMC

Barenholz Y. Doxil®--the first FDA-approved nano-drug: Lessons learned. J. Control. Release. 2012;160:117–134. doi: 10.1016/j.jconrel.2012.03.020. PubMed DOI

Lancet J.E., Uy G.L., Newell L.F., Lin T.L., Ritchie E.K., Stuart R.K., Strickland S.A., Hogge D., Solomon S.R., Bixby D.L., et al. CPX-351 versus 7+3 cytarabine and daunorubicin chemotherapy in older adults with newly diagnosed high-risk or secondary acute myeloid leukaemia: 5-year results of a randomised, open-label, multicentre, phase 3 trial. Lancet Haematol. 2021;8:e481–e491. doi: 10.1016/S2352-3026(21)00134-4. PubMed DOI

Lancet J.E., Uy G.L., Cortes J.E., Newell L.F., Lin T.L., Ritchie E.K., Stuart R.K., Strickland S.A., Hogge D., Solomon S.R., et al. CPX-351 (cytarabine and daunorubicin) Liposome for Injection Versus Conventional Cytarabine Plus Daunorubicin in Older Patients with Newly Diagnosed Secondary Acute Myeloid Leukemia. J. Clin. Oncol. 2018;36:2684–2692. doi: 10.1200/JCO.2017.77.6112. PubMed DOI PMC

Blair H.A. Daunorubicin/Cytarabine Liposome: A Review in Acute Myeloid Leukaemia. Drugs. 2018;78:1903–1910. doi: 10.1007/s40265-018-1022-3. PubMed DOI PMC

Mayer L.D., Tardi P., Louie A.C. CPX-351: A nanoscale liposomal co-formulation of daunorubicin and cytarabine with unique biodistribution and tumor cell uptake properties. Int. J. Nanomed. 2019;14:3819–3830. doi: 10.2147/IJN.S139450. PubMed DOI PMC

Visco C., Pregnolato F., Ferrarini I., De Marco B., Bonuomo V., Sbisà E., Fraenza C., Bernardelli A., Tanasi I., Quaglia F.M., et al. Efficacy of R-COMP in comparison to R-CHOP in patients with DLBCL: A systematic review and single-arm metanalysis. Crit. Rev. Oncol. Hematol. 2021;163:103377. doi: 10.1016/j.critrevonc.2021.103377. PubMed DOI

Sancho J.M., Fernández-Alvarez R., Gual-Capllonch F., González-García E., Grande C., Gutiérrez N., Peñarrubia M.J., Batlle-López A., González-Barca E., Guinea J.M., et al. R-COMP versus R-CHOP as first-line therapy for diffuse large B-cell lymphoma in patients ≥60 years: Results of a randomized phase 2 study from the Spanish GELTAMO group. Cancer Med. 2021;10:1314–1326. doi: 10.1002/cam4.3730. PubMed DOI PMC

Fridrik M.A., Jaeger U., Petzer A., Willenbacher W., Keil F., Lang A., Andel J., Burgstaller S., Krieger O., Oberaigner W., et al. Cardiotoxicity with rituximab, cyclophosphamide, non-pegylated liposomal doxorubicin, vincristine and prednisolone compared to rituximab, cyclophosphamide, doxorubicin, vincristine, and prednisolone in frontline treatment of patients with diffuse large B-cell lymphoma: A randomised phase-III study from the Austrian Cancer Drug Therapy Working Group [Arbeitsgemeinschaft Medikamentöse Tumortherapie AGMT](NHL-14) Eur. J. Cancer. 2016;58:112–121. doi: 10.1016/j.ejca.2016.02.004. PubMed DOI

Moskowitz A.J., Shah G., Schöder H., Ganesan N., Drill E., Hancock H., Davey T., Perez L., Ryu S., Sohail S., et al. Phase II Trial of Pembrolizumab Plus Gemcitabine, Vinorelbine, and Liposomal Doxorubicin as Second-Line Therapy for Relapsed or Refractory Classical Hodgkin Lymphoma. J. Clin. Oncol. 2021;39:3109–3117. doi: 10.1200/JCO.21.01056. PubMed DOI PMC

Mei Q., Zhang W., Liu Y., Yang Q., Rasko J.E.J., Nie J., Liu J., Li X., Dong L., Chen M., et al. Camrelizumab Plus Gemcitabine, Vinorelbine, and Pegylated Liposomal Doxorubicin in Relapsed/Refractory Primary Mediastinal B-Cell Lymphoma: A Single-Arm, Open-Label, Phase II Trial. Clin. Cancer Res. 2020;26:4521–4530. doi: 10.1158/1078-0432.CCR-20-0514. PubMed DOI

Vu K., Wu C.H., Yang C.Y., Zhan A., Cavallone E., Berry W., Heeter P., Pincus L., Wieduwilt M.J., William B.M., et al. Romidepsin Plus Liposomal Doxorubicin Is Safe and Effective in Patients with Relapsed or Refractory T-Cell Lymphoma: Results of a Phase I Dose-Escalation Study. Clin. Cancer Res. 2020;26:1000–1008. doi: 10.1158/1078-0432.CCR-19-2152. PubMed DOI

Wang L., Chen X.Q., Xia Z.J. New tricks for old drugs: Combination of rituximab and two nanoparticle-delivered chemotherapy drugs, albumin-bound paclitaxel and pegylated liposomal doxorubicin, in the treatment of relapsed/refractory diffuse large B cell lymphoma. Leuk. Lymphoma. 2020;61:2502–2506. doi: 10.1080/10428194.2020.1775206. PubMed DOI

Kaplan L.D., Deitcher S.R., Silverman J.A., Morgan G. Phase II study of vincristine sulfate liposome injection (Marqibo) and rituximab for patients with relapsed and refractory diffuse large B-Cell lymphoma or mantle cell lymphoma in need of palliative therapy. Clin. Lymphoma Myeloma Leuk. 2014;14:37–42. doi: 10.1016/j.clml.2013.09.009. PubMed DOI

Hagemeister F., Rodriguez M.A., Deitcher S.R., Younes A., Fayad L., Goy A., Dang N.H., Forman A., McLaughlin P., Medeiros L.J., et al. Long term results of a phase 2 study of vincristine sulfate liposome injection (Marqibo(®) ) substituted for non-liposomal vincristine in cyclophosphamide, doxorubicin, vincristine, prednisone with or without rituximab for patients with untreated aggressive non-Hodgkin lymphomas. Br. J. Haematol. 2013;162:631–638. doi: 10.1111/bjh.12446. PubMed DOI

Wang D., Sun Y., Liu Y., Meng F., Lee R.J. Clinical translation of immunoliposomes for cancer therapy: Recent perspectives. Expert Opin. Drug Deliv. 2018;15:893–903. doi: 10.1080/17425247.2018.1517747. PubMed DOI

Merino M., Zalba S., Garrido M.J. Immunoliposomes in clinical oncology: State of the art and future perspectives. J. Control. Release. 2018;275:162–176. doi: 10.1016/j.jconrel.2018.02.015. PubMed DOI

Sun H., Zhu X., Lu P.Y., Rosato R.R., Tan W., Zu Y. Oligonucleotide aptamers: New tools for targeted cancer therapy. Mol. Ther. Nucleic Acids. 2014;3:e182. doi: 10.1038/mtna.2014.32. PubMed DOI PMC

Pasut G., Veronese F.M. PEG conjugates in clinical development or use as anticancer agents: An overview. Adv. Drug Deliv. Rev. 2009;61:1177–1188. doi: 10.1016/j.addr.2009.02.010. PubMed DOI

Pasut G., Veronese F.M. State of the art in PEGylation: The great versatility achieved after forty years of research. J. Control. Release. 2012;161:461–472. doi: 10.1016/j.jconrel.2011.10.037. PubMed DOI

Viegas T.X., Bentley M.D., Harris J.M., Fang Z., Yoon K., Dizman B., Weimer R., Mero A., Pasut G., Veronese F.M. Polyoxazoline: Chemistry, properties, and applications in drug delivery. Bioconjug. Chem. 2011;22:976–986. doi: 10.1021/bc200049d. PubMed DOI

Hoelzer D., Leiske M.N., Hartlieb M., Bus T., Pretzel D., Hoeppener S., Kempe K., Thierbach R., Schubert U.S. Tumor targeting with pH-responsive poly(2-oxazoline)-based nanogels for metronomic doxorubicin treatment. Oncotarget. 2018;9:22316–22331. doi: 10.18632/oncotarget.24806. PubMed DOI PMC

Zahoranová A., Luxenhofer R. Poly(2-oxazoline)- and Poly(2-oxazine)-Based Self-Assemblies, Polyplexes, and Drug Nanoformulations-An Update. Adv. Healthc. Mater. 2021;10:e2001382. doi: 10.1002/adhm.202001382. PubMed DOI

Kopeček J., Yang J. Polymer nanomedicines. Adv. Drug Deliv. Rev. 2020;156:40–64. doi: 10.1016/j.addr.2020.07.020. PubMed DOI PMC

Chytil P., Kostka L., Etrych T. HPMA Copolymer-Based Nanomedicines in Controlled Drug Delivery. J. Pers. Med. 2021;11:115. doi: 10.3390/jpm11020115. PubMed DOI PMC

Lidický O., Klener P., Machová D., Vočková P., Pokorná E., Helman K., Mavis C., Janoušková O., Etrych T. Overcoming resistance to rituximab in relapsed non-Hodgkin lymphomas by antibody-polymer drug conjugates actively targeted by anti-CD38 daratumumab. J. Control. Release. 2020;328:160–170. doi: 10.1016/j.jconrel.2020.08.042. PubMed DOI

Etrych T., Daumová L., Pokorná E., Tušková D., Lidický O., Kolářová V., Pankrác J., Šefc L., Chytil P., Klener P. Effective doxorubicin-based nano-therapeutics for simultaneous malignant lymphoma treatment and lymphoma growth imaging. J. Control. Release. 2018;289:44–55. doi: 10.1016/j.jconrel.2018.09.018. PubMed DOI

Wiesing U. Theranostics: Is it really a revolution? Evaluating a new term in medicine. Med. Health Care Philos. 2019;22:593–597. doi: 10.1007/s11019-019-09898-3. PubMed DOI

Yordanova A., Eppard E., Kürpig S., Bundschuh R.A., Schönberger S., Gonzalez-Carmona M., Feldmann G., Ahmadzadehfar H., Essler M. Theranostics in nuclear medicine practice. Onco Targets Ther. 2017;10:4821–4828. doi: 10.2147/OTT.S140671. PubMed DOI PMC

Seidlin S.M., Rossman I. Radioiodine therapy of metastases from carcinoma of the thyroid; a 6-year progress report. J. Clin. Endocrinol. Metab. 1949;9:1122–1137. doi: 10.1210/jcem-9-11-1122. PubMed DOI

Allen H.C., Jr., Libby R.L., Cassen B. The scintillation counter in clinical studies of human thyroid physiology using I131. J. Clin. Endocrinol. Metab. 1951;11:492–511. doi: 10.1210/jcem-11-5-492. PubMed DOI

Morris M.J., Bono J.S.D., Chi K.N., Fizazi K., Herrmann K., Rahbar K., Tagawa S.T., Nordquist L.T., Vaishampayan N., El-Haddad G., et al. Phase III study of lutetium-177-PSMA-617 in patients with metastatic castration-resistant prostate cancer (VISION) J. Clin. Oncol. 2021;39:LBA4. doi: 10.1200/JCO.2021.39.15_suppl.LBA4. PubMed DOI

Czernin J., Calais J. (177)Lu-PSMA617 and the VISION Trial: One of the Greatest Success Stories in the History of Nuclear Medicine. J. Nucl. Med. 2021;62:1025–1026. doi: 10.2967/jnumed.121.262710. PubMed DOI

Kang L., Li C., Rosenkrans Z.T., Huo N., Chen Z., Ehlerding E.B., Huo Y., Ferreira C.A., Barnhart T.E., Engle J.W., et al. CD38-Targeted Theranostics of Lymphoma with (89)Zr/(177)Lu-Labeled Daratumumab. Adv. Sci. 2021;8:2001879. doi: 10.1002/advs.202001879. PubMed DOI PMC

Skarbnik A.P., Smith M.R. Radioimmunotherapy in mantle cell lymphoma. Best Pract. Res. Clin. Haematol. 2012;25:201–210. doi: 10.1016/j.beha.2012.04.004. PubMed DOI PMC

Kaminski M.S., Tuck M., Estes J., Kolstad A., Ross C.W., Zasadny K., Regan D., Kison P., Fisher S., Kroll S., et al. 131I-tositumomab therapy as initial treatment for follicular lymphoma. N. Engl. J. Med. 2005;352:441–449. doi: 10.1056/NEJMoa041511. PubMed DOI

Buchsbaum D.J. CD38 pretargeted RIT of B-cell tumors. Blood. 2018;131:589–590. doi: 10.1182/blood-2017-12-819011. PubMed DOI PMC

Green D.J., O’Steen S., Lin Y., Comstock M.L., Kenoyer A.L., Hamlin D.K., Wilbur D.S., Fisher D.R., Nartea M., Hylarides M.D., et al. CD38-bispecific antibody pretargeted radioimmunotherapy for multiple myeloma and other B-cell malignancies. Blood. 2018;131:611–620. doi: 10.1182/blood-2017-09-807610. PubMed DOI PMC

Dun Y., Huang G., Liu J., Wei W. ImmunoPET imaging of hematological malignancies: From preclinical promise to clinical reality. Drug Discov. Today. 2021 doi: 10.1016/j.drudis.2021.11.019. PubMed DOI

Wei W., Rosenkrans Z.T., Liu J., Huang G., Luo Q.Y., Cai W. ImmunoPET: Concept, Design, and Applications. Chem. Rev. 2020;120:3787–3851. doi: 10.1021/acs.chemrev.9b00738. PubMed DOI PMC

Kahle X.U., Montes de Jesus F.M., Glaudemans A., Lub-de Hooge M.N., Jorritsma-Smit A., Plattel W.J., van Meerten T., Diepstra A., van den Berg A., Kwee T.C., et al. Molecular imaging in lymphoma beyond (18)F-FDG-PET: Understanding the biology and its implications for diagnostics and therapy. Lancet Haematol. 2020;7:e479–e489. doi: 10.1016/S2352-3026(20)30065-X. PubMed DOI

Muylle K., Flamen P., Vugts D.J., Guiot T., Ghanem G., Meuleman N., Bourgeois P., Vanderlinden B., van Dongen G.A., Everaert H., et al. Tumour targeting and radiation dose of radioimmunotherapy with (90)Y-rituximab in CD20+ B-cell lymphoma as predicted by (89)Zr-rituximab immuno-PET: Impact of preloading with unlabelled rituximab. Eur. J. Nucl. Med. Mol. Imaging. 2015;42:1304–1314. doi: 10.1007/s00259-015-3025-6. PubMed DOI PMC

Schottelius M., Osl T., Poschenrieder A., Hoffmann F., Beykan S., Hänscheid H., Schirbel A., Buck A.K., Kropf S., Schwaiger M., et al. [(177)Lu]pentixather: Comprehensive Preclinical Characterization of a First CXCR4-directed Endoradiotherapeutic Agent. Theranostics. 2017;7:2350–2362. doi: 10.7150/thno.19119. PubMed DOI PMC

Lapa C., Hänscheid H., Kircher M., Schirbel A., Wunderlich G., Werner R.A., Samnick S., Kotzerke J., Einsele H., Buck A.K., et al. Feasibility of CXCR4-Directed Radioligand Therapy in Advanced Diffuse Large B-Cell Lymphoma. J. Nucl. Med. 2019;60:60–64. doi: 10.2967/jnumed.118.210997. PubMed DOI

Paul D.M., Ghiuzeli C.M., Rini J., Palestro C.J., Fung E.K., Ghali M., Ben-Levi E., Prideaux A., Vallabhajosula S., Popa E.C. A pilot study treatment of malignant tumors using low-dose (18)F-fluorodeoxyglucose ((18)F-FDG) Am. J. Nucl. Med. Mol. Imaging. 2020;10:334–341. PubMed PMC

Anani T., Rahmati S., Sultana N., David A.E. MRI-traceable theranostic nanoparticles for targeted cancer treatment. Theranostics. 2021;11:579–601. doi: 10.7150/thno.48811. PubMed DOI PMC

Li F., Liang Z., Liu J., Sun J., Hu X., Zhao M., Liu J., Bai R., Kim D., Sun X., et al. Dynamically Reversible Iron Oxide Nanoparticle Assemblies for Targeted Amplification of T1-Weighted Magnetic Resonance Imaging of Tumors. Nano Lett. 2019;19:4213–4220. doi: 10.1021/acs.nanolett.8b04411. PubMed DOI

Yang L., Wang L., Huang G., Zhang X., Chen L., Li A., Gao J., Zhou Z., Su L., Yang H., et al. Improving the sensitivity of T (1) contrast-enhanced MRI and sensitive diagnosing tumors with ultralow doses of MnO octahedrons. Theranostics. 2021;11:6966–6982. doi: 10.7150/thno.59096. PubMed DOI PMC

Cai X., Zhu Q., Zeng Y., Zeng Q., Chen X., Zhan Y. Manganese Oxide Nanoparticles As MRI Contrast Agents In Tumor Multimodal Imaging And Therapy. Int. J. Nanomed. 2019;14:8321–8344. doi: 10.2147/IJN.S218085. PubMed DOI PMC

Howell M., Mallela J., Wang C., Ravi S., Dixit S., Garapati U., Mohapatra S. Manganese-loaded lipid-micellar theranostics for simultaneous drug and gene delivery to lungs. J. Control. Release. 2013;167:210–218. doi: 10.1016/j.jconrel.2013.01.029. PubMed DOI PMC

Wang D., Lin H., Zhang G., Si Y., Yang H., Bai G., Yang C., Zhong K., Cai D., Wu Z., et al. Effective pH-Activated Theranostic Platform for Synchronous Magnetic Resonance Imaging Diagnosis and Chemotherapy. ACS Appl. Mater. Interfaces. 2018;10:31114–31123. doi: 10.1021/acsami.8b11408. PubMed DOI

Klenk C., Gawande R., Uslu L., Khurana A., Qiu D., Quon A., Donig J., Rosenberg J., Luna-Fineman S., Moseley M., et al. Ionising radiation-free whole-body MRI versus (18)F-fluorodeoxyglucose PET/CT scans for children and young adults with cancer: A prospective, non-randomised, single-centre study. Lancet Oncol. 2014;15:275–285. doi: 10.1016/S1470-2045(14)70021-X. PubMed DOI

Zhi D., Yang T., Yang J., Fu S., Zhang S. Targeting strategies for superparamagnetic iron oxide nanoparticles in cancer therapy. Acta Biomater. 2020;102:13–34. doi: 10.1016/j.actbio.2019.11.027. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...