Isosteric and nonisosteric base pairs in RNA motifs: molecular dynamics and bioinformatics study of the sarcin-ricin internal loop

. 2013 Nov 21 ; 117 (46) : 14302-19. [epub] 20131112

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, Research Support, N.I.H., Extramural, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid24144333

Grantová podpora
R01 GM085328 NIGMS NIH HHS - United States
5R01GM085328-03 NIGMS NIH HHS - United States

The sarcin-ricin RNA motif (SR motif) is one of the most prominent recurrent RNA building blocks that occurs in many different RNA contexts and folds autonomously, that is, in a context-independent manner. In this study, we combined bioinformatics analysis with explicit-solvent molecular dynamics (MD) simulations to better understand the relation between the RNA sequence and the evolutionary patterns of the SR motif. A SHAPE probing experiment was also performed to confirm the fidelity of the MD simulations. We identified 57 instances of the SR motif in a nonredundant subset of the RNA X-ray structure database and analyzed their base pairing, base-phosphate, and backbone-backbone interactions. We extracted sequences aligned to these instances from large rRNA alignments to determine the frequency of occurrence for different sequence variants. We then used a simple scoring scheme based on isostericity to suggest 10 sequence variants with a highly variable expected degree of compatibility with the SR motif 3D structure. We carried out MD simulations of SR motifs with these base substitutions. Nonisosteric base substitutions led to unstable structures, but so did isosteric substitutions which were unable to make key base-phosphate interactions. The MD technique explains why some potentially isosteric SR motifs are not realized during evolution. We also found that the inability to form stable cWW geometry is an important factor in the case of the first base pair of the flexible region of the SR motif. A comparison of structural, bioinformatics, SHAPE probing, and MD simulation data reveals that explicit solvent MD simulations neatly reflect the viability of different sequence variants of the SR motif. Thus, MD simulations can efficiently complement bioinformatics tools in studies of conservation patterns of RNA motifs and provide atomistic insight into the role of their different signature interactions.

Zobrazit více v PubMed

Moazed D, Stern S, Noller HF. Rapid Chemical Probing Of Conformation In 16 S Ribosomal RNA And 30 S Ribosomal Subunits Using Primer Extension. J. Mol. Biol. 1986;187:399–416. PubMed

Michel F, Westhof E. Modelling Of The Three-Dimensional Architecture Of Group I Catalytic Introns Based On Comparative Sequence Analysis. J. Mol. Biol. 1990;216:585–610. PubMed

Leontis NB, Westhof E. Analysis Of RNA Motifs. Curr. Opin. Struct. Biol. 2003;13:300–308. PubMed

Lescoute A, Leontis NB, Massire C, Westhof E. Recurrent Structural RNA Motifs, Isostericity Matrices And Sequence Alignments. Nucl. Acids Res. 2005;33:2395–2409. PubMed PMC

Leontis NB, Westhof E. A Common Motif Organizes The Structure Of Multi-Helix Loops In 16 S And 23 S Ribosomal Rnas. J. Mol. Biol. 1998;283:571–583. PubMed

Leontis N, Stombaugh J, Westhof E. Motif Prediction In Ribosomal Rnas Lessons And Prospects For Automated Motif Prediction In Homologous RNA Molecules. Biochemie. 2002;84:961–973. PubMed

Gutell RR, Schnare MN, Gray MW. A Compilation Of Large Subunit (23S- And 23S-Like) Ribosomal RNA Structures. Nucl. Acids Res. 1992;20:2095–2109. PubMed PMC

Endo Y, Mitsui K, Motizuki M, Tsurugi K. The Mechanism Of Action Of Ricin And Related Toxic Lectins On Eukaryotic Ribosomes. The Site And The Characteristics Of The Modification In 28 S Ribosomal RNA Caused By The Toxins. J. Biol. Chem. 1987;262:5908–5912. PubMed

Qin S, Zhou H-X. Dissection Of The High Rate Constant For The Binding Of A Ribotoxin To The Ribosome. PNAS. 2009;106:6974–6979. PubMed PMC

Lacadena J, Álvarez-García E, Carreras-Sangrá N, Herrero-Galán E, Alegre-Cebollada J, García-Ortega L, Oñaderra M, Gavilanes JG, Martínez Del Pozo Á. Fungal Ribotoxins: Molecular Dissection Of A Family Of Natural Killers. FEMS Microbiol. Rev. 2007;31:212–237. PubMed

Schindler DG, Davies JE. Specific Cleavage Of Ribosomal RNA Caused By Alpha Sarcin. Nucl. Acids Res. 1977;4:1097–1110. PubMed PMC

Endo Y, Tsurugi K. RNA N-Glycosidase Activity Of Ricin A-Chain. Mechanism Of Action Of The Toxic Lectin Ricin On Eukaryotic Ribosomes. J. Biol. Chem. 1987;262:8128–8130. PubMed

Glück A, Endo Y, Wool IG. Ribosomal RNA Identity Elements For Ricin A-Chain Recognition And Catalysis: Analysis With Tetraloop Mutants. J. Mol. Biol. 1992;226:411–424. PubMed

Munishkin A, Wool IG. The Ribosome-In-Pieces: Binding Of Elongation Factor EF-G To Oligoribonucleotides That Mimic The Sarcin/Ricin And Thiostrepton Domains Of 23S Ribosomal RNA. Proc. Natl. Acad. Sci. 1997;94:12280–12284. PubMed PMC

Pérez-Cañadillas JM, Santoro J, Campos-Olivas R, Lacadena J, MartíhNez Del Pozo A, Gavilanes JG, Rico M, Bruix M. The Highly Refined Solution Structure Of The Cytotoxic Ribonuclease A-Sarcin Reveals The Structural Requirements For Substrate Recognition And Ribonucleolytic Activity. J. Mol. Biol. 2000;299:1061–1073. PubMed

Yang X, Gérczei T, Glover L, Correll CC. Crystal Structures Of Restrictocin–Inhibitor Complexes With Implications For RNA Recognition And Base Flipping. Nat. Struct. Biol. 2001;8:968–973. PubMed

Correll CC, Beneken J, Plantinga MJ, Lubbers M, Chan Y-L. The Common And The Distinctive Features Of The Bulged-G Motif Based On A 1.04 Å Resolution RNA Structure. Nucl. Acids Res. 2003;31:6806–6818. PubMed PMC

Hausner T-P, Atmadja J, Nierhaus KH. Evidence That The G2661 Region Of 23S Rrna Is Located At The Ribosomal Binding Sites Of Both Elongation Factors. Biochemie. 1987;69:911–923. PubMed

Moazed D, Robertson JM, Noller HF. Interaction Of Elongation Factors EF-G And EF-Tu With A Conserved Loop In 23S RNA. Nature. 1988;334:362–364. PubMed

Klein DJ, Schmeing TM, Moore PB, Steitz TA. The Kink-Turn: A New RNA Secondary Structure Motif. EMBO J. 2001;20:4214–4221. PubMed PMC

Chan Y-L, Correll CC, Wool IG. The Location And The Significance Of A Cross-Link Between The Sarcin/Ricin Domain Of Ribosomal RNA And The Elongation Factor-G. J. Mol. Biol. 2004;337:263–272. PubMed

Lancaster L, Lambert NJ, Maklan EJ, Horan LH, Noller HF. The Sarcin–Ricin Loop Of 23S Rrna Is Essential For Assembly Of The Functional Core Of The 50S Ribosomal Subunit. RNA. 2008;14:1999–2012. PubMed PMC

Macbeth MR, Wool IG. The Phenotype Of Mutations Of G2655 In The Sarcin/Ricin Domain Of 23 S Ribosomal RNA. J. Mol. Biol. 1999;285:965–975. PubMed

Chan Y-L, Sitikov AS, Wool IG. The Phenotype Of Mutations Of The Base-Pair C2658·G2663 That Closes The Tetraloop In The Sarcin/Ricin Domain Of Escherichia Coli 23 S Ribosomal RNA. J. Mol. Biol. 2000;298:795–805. PubMed

Sarver M, Zirbel CL, Stombaugh J, Mokdad A, Leontis NB. FR3D: Finding Local And Composite Recurrent Structural Motifs In RNA 3D Structures. J. Math. Biol. 2008;56:215–252. PubMed PMC

Petrov AI, Zirbel CL, Leontis NB. Webfr3d—A Server For Finding, Aligning And Analyzing Recurrent RNA 3D Motifs. Nucl. Acids Res. 2011;39:W50–W55. PubMed PMC

Garst AD, Héroux A, Rambo RP, Batey RT. Crystal Structure Of The Lysine Riboswitch Regulatory Mrna Element. J. Biol. Chem. 2008;283:22347–22351. PubMed PMC

Serganov A, Huang L, Patel DJ. Structural Insights Into Amino Acid Binding And Gene Control By A Lysine Riboswitch. Nature. 2008;455:1263–1267. PubMed PMC

Garst AD, Porter EB, Batey RT. Insights Into The Regulatory Landscape Of The Lysine Riboswitch. J. Mol. Biol. 2012;423:17–33. PubMed PMC

Correll CC, Wool IG, Munishkin A. The Two Faces Of The Escherichia Coli 23 S Rrna Sarcin/Ricin Domain: The Structure At 1.11 Å Resolution. J. Mol. Biol. 1999;292:275–287. PubMed

Leontis NB, Stombaugh J, Westhof E. The Non-Watson-Crick Base Pairs And Their Associated Isostericity Matrices. Nucl. Acids Res. 2002;30:3497–3531. PubMed PMC

Stombaugh J, Zirbel CL, Westhof E, Leontis NB. Frequency And Isostericity Of RNA Base Pairs. Nucl. Acids Res. 2009;37:2294–2312. PubMed PMC

Šponer J, Šponer JE, Petrov AI, Leontis NB. Quantum Chemical Studies Of Nucleic Acids: Can We Construct A Bridge To The RNA Structural Biology And Bioinformatics Communities? J. Phys. Chem. B. 2010;114:15723–15741. PubMed PMC

Zirbel CL, Sponer JE, Sponer J, Stombaugh J, Leontis NB. Classification And Energetics Of The Base-Phosphate Interactions In RNA. Nucl. Acids Res. 2009;37:4898–4918. PubMed PMC

Spacková N, Sponer J. Molecular Dynamics Simulations Of Sarcin-Ricin Rrna Motif. Nucl. Acids Res. 2006;34:697–708. PubMed PMC

Sklenovský P, Florová P, Banáš P, Réblová K, Lankaš F, Otyepka M, Šponer J. Understanding RNA Flexibility Using Explicit Solvent Simulations: The Ribosomal And Group I Intron Reverse Kink-Turn Motifs. J. Chem. Theory Comput. 2011;7:2963–2980. PubMed

Réblová K, Fadrná E, Sarzynska J, Kulinski T, Kulhánek P, Ennifar E, Koča J, Šponer J. Conformations Of Flanking Bases In HIV-1 RNA DIS Kissing Complexes Studied By Molecular Dynamics. Biophys. J. 2007;93:3932–3949. PubMed PMC

Réblová K, Špačková N, Štefl R, Csaszar K, Koča J, Leontis NB, Šponer J. Non-Watson-Crick Basepairing And Hydration In RNA Motifs: Molecular Dynamics Of 5S Rrna Loop E. Biophys. J. 2003;84:3564–3582. PubMed PMC

Ditzler M, Otyepka M, Sponer J, Walter N. Molecular Dynamics And Quantum Mechanics Of RNA: Conformational And Chemical Change We Can Believe In. Acc. Chem. Res. 2010;43:40–47. PubMed PMC

Orozco M, Noy A, Pérez A. Recent Advances In The Study Of Nucleic Acid Flexibility By Molecular Dynamics. Curr. Opin. Struct. Biol. 2008;18:185–193. PubMed

Sanbonmatsu KY. Computational Studies Of Molecular Machines: The Ribosome. Curr. Opin. Struct. Biol. 2012;22:168–174. PubMed PMC

Goh GB, Knight JL, Brooks CL. Ph-Dependent Dynamics Of Complex RNA Macromolecules. J. Chem. Theory Comput. 2013;9:935–943. PubMed PMC

Wolf A, Baumann S, Arndt H-D, Kirschner KN. Influence Of Thiostrepton Binding On The Ribosomal Gtpase Associated Region Characterized By Molecular Dynamics Simulation. Bioorg. Med. Chem. 2012;20:7194–7205. PubMed

Jung S, Schlick T. Candidate RNA Structures For Domain 3 Of The Foot-And-Mouth-Disease Virus Internal Ribosome Entry Site. Nucl. Acids Res. 2013;41:1483–1495. PubMed PMC

Romanowska J, Mccammon JA, Trylska J. Understanding The Origins Of Bacterial Resistance To Aminoglycosides Through Molecular Dynamics Mutational Study Of The Ribosomal A-Site. Plos Comput. Biol. 2011;7:E1002099. PubMed PMC

Do TN, Carloni P, Varani G, Bussi G. RNA/Peptide Binding Driven By Electrostatics—Insight From Bidirectional Pulling Simulations. J. Chem. Theory Comput. 2013;9:1720–1730. PubMed

Caulfield T, Devkota B. Motion Of Transfer RNA From The A/T State Into The A-Site Using Docking And Simulations. Proteins: Struct., Funct., Bioinf. 2012;80:2489–2500. PubMed

White KH, Orzechowski M, Fourmy D, Visscher K. Mechanical Unfolding Of The Beet Western Yellow Virus −1 Frameshift Signal. J. Am. Chem. Soc. 2011;133:9775–9782. PubMed

Veeraraghavan N, Ganguly A, Chen J-H, Bevilacqua PC, Hammes-Schiffer S, Golden BL. Metal Binding Motif In The Active Site Of The HDV Ribozyme Binds Divalent And Monovalent Ions. Biochemistry. 2011;50:2672–2682. PubMed PMC

Sethaphong L, Singh A, Marlowe AE, Yingling YG. The Sequence Of HIV-1 TAR RNA Helix Controls Cationic Distribution†. J. Phys. Chem. C. 2010;114:5506–5512.

Lee T-S, Giambaru GM, Harris ME, York DM. Characterization Of The Structure And Dynamics Of The HDV Ribozyme In Different Stages Along The Reaction Path. J. Phys. Chem. Lett. 2011;2:2538–2543. PubMed PMC

Klein DJ, Moore PB, Steitz TA. The Roles Of Ribosomal Proteins In The Structure Assembly, And Evolution Of The Large Ribosomal Subunit. J. Mol. Biol. 2004;340:141–177. PubMed

Richardson JS, Schneider B, Murray LW, Kapral GJ, Immormino RM, Headd JJ, Richardson DC, Ham D, Hershkovits E, Williams LD, et al. RNA Backbone: Consensus All-Angle Conformers And Modular String Nomenclature (An RNA Ontology Consortium Contribution) RNA. 2008;14:465–481. PubMed PMC

Lu X-J, Olson WK, Bussemaker HJ. The RNA Backbone Plays A Crucial Role In Mediating The Intrinsic Stability Of The Gpu Dinucleotide Platform And The Gpupa/Gpa Miniduplex. Nucl. Acids Res. 2010;38:4868–4876. PubMed PMC

Mládek A, Šponer JE, Kulhánek P, Lu X-J, Olson WK, Šponer J. Understanding The Sequence Preference Of Recurrent RNA Building Blocks Using Quantum Chemistry: The Intrastrand RNA Dinucleotide Platform. J. Chem. Theory Comput. 2011;8:335–347. PubMed PMC

Duarte CM, Wadley LM, Pyle AM. RNA Structure Comparison, Motif Search And Discovery Using A Reduced Representation Of RNA Conformational Space. Nucl. Acids Res. 2003;31:4755–4761. PubMed PMC

Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, Peplies J, Glockner FO. The SILVA Ribosomal RNA Gene Database Project: Improved Data Processing And Web-Based Tools. Nucl. Acids Res. 2012;41:D590–D596. PubMed PMC

Desantis TZ, Hugenholtz P, Larsen N, Rojas M, Brodie EL, Keller K, Huber T, Dalevi D, Hu P, Andersen, Greengenes GL. A Chimera-Checked 16S Rrna Gene Database And Workbench Compatible With ARB. Appl. Environ. Microbiol. 2006;72:5069–5072. PubMed PMC

Petrov AI, Zirbel CL, Leontis NB. Automated Classification Of RNA 3D Motifs And The RNA 3D Motif Atlas. RNA. 2013 In Press. PubMed PMC

Cannone JJ, Subramanian S, Schnare MN, Collett JR, D’Souza LM, Du Y, Feng B, Lin N, Madabusi LV, Müller KM, et al. The Comparative RNA Web (CRW) Site: An Online Database Of Comparative Sequence And Structure Information For Ribosomal, Intron, And Other Rnas. BMC Bioinf. 2002;3:2. PubMed PMC

Cornell WD, Cieplak P, Bayly CI, Gould IR, Merz KM, Ferguson DM, Spellmeyer DC, Fox T, Caldwell JW, Kollman PA. A Second Generation Force Field For The Simulation Of Proteins, Nucleic Acids, And Organic Molecules. J. Am. Chem. Soc. 1995;117:5179–5197.

Pérez A, Marchán I, Svozil D, Sponer J, Cheatham TE, 3rd, Laughton CA, Orozco M. Refinement Of The AMBER Force Field For Nucleic Acids: Improving The Description Of Alpha/Gamma Conformers. Biophys. J. 2007;92:3817–3829. PubMed PMC

Zgarbová M, Otyepka M, Sponer J, Mládek A, Banáš P, Cheatham TE, 3rd, Jurečka P. Refinement Of The Cornell Et Al. Nucleic Acids Force Field Based On Reference Quantum Chemical Calculations Of Glycosidic Torsion Profiles. J. Chem. Theory Comput. 2011;7:2886–2902. PubMed PMC

Banáš P, Hollas D, Zgarbová M, Jurečka P, Orozco M, Cheatham TE, Šponer J, Otyepka M. Performance Of Molecular Mechanics Force Fields For RNA Simulations: Stability Of UUCG And GNRA Hairpins. J. Chem. Theory Comput. 2010;6:3836–3849. PubMed PMC

Jorgensen WL, Chandrasekhar J, Madura JD, Impey RW, Klein ML. Comparison Of Simple Potential Functions For Simulating Liquid Water. J. Chem. Phys. 1983;79:926–935.

Beššeová I, Banáš P, Kührová P, Košinová P, Otyepka M, Šponer J. Simulations Of A-RNA Duplexes. The Effect Of Sequence, Solute Force Field, Water Model, And Salt Concentration. J. Phys. Chem. B. 2012;116:9899–9916. PubMed

Case D, Darden T, Cheatham, Simmerling C, Wang J, Duke R, Luo R, Crowley M, Walker R, Zhang W, et al. AMBER 10. University Of California; San Francisco, CA: 2008.

Darden T, York D, Pedersen L. Particle Mesh Ewald: An N·Log(N) Method For Ewald Sums In Large Systems. J. Chem. Phys. 1993;98:10089–10092.

Essmann U, Perera L, Berkowitz ML, Darden T, Lee H, Pedersen LG. A Smooth Particle Mesh Ewald Method. J. Chem. Phys. 1995;103:8577–8593.

Ryckaert J-P, Ciccotti G, Berendsen HJ. Numerical Integration Of The Cartesian Equations Of Motion Of A System With Constraints: Molecular Dynamics Of N-Alkanes. J. Comput. Phys. 1977:327–341.

Berendsen HJC, Postma JPM, Van Gunsteren WF, Dinola A, Haak JR. Molecular Dynamics With Coupling To An External Bath. J. Chem. Phys. 1984;81:3684–3690.

[Acceessed July 9, 2013];Eterna Home Page. Http://Eterna.Cmu.Edu/Web/

Das R. Stanford University; Stanford, CA: 2013. Personal Communication.

Deigan KE, Li TW, Mathews DH, Weeks KM. Accurate SHAPE-Directed RNA Structure Determination. PNAS. 2009;106:97–102. PubMed PMC

Davis IW, Murray LW, Richardson JS, Richardson DC. Molprobity: Structure Validation And All-Atom Contact Analysis For Nucleic Acids And Their Complexes. Nucl. Acids Res. 2004;32:W615–W619. PubMed PMC

Davis IW, Leaver-Fay A, Chen VB, Block JN, Kapral GJ, Wang X, Murray LW, Arendall WB, Snoeyink J, Richardson JS, et al. Molprobity: All-Atom Contacts And Structure Validation For Proteins And Nucleic Acids. Nucl. Acids Res. 2007;35:W375–W383. PubMed PMC

Chen VB, Arendall WB, 3rd, Headd JJ, Keedy DA, Immormino RM, Kapral GJ, Murray LW, Richardson JS, Richardson DC. Molprobity: All-Atom Structure Validation For Macromolecular Crystallography. Acta Crystallogr. D Biol. Crystallogr. 2010;66:12–21. PubMed PMC

Humphrey W, Dalke A, Schulten K. VMD: Visual Molecular Dynamics. J. Mol. Graph. 1996;14:33–38. 27–28. PubMed

Williams T, Kelley C. Gnuplot 4.4: An Interactive Plotting Program. 2010.

Khisamutdinov E, Sweeney B, Leontis N. Context-Sensitivity Of Isosteric Substitutions Of Non-Watson-Crick Basepairs In Recurrent RNA 3D Motifs. 2013. PubMed PMC

Chen C, Jiang L, Michalczyk R, Russu IM. Structural Energetics And Base-Pair Opening Dynamics In Sarcin-Ricin Domain RNA. Biochemistry. 2006;45:13606–13613. PubMed

Kührová P, Banáš P, Best RB, Šponer J, Otyepka M. Computer Folding Of RNA Tetraloops? Are We There Yet? J. Chem. Theory Comput. 2013;9:2115–2125. PubMed

Henriksen NM, Roe DR, Cheatham TE. Reliable Oligonucleotide Conformational Ensemble Generation In Explicit Solvent For Force Field Assessment Using Reservoir Replica Exchange Molecular Dynamics Simulations. J. Phys. Chem. B. 2013;117:4014–4027. PubMed PMC

Banáš P, Sklenovský P, Wedekind JE, Šponer J, Otyepka M. Molecular Mechanism Of Preq1 Riboswitch Action: A Molecular Dynamics Study. J. Phys. Chem. B. 2012;116:12721–12734. PubMed PMC

Faustino I, Pérez A, Orozco M. Toward A Consensus View Of Duplex RNA Flexibility. Biophys. J. 2010;99:1876–1885. PubMed PMC

Bida JP, Das R. Squaring Theory With Practice In RNA Design. Curr. Opin. Struct. Biol. 2012;22:457–466. PubMed

Sripakdeevong P, Beauchamp K, Das R. Why Can’t We Predict RNA Structure At Atomic Resolution? In: Leontis N, Westhof E, editors. RNA 3D Structure Analysis And Prediction. Nucleic Acids And Molecular Biology. Vol. 27. Springer; Berlin Heidelberg: 2012. pp. 43–65.

Zhong C, Zhang S. Clustering RNA Structural Motifs In Ribosomal Rnas Using Secondary Structural Alignment. Nucl. Acids Res. 2011;40 PubMed PMC

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

RNA Structural Dynamics As Captured by Molecular Simulations: A Comprehensive Overview

. 2018 Apr 25 ; 118 (8) : 4177-4338. [epub] 20180103

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...