Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
35000201
DOI
10.1111/nph.17952
Knihovny.cz E-zdroje
- Klíčová slova
- broadleaves, climate change, dendrometer, growth dynamics, temperate forest, vapour pressure deficit,
- MeSH
- buk (rod) * MeSH
- poréznost MeSH
- roční období MeSH
- stromy MeSH
- tlak par MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding the effects of temperature and moisture on radial growth is vital for assessing the impacts of climate change on carbon and water cycles. However, studies observing growth at sub-daily temporal scales remain scarce. We analysed sub-daily growth dynamics and its climatic drivers recorded by point dendrometers for 35 trees of three temperate broadleaved species during the years 2015-2020. We isolated irreversible growth driven by cambial activity from the dendrometer records. Next, we compared the intra-annual growth patterns among species and delimited their climatic optima. The growth of all species peaked at air temperatures between 12 and 16°C and vapour pressure deficit (VPD) below 0.1 kPa. Acer pseudoplatanus and Fagus sylvatica, both diffuse-porous, sustained growth under suboptimal VPD. Ring-porous Quercus robur experienced a steep decline of growth rates with reduced air humidity. This resulted in multiple irregular growth peaks of Q. robur during the year. By contrast, the growth patterns of the diffuse-porous species were always right-skewed unimodal with a peak in June between day of the year 150-170. Intra-annual growth patterns are shaped more by VPD than temperature. The different sensitivity of radial growth to VPD is responsible for unimodal growth patterns in both diffuse-porous species and multimodal growth pattern in Q. robur.
Zobrazit více v PubMed
Ameijeiras-Alonso J, Crujeiras RM, Rodriguez-Casal A. 2021. multimode: an R package for mode assessment. Journal of Statistical Software 97: 1-32.
Anderegg WRL, Klein T, Bartlett M, Sack L, Pellegrini AFA, Choat B, Jansen S. 2016. Meta-analysis reveals that hydraulic traits explain cross-species patterns of drought-induced tree mortality across the globe. Proceedings of the National Academy of Sciences, USA 113: 5024-5029.
Babst F, Bouriaud O, Poulter B, Trouet V, Girardin MP, Frank DC. 2019. Twentieth century redistribution in climatic drivers of global tree growth. Science Advances 5: eaat4313.
Backes K, Leuschner C. 2000. Leaf water relations of competitive Fagus sylvatica and Quercus petraea trees during 4 years differing in soil drought. Canadian Journal of Forest Research 30: 335-346.
Bates D, Mächler M, Bolker B, Walker S. 2015. Fitting linear mixed-effects models using lme4. Journal of Statistical Software 67: 1-48.
Becklin KM, Anderson JT, Gerhart LM, Wadgymar SM, Wessinger CA, Ward JK. 2016. Examining plant physiological responses to climate change through an evolutionary lens. Plant Physiology 172. doi: 10.1104/pp.16.00793.
Boé J, Somot S, Corre L, Nabat P. 2020. Large discrepancies in summer climate change over Europe as projected by global and regional climate models: causes and consequences. Climate Dynamics 54: 2981-3002.
Buras A, van der Maaten-Theunissen M, van der Maaten E, Ahlgrimm S, Hermann P, Simard S, Heinrich I, Helle G, Unterseher M, Schnittler M et al. 2016. Tuning the voices of a choir: detecting ecological gradients in time-series populations. PLoS ONE 11: e0158346.
Cabon A, Peters RL, Fonti P, Martínez-Vilalta J, De Cáceres M. 2020. Temperature and water potential co-limit stem cambial activity along a steep elevational gradient. New Phytologist 226: 1325-1340.
Camarero JJ, Gazol A, Sangüesa-Barreda G, Oliva J, Vicente-Serrano SM. 2015. To die or not to die: early warnings of tree dieback in response to a severe drought. Journal of Ecology 103: 44-57.
Campelo F, Gutiérrez E, Ribas M, Sánchez-Salguero R, Nabais C, Camarero JJ. 2018. The facultative bimodal growth pattern in Quercus ilex - a simple model to predict sub-seasonal and inter-annual growth. Dendrochronologia 49: 77-88.
Carrer M, Anfodillo T, Urbinati C, Carraro V. 1998. High-altitude forest sensitivity to global warming: results from long-term and short-term analyses in the Eastern Italian Alps. In: Beniston M, Innes JL, eds. The impacts of climate variability on forests. Berlin/Heidelberg, Germany: Springer-Verlag, 171-189.
Cherubini P, Gartner BL, Tognetti R, Bräker OU, Schoch W, Innes JL. 2003. Identification, measurement and interpretation of tree rings in woody species from Mediterranean climates. Biological Reviews of the Cambridge Philosophical Society 78: 119-148.
Ciais PH, Reichstein M, Viovy N, Granier A, Ogée J, Allard V, Aubinet M, Buchmann N, Bernhofer C, Carrara A et al. 2005. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 437: 529-533.
Cienciala E, Altman J, Doležal J, Kopáček J, Štěpánek P, Ståhl G, Tumajer J. 2018. Increased spruce tree growth in Central Europe since 1960s. Science of the Total Environment 619-620: 1637-1647.
Cook ER, Solomina O, Matskovsky V, Cook BI, Agafonov L, Berdnikova A, Dolgova E, Karpukhin A, Knysh N, Kulakova M et al. 2020. The European Russia drought atlas (1400-2016 CE). Climate Dynamics 54: 2317-2335.
Cuny HE, Rathgeber CBK, Kiessé TS, Hartmann FP, Barbeito I, Fournier M. 2013. Generalized additive models reveal the intrinsic complexity of wood formation dynamics. Journal of Experimental Botany 64: 1983-1994.
Cuny HE, Rathgeber CBK, Frank D, Fonti P, Mäkinen H, Prislan P, Rossi S, del Castillo EM, Campelo F, Vavrčík H et al. 2015. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nature Plants 1: 15160.
D’Orangeville L, Itter M, Kneeshaw D, Munger JW, Richardson AD, Dyer JM, Orwig DA, Pan Y, Pederson N. 2021. Peak radial growth of diffuse-porous species occurs during periods of lower water availability than for ring-porous and coniferous trees. Tree Physiology. doi: 10.1093/treephys/tpab101.
Deslauriers A, Rossi S, Anfodillo T. 2007. Dendrometer and intra-annual tree growth: what kind of information can be inferred? Dendrochronologia 25: 113-124.
Deslauriers A, Rossi S, Anfodillo T, Saracino A. 2008. Cambial phenology, wood formation and temperature thresholds in two contrasting years at high altitude in southern Italy. Tree Physiology 28: 863-871.
Drew DM, Downes GM. 2009. The use of precision dendrometers in research on daily stem size and wood property variation: a review. Dendrochronologia 27: 159-172.
Duursma RA. 2015. Plantecophys - an R package for analysing and modelling leaf gas exchange data. PLoS ONE 10: e0143346.
Grossiord C, Buckley TN, Cernusak LA, Novick KA, Poulter B, Siegwolf RTW, Sperry JS, McDowell NG. 2020. Plant responses to rising vapor pressure deficit. New Phytologist 226: 1550-1566.
Güney A, Zweifel R, Türkan S, Zimmermann R, Wachendorf M, Güney CO. 2020. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Annals of Forest Science 77: 105.
Huang J-G, Ma Q, Rossi S, Biondi F, Deslauriers A, Fonti P, Liang E, Mäkinen H, Oberhuber W, Rathgeber CBK et al. 2020. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proceedings of the National Academy of Sciences, USA 117: 20645-20652.
Jevšenak J, Tychkov I, Gričar J, Levanič T, Tumajer J, Prislan P, Arnič D, Popkova M, Shishov VV. 2021. Growth-limiting factors and climate response variability in Norway spruce (Picea abies L.) along an elevation and precipitation gradients in Slovenia. International Journal of Biometeorology 65: 311-324.
Kang Y-J, Noh Y. 2019. Development of Hartigan’s dip statistic with bimodality coefficient to assess multimodality of distributions. Mathematical Problems in Engineering 2019: 1-17.
Kašpar J, Tumajer J, Šamonil P, Vašíčková I. 2021. Species-specific climate-growth interactions determine tree species dynamics in mixed Central European mountain forests. Environmental Research Letters 16: 034039.
King G, Fonti P, Nievergelt D, Büntgen U, Frank D. 2013. Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient. Agricultural and Forest Meteorology 168: 36-46.
Konter O, Büntgen U, Carrer M, Timonen M, Esper J. 2016. Climate signal age effects in boreal tree-rings: lessons to be learned for paleoclimatic reconstructions. Quaternary Science Reviews 142: 164-172.
Körner C. 2012. Treelines will be understood once the functional difference between a tree and a shrub is. Ambio 41: 197-206.
Körner C. 2018. Concepts in empirical plant ecology. Plant Ecology & Diversity 11: 405-428.
Krejza J, Cienciala E, Světlík J, Bellan M, Noyer E, Horáček P, Štěpánek P, Marek MV. 2021. Evidence of climate-induced stress of Norway spruce along elevation gradient preceding the current dieback in Central Europe. Trees 35: 103-119.
Lévesque M, Saurer M, Siegwolf R, Eilmann B, Brang P, Bugmann H, Rigling A. 2013. Drought response of five conifer species under contrasting water availability suggests high vulnerability of Norway spruce and European larch. Global Change Biology 19: 3184-3199.
van der Maaten E, van der Maaten-Theunissen M, Smiljanić M, Rossi S, Simard S, Wilmking M, Deslauriers A, Fonti P, von Arx G, Bouriaud O. 2016. dendrometeR: analyzing the pulse of trees in R. Dendrochronologia 40: 12-16.
van der Maaten E, Pape J, van der Maaten-Theunissen M, Scharnweber T, Smiljanić M, Cruz-García R, Wilmking M. 2018. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiology 38: 1820-1828.
Mérian P, Lebourgeois F. 2011. Size-mediated climate-growth relationships in temperate forests: a multi-species analysis. Forest Ecology and Management 261: 1382-1391.
Morino K, Minor RL, Barron-Gafford GA, Brown PM, Hughes MK. 2021. Bimodal cambial activity and false-ring formation in conifers under a monsoon climate. Tree Physiology 41: 1893-1905.
Nakagawa S, Schielzeth H. 2013. A general and simple method for obtaining R2 from generalized linear mixed-effects models. Methods in Ecology and Evolution 4: 133-142.
Neuwirth B, Schweingruber FH, Winiger M. 2007. Spatial patterns of central European pointer years from 1901 to 1971. Dendrochronologia 24: 79-89.
Oberhuber W, Gruber A. 2010. Climatic influences on intra-annual stem radial increment of Pinus sylvestris (L.) exposed to drought. Trees 24: 887-898.
Pallardy SG. 2008. Physiology of woody plants. New York, NY, USA: Elsevier.
Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG et al. 2011. A large and persistent carbon sink in the world’s forests. Science 333: 988-993.
Peñuelas J, Rutishauser T, Filella I. 2009. Phenology feedbacks on climate change. Science 324: 887-888.
Pérez-de-Lis G, Rossi S, Vázquez-Ruiz RA, Rozas V, García-González I. 2016. Do changes in spring phenology affect earlywood vessels? Perspective from the xylogenesis monitoring of two sympatric ring-porous oaks. New Phytologist 209: 521-530.
Peters RL, Steppe K, Cuny HE, De Pauw DJW, Frank DC, Schaub M, Rathgeber CBK, Cabon A, Fonti P. 2021. Turgor - a limiting factor for radial growth in mature conifers along an elevational gradient. New Phytologist 229: 213-229.
Prislan P, Gričar J, de Luis M, Smith KT, Čufar K. 2013. Phenological variation in xylem and phloem formation in Fagus sylvatica from two contrasting sites. Agricultural and Forest Meteorology 180: 142-151.
R Core Team. 2020. R: a language and environment for statistical computing (v.4.1.1.). Vienna, Austria: R Foundation for Statistical Computing.
Rossi S, Anfodillo T, Čufar K, Cuny HE, Deslauriers A, Fonti P, Frank D, Gričar J, Gruber A, Huang J-G et al. 2016. Pattern of xylem phenology in conifers of cold ecosystems at the Northern Hemisphere. Global Change Biology 22: 3804-3813.
Rossi S, Deslauriers A, Morin H. 2003. Application of the Gompertz equation for the study of xylem cell development. Dendrochronologia 21: 33-39.
Rossi S, Deslauriers A, Anfodillo T, Carrer M. 2008a. Age-dependent xylogenesis in timberline conifers. New Phytologist 177: 199-208.
Rossi S, Deslauriers A, Gričar J, Seo JW, Rathgeber CBK, Anfodillo T, Morin H, Levanic T, Oven P, Jalkanen R. 2008b. Critical temperatures for xylogenesis in conifers of cold climates. Global Ecology and Biogeography 17: 696-707.
Sass-Klaassen U, Sabajo CR, den Ouden J. 2011. Vessel formation in relation to leaf phenology in pedunculate oak and European ash. Dendrochronologia 29: 171-175.
Scharnweber T, Manthey M, Criegee C, Bauwe A, Schröder C, Wilmking M. 2011. Drought matters - declining precipitation influences growth of Fagus sylvatica L. and Quercus robur L. in north-eastern Germany. Forest Ecology and Management 262: 947-961.
Scharnweber T, Smiljanic M, Cruz-García R, Manthey M, Wilmking M. 2020. Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environmental Research Letters 15: 074022.
Scherrer D, Bader MK-F, Körner C. 2011. Drought-sensitivity ranking of deciduous tree species based on thermal imaging of forest canopies. Agricultural and Forest Meteorology 151: 1632-1640.
Sidor CG, Popa I, Vlad R, Cherubini P. 2015. Different tree-ring responses of Norway spruce to air temperature across an altitudinal gradient in the Eastern Carpathians (Romania). Trees 29: 985-997.
Siegmund JF, Sanders TGM, Heinrich I, Van Der Maaten E, Simard S, Helle G, Donner RV. 2016. Meteorological drivers of extremes in daily stem radius variations of beech, oak, and pine in northeastern Germany: an event coincidence analysis. Frontiers in Plant Science 7: 1-14.
Silwerman BW. 1981. Using kernel density estimates to investigate multimodality. Journal of the Royal Statistical Society. Series B: Methodological 43: 97-99.
Sperry JS, Meinzer FC, McCulloh KA. 2008. Safety and efficiency conflicts in hydraulic architecture: scaling from tissues to trees. Plant, Cell & Environment 31: 632-645.
Touchan R, Shishov VV, Meko DM, Nouiri I, Grachev A. 2012. Process based model sheds light on climate sensitivity of Mediterranean tree-ring width. Biogeosciences 9: 965-972.
Trouillier M, van der Maaten-Theunissen M, Scharnweber T, Würth D, Burger A, Schnittler M, Wilmking M. 2019. Size matters-a comparison of three methods to assess age- and size-dependent climate sensitivity of trees. Trees 33: 183-192.
Tumajer J, Altman J, Štěpánek P, Treml V, Doležal J, Cienciala E. 2017. Increasing moisture limitation of Norway spruce in Central Europe revealed by forward modelling of tree growth in tree-ring network. Agricultural and Forest Meteorology 247: 56-64.
Vaganov EA, Hughes MK, Shashkin AV. 2006. Growth dynamics of conifer tree rings: images of past and future environments. Berlin/Heidelberg, Germany: Springer-Verlag.
Vanhellemont M, Sousa-Silva R, Maes SL, Van den Bulcke J, Hertzog L, De Groote SRE, Van Acker J, Bonte D, Martel AN, Lens L et al. 2019. Distinct growth responses to drought for oak and beech in temperate mixed forests. Science of the Total Environment 650: 3017-3026.
Walthert L, Ganthaler A, Mayr S, Saurer M, Waldner P, Walser M, Zweifel R, von Arx G. 2021. From the comfort zone to crown dieback: sequence of physiological stress thresholds in mature European beech trees across progressive drought. Science of the Total Environment 753: 141792.
van der Werf GW, Sass-Klaassen UGW, Mohren GMJ. 2007. The impact of the 2003 summer drought on the intra-annual growth pattern of beech (Fagus sylvatica L.) and oak (Quercus robur L.) on a dry site in the Netherlands. Dendrochronologia 25: 103-112.
Wickham H. 2009. ggplot2: elegant graphics for data analysis. New York, NY, USA: Springer-Verlag.
Wilmking M, Maaten-Theunissen M, Maaten E, Scharnweber T, Buras A, Biermann C, Gurskaya M, Hallinger M, Lange J, Shetti R et al. 2020. Global assessment of relationships between climate and tree growth. Global Change Biology 26: 3212-3220.
Wu M, Liu N, Bao G, Gao J. 2020. Climatic factors of radial growth of Pinus tabulaeformis in eastern Gansu, northwest China based on Vaganov-Shashkin model. Geografiska Annaler. Series A: Physical Geography 102: 196-208.
Ziaco E, Biondi F. 2018. Stem circadian phenology of four pine species in naturally contrasting climates from sky-island forests of the western USA. Forests 9: 396.
Zweifel R, Haeni M, Buchmann N, Eugster W. 2016. Are trees able to grow in periods of stem shrinkage? New Phytologist 211: 839-849.
Zweifel R, Häsler R. 2000. Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agricultural and Forest Meteorology 102: 213-222.
Zweifel R, Sterck F, Braun S, Buchmann N, Eugster W, Gessler A, Häni M, Peters RL, Walthert L, Wilhelm M et al. 2021. Why trees grow at night. New Phytologist 231: 2174-2185.
Zweifel R, Zimmermann L, Newbery DM. 2005. Modeling tree water deficit from microclimate: an approach to quantifying drought stress. Tree Physiology 25: 147-156.
Responses of stem growth and canopy greenness of temperate conifers to dry spells