Isosteric and nonisosteric base pairs in RNA motifs: molecular dynamics and bioinformatics study of the sarcin-ricin internal loop
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem
Grantová podpora
R01 GM085328
NIGMS NIH HHS - United States
5R01GM085328-03
NIGMS NIH HHS - United States
PubMed
24144333
PubMed Central
PMC3946555
DOI
10.1021/jp408530w
Knihovny.cz E-zdroje
- MeSH
- konformace nukleové kyseliny MeSH
- nukleotidové motivy MeSH
- párování bází MeSH
- RNA ribozomální chemie metabolismus MeSH
- RNA chemie metabolismus MeSH
- rozpouštědla chemie MeSH
- simulace molekulární dynamiky MeSH
- vodíková vazba MeSH
- výpočetní biologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Názvy látek
- RNA ribozomální MeSH
- RNA MeSH
- rozpouštědla MeSH
The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.
Zobrazit více v PubMed
Moazed D, Stern S, Noller HF. Rapid Chemical Probing Of Conformation In 16 S Ribosomal RNA And 30 S Ribosomal Subunits Using Primer Extension. J. Mol. Biol. 1986;187:399–416. PubMed
Michel F, Westhof E. Modelling Of The Three-Dimensional Architecture Of Group I Catalytic Introns Based On Comparative Sequence Analysis. J. Mol. Biol. 1990;216:585–610. PubMed
Leontis NB, Westhof E. Analysis Of RNA Motifs. Curr. Opin. Struct. Biol. 2003;13:300–308. PubMed
Lescoute A, Leontis NB, Massire C, Westhof E. Recurrent Structural RNA Motifs, Isostericity Matrices And Sequence Alignments. Nucl. Acids Res. 2005;33:2395–2409. PubMed PMC
Leontis NB, Westhof E. A Common Motif Organizes The Structure Of Multi-Helix Loops In 16 S And 23 S Ribosomal Rnas. J. Mol. Biol. 1998;283:571–583. PubMed
Leontis N, Stombaugh J, Westhof E. Motif Prediction In Ribosomal Rnas Lessons And Prospects For Automated Motif Prediction In Homologous RNA Molecules. Biochemie. 2002;84:961–973. PubMed
Gutell RR, Schnare MN, Gray MW. A Compilation Of Large Subunit (23S- And 23S-Like) Ribosomal RNA Structures. Nucl. Acids Res. 1992;20:2095–2109. PubMed PMC
Endo Y, Mitsui K, Motizuki M, Tsurugi K. The Mechanism Of Action Of Ricin And Related Toxic Lectins On Eukaryotic Ribosomes. The Site And The Characteristics Of The Modification In 28 S Ribosomal RNA Caused By The Toxins. J. Biol. Chem. 1987;262:5908–5912. PubMed
Qin S, Zhou H-X. Dissection Of The High Rate Constant For The Binding Of A Ribotoxin To The Ribosome. PNAS. 2009;106:6974–6979. PubMed PMC
Lacadena J, Álvarez-García E, Carreras-Sangrá N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez Del Pozo Á. Fungal Ribotoxins: Molecular Dissection Of A Family Of Natural Killers. FEMS Microbiol. Rev. 2007;31:212–237. PubMed
Schindler DG, Davies JE. Specific Cleavage Of Ribosomal RNA Caused By Alpha Sarcin. Nucl. Acids Res. 1977;4:1097–1110. PubMed PMC
Endo Y, Tsurugi K. RNA N-Glycosidase Activity Of Ricin A-Chain. Mechanism Of Action Of The Toxic Lectin Ricin On Eukaryotic Ribosomes. J. Biol. Chem. 1987;262:8128–8130. PubMed
Glück A, Endo Y, Wool IG. Ribosomal RNA Identity Elements For Ricin A-Chain Recognition And Catalysis: Analysis With Tetraloop Mutants. J. Mol. Biol. 1992;226:411–424. PubMed
Munishkin A, Wool IG. The Ribosome-In-Pieces: Binding Of Elongation Factor EF-G To Oligoribonucleotides That Mimic The Sarcin/Ricin And Thiostrepton Domains Of 23S Ribosomal RNA. Proc. Natl. Acad. Sci. 1997;94:12280–12284. PubMed PMC
Pérez-Cañadillas JM, Santoro J, Campos-Olivas R, Lacadena J, MartíhNez Del Pozo A, Gavilanes JG, Rico M, Bruix M. The Highly Refined Solution Structure Of The Cytotoxic Ribonuclease A-Sarcin Reveals The Structural Requirements For Substrate Recognition And Ribonucleolytic Activity. J. Mol. Biol. 2000;299:1061–1073. PubMed
Yang X, Gérczei T, Glover L, Correll CC. Crystal Structures Of Restrictocin–Inhibitor Complexes With Implications For RNA Recognition And Base Flipping. Nat. Struct. Biol. 2001;8:968–973. PubMed
Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan Y-L. The Common And The Distinctive Features Of The Bulged-G Motif Based On A 1.04 Å Resolution RNA Structure. Nucl. Acids Res. 2003;31:6806–6818. PubMed PMC
Hausner T-P, Atmadja J, Nierhaus KH. Evidence That The G2661 Region Of 23S Rrna Is Located At The Ribosomal Binding Sites Of Both Elongation Factors. Biochemie. 1987;69:911–923. PubMed
Moazed D, Robertson JM, Noller HF. Interaction Of Elongation Factors EF-G And EF-Tu With A Conserved Loop In 23S RNA. Nature. 1988;334:362–364. PubMed
Klein DJ, Schmeing TM, Moore PB, Steitz TA. The Kink-Turn: A New RNA Secondary Structure Motif. EMBO J. 2001;20:4214–4221. PubMed PMC
Chan Y-L, Correll CC, Wool IG. The Location And The Significance Of A Cross-Link Between The Sarcin/Ricin Domain Of Ribosomal RNA And The Elongation Factor-G. J. Mol. Biol. 2004;337:263–272. PubMed
Lancaster L, Lambert NJ, Maklan EJ, Horan LH, Noller HF. The Sarcin–Ricin Loop Of 23S Rrna Is Essential For Assembly Of The Functional Core Of The 50S Ribosomal Subunit. RNA. 2008;14:1999–2012. PubMed PMC
Macbeth MR, Wool IG. The Phenotype Of Mutations Of G2655 In The Sarcin/Ricin Domain Of 23 S Ribosomal RNA. J. Mol. Biol. 1999;285:965–975. PubMed
Chan Y-L, Sitikov AS, Wool IG. The Phenotype Of Mutations Of The Base-Pair C2658·G2663 That Closes The Tetraloop In The Sarcin/Ricin Domain Of Escherichia Coli 23 S Ribosomal RNA. J. Mol. Biol. 2000;298:795–805. PubMed
Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. FR3D: Finding Local And Composite Recurrent Structural Motifs In RNA 3D Structures. J. Math. Biol. 2008;56:215–252. PubMed PMC
Petrov AI, Zirbel CL, Leontis NB. Webfr3d—A Server For Finding, Aligning And Analyzing Recurrent RNA 3D Motifs. Nucl. Acids Res. 2011;39:W50–W55. PubMed PMC
Garst AD, Héroux A, Rambo RP, Batey RT. Crystal Structure Of The Lysine Riboswitch Regulatory Mrna Element. J. Biol. Chem. 2008;283:22347–22351. PubMed PMC
Serganov A, Huang L, Patel DJ. Structural Insights Into Amino Acid Binding And Gene Control By A Lysine Riboswitch. Nature. 2008;455:1263–1267. PubMed PMC
Garst AD, Porter EB, Batey RT. Insights Into The Regulatory Landscape Of The Lysine Riboswitch. J. Mol. Biol. 2012;423:17–33. PubMed PMC
Correll CC, Wool IG, Munishkin A. The Two Faces Of The Escherichia Coli 23 S Rrna Sarcin/Ricin Domain: The Structure At 1.11 Å Resolution. J. Mol. Biol. 1999;292:275–287. PubMed
Leontis NB, Stombaugh J, Westhof E. The Non-Watson-Crick Base Pairs And Their Associated Isostericity Matrices. Nucl. Acids Res. 2002;30:3497–3531. PubMed PMC
Stombaugh J, Zirbel CL, Westhof E, Leontis NB. Frequency And Isostericity Of RNA Base Pairs. Nucl. Acids Res. 2009;37:2294–2312. PubMed PMC
Šponer J, Šponer JE, Petrov AI, Leontis NB. Quantum Chemical Studies Of Nucleic Acids: Can We Construct A Bridge To The RNA Structural Biology And Bioinformatics Communities? J. Phys. Chem. B. 2010;114:15723–15741. PubMed PMC
Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Classification And Energetics Of The Base-Phosphate Interactions In RNA. Nucl. Acids Res. 2009;37:4898–4918. PubMed PMC
Spacková N, Sponer J. Molecular Dynamics Simulations Of Sarcin-Ricin Rrna Motif. Nucl. Acids Res. 2006;34:697–708. PubMed PMC
Sklenovský P, Florová P, Banáš P, Réblová K, Lankaš F, Otyepka M, Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal And Group I Intron Reverse Kink-Turn Motifs. J. Chem. Theory Comput. 2011;7:2963–2980. PubMed
Réblová K, Fadrná E, Sarzynska J, Kulinski T, Kulhánek P, Ennifar E, Koča J, Šponer J. Conformations Of Flanking Bases In HIV-1 RNA DIS Kissing Complexes Studied By Molecular Dynamics. Biophys. J. 2007;93:3932–3949. PubMed PMC
Réblová K, Špačková N, Štefl R, Csaszar K, Koča J, Leontis NB, Šponer J. Non-Watson-Crick Basepairing And Hydration In RNA Motifs: Molecular Dynamics Of 5S Rrna Loop E. Biophys. J. 2003;84:3564–3582. PubMed PMC
Ditzler M, Otyepka M, Sponer J, Walter N. Molecular Dynamics And Quantum Mechanics Of RNA: Conformational And Chemical Change We Can Believe In. Acc. Chem. Res. 2010;43:40–47. PubMed PMC
Orozco M, Noy A, Pérez A. Recent Advances In The Study Of Nucleic Acid Flexibility By Molecular Dynamics. Curr. Opin. Struct. Biol. 2008;18:185–193. PubMed
Sanbonmatsu KY. Computational Studies Of Molecular Machines: The Ribosome. Curr. Opin. Struct. Biol. 2012;22:168–174. PubMed PMC
Goh GB, Knight JL, Brooks CL. Ph-Dependent Dynamics Of Complex RNA Macromolecules. J. Chem. Theory Comput. 2013;9:935–943. PubMed PMC
Wolf A, Baumann S, Arndt H-D, Kirschner KN. Influence Of Thiostrepton Binding On The Ribosomal Gtpase Associated Region Characterized By Molecular Dynamics Simulation. Bioorg. Med. Chem. 2012;20:7194–7205. PubMed
Jung S, Schlick T. Candidate RNA Structures For Domain 3 Of The Foot-And-Mouth-Disease Virus Internal Ribosome Entry Site. Nucl. Acids Res. 2013;41:1483–1495. PubMed PMC
Romanowska J, Mccammon JA, Trylska J. Understanding The Origins Of Bacterial Resistance To Aminoglycosides Through Molecular Dynamics Mutational Study Of The Ribosomal A-Site. Plos Comput. Biol. 2011;7:E1002099. PubMed PMC
Do TN, Carloni P, Varani G, Bussi G. RNA/Peptide Binding Driven By Electrostatics—Insight From Bidirectional Pulling Simulations. J. Chem. Theory Comput. 2013;9:1720–1730. PubMed
Caulfield T, Devkota B. Motion Of Transfer RNA From The A/T State Into The A-Site Using Docking And Simulations. Proteins: Struct., Funct., Bioinf. 2012;80:2489–2500. PubMed
White KH, Orzechowski M, Fourmy D, Visscher K. Mechanical Unfolding Of The Beet Western Yellow Virus −1 Frameshift Signal. J. Am. Chem. Soc. 2011;133:9775–9782. PubMed
Veeraraghavan N, Ganguly A, Chen J-H, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal Binding Motif In The Active Site Of The HDV Ribozyme Binds Divalent And Monovalent Ions. Biochemistry. 2011;50:2672–2682. PubMed PMC
Sethaphong L, Singh A, Marlowe AE, Yingling YG. The Sequence Of HIV-1 TAR RNA Helix Controls Cationic Distribution†. J. Phys. Chem. C. 2010;114:5506–5512.
Lee T-S, Giambaru GM, Harris ME, York DM. Characterization Of The Structure And Dynamics Of The HDV Ribozyme In Different Stages Along The Reaction Path. J. Phys. Chem. Lett. 2011;2:2538–2543. PubMed PMC
Klein DJ, Moore PB, Steitz TA. The Roles Of Ribosomal Proteins In The Structure Assembly, And Evolution Of The Large Ribosomal Subunit. J. Mol. Biol. 2004;340:141–177. PubMed
Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, et al. RNA Backbone: Consensus All-Angle Conformers And Modular String Nomenclature (An RNA Ontology Consortium Contribution) RNA. 2008;14:465–481. PubMed PMC
Lu X-J, Olson WK, Bussemaker HJ. The RNA Backbone Plays A Crucial Role In Mediating The Intrinsic Stability Of The Gpu Dinucleotide Platform And The Gpupa/Gpa Miniduplex. Nucl. Acids Res. 2010;38:4868–4876. PubMed PMC
Mládek A, Šponer JE, Kulhánek P, Lu X-J, Olson WK, Šponer J. Understanding The Sequence Preference Of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J. Chem. Theory Comput. 2011;8:335–347. PubMed PMC
Duarte CM, Wadley LM, Pyle AM. RNA Structure Comparison, Motif Search And Discovery Using A Reduced Representation Of RNA Conformational Space. Nucl. Acids Res. 2003;31:4755–4761. PubMed PMC
Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing And Web-Based Tools. Nucl. Acids Res. 2012;41:D590–D596. PubMed PMC
Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen, Greengenes GL. A Chimera-Checked 16S Rrna Gene Database And Workbench Compatible With ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. PubMed PMC
Petrov AI, Zirbel CL, Leontis NB. Automated Classification Of RNA 3D Motifs And The RNA 3D Motif Atlas. RNA. 2013 In Press. PubMed PMC
Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, et al. The Comparative RNA Web (CRW) Site: An Online Database Of Comparative Sequence And Structure Information For Ribosomal, Intron, And Other Rnas. BMC Bioinf. 2002;3:2. PubMed PMC
Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A Second Generation Force Field For The Simulation Of Proteins, Nucleic Acids, And Organic Molecules. J. Am. Chem. Soc. 1995;117:5179–5197.
Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, 3rd, Laughton CA, Orozco M. Refinement Of The AMBER Force Field For Nucleic Acids: Improving The Description Of Alpha/Gamma Conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC
Zgarbová M, Otyepka M, Sponer J, Mládek A, Banáš P, Cheatham TE, 3rd, Jurečka P. Refinement Of The Cornell Et Al. Nucleic Acids Force Field Based On Reference Quantum Chemical Calculations Of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC
Banáš P, Hollas D, Zgarbová M, Jurečka P, Orozco M, Cheatham TE, Šponer J, Otyepka M. Performance Of Molecular Mechanics Force Fields For RNA Simulations: Stability Of UUCG And GNRA Hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC
Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison Of Simple Potential Functions For Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935.
Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations Of A-RNA Duplexes. The Effect Of Sequence, Solute Force Field, Water Model, And Salt Concentration. J. Phys. Chem. B. 2012;116:9899–9916. PubMed
Case D, Darden T, Cheatham, Simmerling C, Wang J, Duke R, Luo R, Crowley M, Walker R, Zhang W, et al. AMBER 10. University Of California; San Francisco, CA: 2008.
Darden T, York D, Pedersen L. Particle Mesh Ewald: An N·Log(N) Method For Ewald Sums In Large Systems. J. Chem. Phys. 1993;98:10089–10092.
Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593.
Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical Integration Of The Cartesian Equations Of Motion Of A System With Constraints: Molecular Dynamics Of N-Alkanes. J. Comput. Phys. 1977:327–341.
Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular Dynamics With Coupling To An External Bath. J. Chem. Phys. 1984;81:3684–3690.
[Acceessed July 9, 2013];Eterna Home Page. Http://Eterna.Cmu.Edu/Web/
Das R. Stanford University; Stanford, CA: 2013. Personal Communication.
Deigan KE, Li TW, Mathews DH, Weeks KM. Accurate SHAPE-Directed RNA Structure Determination. PNAS. 2009;106:97–102. PubMed PMC
Davis IW, Murray LW, Richardson JS, Richardson DC. Molprobity: Structure Validation And All-Atom Contact Analysis For Nucleic Acids And Their Complexes. Nucl. Acids Res. 2004;32:W615–W619. PubMed PMC
Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, et al. Molprobity: All-Atom Contacts And Structure Validation For Proteins And Nucleic Acids. Nucl. Acids Res. 2007;35:W375–W383. PubMed PMC
Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. Molprobity: All-Atom Structure Validation For Macromolecular Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC
Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. 27–28. PubMed
Williams T, Kelley C. Gnuplot 4.4: An Interactive Plotting Program. 2010.
Khisamutdinov E, Sweeney B, Leontis N. Context-Sensitivity Of Isosteric Substitutions Of Non-Watson-Crick Basepairs In Recurrent RNA 3D Motifs. 2013. PubMed PMC
Chen C, Jiang L, Michalczyk R, Russu IM. Structural Energetics And Base-Pair Opening Dynamics In Sarcin-Ricin Domain RNA. Biochemistry. 2006;45:13606–13613. PubMed
Kührová P, Banáš P, Best RB, Šponer J, Otyepka M. Computer Folding Of RNA Tetraloops? Are We There Yet? J. Chem. Theory Comput. 2013;9:2115–2125. PubMed
Henriksen NM, Roe DR, Cheatham TE. Reliable Oligonucleotide Conformational Ensemble Generation In Explicit Solvent For Force Field Assessment Using Reservoir Replica Exchange Molecular Dynamics Simulations. J. Phys. Chem. B. 2013;117:4014–4027. PubMed PMC
Banáš P, Sklenovský P, Wedekind JE, Šponer J, Otyepka M. Molecular Mechanism Of Preq1 Riboswitch Action: A Molecular Dynamics Study. J. Phys. Chem. B. 2012;116:12721–12734. PubMed PMC
Faustino I, Pérez A, Orozco M. Toward A Consensus View Of Duplex RNA Flexibility. Biophys. J. 2010;99:1876–1885. PubMed PMC
Bida JP, Das R. Squaring Theory With Practice In RNA Design. Curr. Opin. Struct. Biol. 2012;22:457–466. PubMed
Sripakdeevong P, Beauchamp K, Das R. Why Can’t We Predict RNA Structure At Atomic Resolution? In: Leontis N, Westhof E, editors. RNA 3D Structure Analysis And Prediction. Nucleic Acids And Molecular Biology. Vol. 27. Springer; Berlin Heidelberg: 2012. pp. 43–65.
Zhong C, Zhang S. Clustering RNA Structural Motifs In Ribosomal Rnas Using Secondary Structural Alignment. Nucl. Acids Res. 2011;40 PubMed PMC
RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview