Dendrometers challenge the 'moon wood concept' by elucidating the absence of lunar cycles in tree stem radius oscillation
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
UNCE HUM/018
Charles University
TERENO
Helmholtz-Gemeinschaft
PubMed
37963987
PubMed Central
PMC10645754
DOI
10.1038/s41598-023-47013-y
PII: 10.1038/s41598-023-47013-y
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Wood is a sustainable natural resource and an important global commodity. According to the 'moon wood theory', the properties of wood, including its growth and water content, are believed to oscillate with the lunar cycle. Despite contradicting our current understanding of plant functioning, this theory is commonly exploited for marketing wooden products. To examine the moon wood theory, we applied a wavelet power transformation to series of 2,000,000 hourly stem radius records from dendrometers. We separated the influence of 74 consecutive lunar cycles and meteorological conditions on the stem variation of 62 trees and six species. We show that the dynamics of stem radius consist of overlapping oscillations with periods of 1 day, 6 months, and 1 year. These oscillations in stem dimensions were tightly coupled to oscillations in the series of air temperature and vapour pressure deficit. By contrast, we revealed no imprint of the lunar cycle on the stem radius variation of any species. We call for scepticism towards the moon wood theory, at least as far as the stem water content and radial growth are concerned. We foresee that similar studies employing robust scientific approaches will be increasingly needed in the future to cope with misleading concepts.
Zobrazit více v PubMed
Felipe-Lucia MR, et al. Multiple forest attributes underpin the supply of multiple ecosystem services. Nat. Commun. 2018;9:4839. doi: 10.1038/s41467-018-07082-4. PubMed DOI PMC
Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. 2016;91:760–781. doi: 10.1111/brv.12193. PubMed DOI PMC
Strand J, et al. Spatially explicit valuation of the Brazilian Amazon Forest’s Ecosystem Services. Nat. Sustain. 2018;1:657–664. doi: 10.1038/s41893-018-0175-0. DOI
Etzold S, et al. Number of growth days and not length of the growth period determines radial stem growth of temperate trees. Ecol. Lett. 2022;25:427–439. doi: 10.1111/ele.13933. PubMed DOI PMC
Walthert L, et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 2021;753:141792. doi: 10.1016/j.scitotenv.2020.141792. PubMed DOI
Dow C, et al. Warm springs alter timing but not total growth of temperate deciduous trees. Nature. 2022;608:552–557. doi: 10.1038/s41586-022-05092-3. PubMed DOI
Deslauriers A, Rossi S, Anfodillo T. Dendrometer and intra-annual tree growth: What kind of information can be inferred? Dendrochronologia. 2007;25:113–124. doi: 10.1016/j.dendro.2007.05.003. DOI
Cuny HE, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants. 2015;1:15160. doi: 10.1038/nplants.2015.160. PubMed DOI
Zürcher E, Schlaepfer R, Conedera M, Giudici F. Looking for differences in wood properties as a function of the felling date: Lunar phase-correlated variations in the drying behavior of Norway Spruce (Picea abies Karst.) and Sweet Chestnut (Castanea sativa Mill.) Trees. 2010;24:31–41. doi: 10.1007/s00468-009-0376-2. DOI
Mayoral O, Solbes J, Cantó J, Pina T. What has been thought and taught on the lunar influence on plants in agriculture? Perspective from physics and biology. Agronomy. 2020;10:955. doi: 10.3390/agronomy10070955. DOI
Beeson CFC. The moon and plant growth. Nature. 1946;158:572–573. doi: 10.1038/158572a0. PubMed DOI
Zürcher E. Lunar rhythms in forestry traditions: Lunar-correlated phenomena in tree biology and wood properties. Wood Sci. 2001;2000:463–478.
Villasante A, Vignote S, Ferrer D. Influence of the lunar phase of tree felling on humidity, weight densities, and shrinkage in hardwoods (Quercus humilis) For. Prod. J. 2010;60:415–419.
Read H, Rubio SÁ, Wheater CP, Garcia ÁS. Assessing the impact of moon phase on the cutting of lapsed beech pollards. Arboric. J. 2018;40:137–152. doi: 10.1080/03071375.2018.1485388. DOI
Zweifel R, et al. Why trees grow at night. New Phytol. 2021;231:2174–2185. doi: 10.1111/nph.17552. PubMed DOI PMC
Martínez-Sancho E, et al. Intra- and inter-annual growth patterns of a mixed pine-oak forest under Mediterranean climate. Forests. 2021;12:1746. doi: 10.3390/f12121746. DOI
Güney A, et al. Drought responses and their effects on radial stem growth of two co-occurring conifer species in the Mediterranean mountain range. Ann. For. Sci. 2020;77:105. doi: 10.1007/s13595-020-01007-2. DOI
Zweifel R, Häsler R. Frost-induced reversible shrinkage of bark of mature subalpine conifers. Agric. For. Meteorol. 2000;102:213–222. doi: 10.1016/S0168-1923(00)00135-0. DOI
Drew DM, Downes GM. The use of precision dendrometers in research on daily stem size and wood property variation: A review. Dendrochronologia. 2009;27:159–172. doi: 10.1016/j.dendro.2009.06.008. DOI
Torrence C, Compo GR. A practical guide to wavelet analysis. Bull. Am. Meteorol. Soc. 1998;79:61–78. doi: 10.1175/1520-0477(1998)079<0061:APGTWA>2.0.CO;2. DOI
Huang J-G, et al. Photoperiod and temperature as dominant environmental drivers triggering secondary growth resumption in Northern Hemisphere conifers. Proc. Natl. Acad. Sci. USA. 2020;117:20645–20652. doi: 10.1073/pnas.2007058117. PubMed DOI PMC
Babst F, et al. Twentieth century redistribution in climatic drivers of global tree growth. Sci. Adv. 2019;5:eaat4313. doi: 10.1126/sciadv.aat4313. PubMed DOI PMC
Vesala T, et al. Do tree stems shrink and swell with the tides? Tree Physiol. 2000;20:633–635. doi: 10.1093/treephys/20.9.633. DOI
Peters RL, et al. Turgor: A limiting factor for radial growth in mature conifers along an elevational gradient. New Phytol. 2020;229:16872. doi: 10.1111/nph.16872. PubMed DOI
King G, Fonti P, Nievergelt D, Büntgen U, Frank D. Climatic drivers of hourly to yearly tree radius variations along a 6°C natural warming gradient. Agric. For. Meteorol. 2013;168:36–46. doi: 10.1016/j.agrformet.2012.08.002. DOI
van der Maaten E, et al. Distinct growth phenology but similar daily stem dynamics in three co-occurring broadleaved tree species. Tree Physiol. 2018;38:1820–1828. doi: 10.1093/treephys/tpy042. PubMed DOI
Treml V, Kašpar J, Kuželová H, Gryc V. Differences in intra-annual wood formation in Picea abies across the treeline ecotone, Giant Mountains, Czech Republic. Trees. 2015;29:515–526. doi: 10.1007/s00468-014-1129-4. DOI
Körner C. Paradigm shift in plant growth control. Curr. Opin. Plant Biol. 2015;25:107–114. doi: 10.1016/j.pbi.2015.05.003. PubMed DOI
Rathgeber CBK, Cuny HE, Fonti P. Biological basis of tree-ring formation: A crash course. Front. Plant Sci. 2016;7:1–7. doi: 10.3389/fpls.2016.00734. PubMed DOI PMC
Salomón RL, et al. The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nat. Commun. 2022;13:28. doi: 10.1038/s41467-021-27579-9. PubMed DOI PMC
Tumajer J, Scharnweber T, Smiljanic M, Wilmking M. Limitation by vapour pressure deficit shapes different intra-annual growth patterns of diffuse- and ring-porous temperate broadleaves. New Phytol. 2022;233:2429–2441. doi: 10.1111/nph.17952. PubMed DOI
Egli S, Ayer F, Merlini M. More mushrooms under a full moon: Myth or reality? Sydowia. 2011;63:23–33.
Morton-Pradhan S, Bay RC, Coonrod DV. Birth rate and its correlation with the lunar cycle and specific atmospheric conditions. Am. J. Obstet. Gynecol. 2005;192:1970–1973. doi: 10.1016/j.ajog.2005.02.066. PubMed DOI
Scharnweber T, Smiljanic M, Cruz-García R, Manthey M, Wilmking M. Tree growth at the end of the 21st century: The extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 2020;15:074022. doi: 10.1088/1748-9326/ab865d. DOI
Zweifel R, et al. TreeNet: The biological drought and growth indicator network. Front. For. Glob. Chang. 2021;4:1–14. doi: 10.3389/ffgc.2021.776905. DOI
Zweifel R, Haeni M, Buchmann N, Eugster W. Are trees able to grow in periods of stem shrinkage? New Phytol. 2016;211:839–849. doi: 10.1111/nph.13995. PubMed DOI
Ziaco E, Biondi F. Stem circadian phenology of four pine species in naturally contrasting climates from sky-island forests of the western USA. Forests. 2018;9:396. doi: 10.3390/f9070396. DOI
Duursma RA. Plantecophys: An R package for analysing and modelling leaf gas exchange data. PLoS ONE. 2015;10:e0143346. doi: 10.1371/journal.pone.0143346. PubMed DOI PMC
Grossiord C, et al. Plant responses to rising vapor pressure deficit. New Phytol. 2020;226:1550–1566. doi: 10.1111/nph.16485. PubMed DOI
Qian, T., Vai, M. I. & Xu, Y. Wavelet Analysis and Applications (Birkhäuser Basel, 2007). 10.1007/978-3-7643-7778-6.
Oberhuber W, Hammerle A, Kofler W. Tree water status and growth of saplings and mature Norway spruce (Picea abies) at a dry distribution limit. Front. Plant Sci. 2015;6:1–12. doi: 10.3389/fpls.2015.00703. PubMed DOI PMC
Lazaridis, E. lunar: Lunar Phase & Distance, Seasons and Other Environmental Factors (2014).
R Core Team. R: A language and environment for statistical computing (version 4.1.2.) (R Foundation for Statistical Computing, 2022).
Roesch, A. & Schmidbauer, H. WaveletComp: Computational Wavelet Analysis. R Package Version 1.1 (2018).
Wood SN. Fast stable restricted maximum likelihood and marginal likelihood estimation of semiparametric generalized linear models. J. R. Stat. Soc. Ser. B. 2011;73:3–36. doi: 10.1111/j.1467-9868.2010.00749.x. DOI
Wickham, H. ggplot2: Elegant Graphics for Data Analysis. (Springer, 2009).
Caudullo G, Welk E, San-Miguel-Ayanz J. Chorological maps for the main European woody species. Data Br. 2017;12:662–666. doi: 10.1016/j.dib.2017.05.007. PubMed DOI PMC