The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests

. 2022 Jan 10 ; 13 (1) : 28. [epub] 20220110

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35013178

Grantová podpora
P 22280 Austrian Science Fund FWF - Austria
P 25643 Austrian Science Fund FWF - Austria
P 29896 Austrian Science Fund FWF - Austria

Odkazy

PubMed 35013178
PubMed Central PMC8748979
DOI 10.1038/s41467-021-27579-9
PII: 10.1038/s41467-021-27579-9
Knihovny.cz E-zdroje

Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.

Beijing Research and Development Centre for Grass and Environment Beijing Academy of Agriculture and Forestry Sciences 100097 Beijing China

Brandenburg State Forestry Center of Excellence Eberswalde Germany

Chair of Forest Growth and Dendroecology University of Freiburg 79085 Freiburg Germany

Chair of Forest Growth and Woody Biomass Production TU Dresden 01737 Tharandt Germany

Climate Dynamics and Landscape Evolution Helmholtz Centre Potsdam GFZ German Research Centre for Geosciences 14473 Potsdam Germany

CREAF E08193 Bellaterra Catalonia Spain

DendroGreif Institute for Botany and Landscape Ecology University Greifswald 17487 Greifswald Germany

Departamento de Ecología Centro de Investigaciones sobre Desertificación 46113 Moncada Valencia Spain

Department for Geography University of Bonn 53115 Bonn Germany

Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic

Department of Botany University of Innsbruck 6020 Innsbruck Austria

Department of Forest Botany Dendrology and Geobiocoenology Faculty of Forestry and Wood Technology Mendel University in Brno 613 00 Brno Czech Republic

Department of Forest Ecology Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague 165 00 Prague Czech Republic

Department of Forest Ecology Faculty of Forestry and Wood Technology Mendel University in Brno 613 00 Brno Czech Republic

Department of Geomatics Forest Research Institute 05 090 Raszyn Poland

Department of Land Environment Agriculture and Forestry University of Padua Padua Italy

Department of Natural Forests Forest Research Institute 17 230 Białowieża Poland

Department of Wood Science and Technology Faculty of Forestry and Wood Technology Mendel University in Brno 613 00 Brno Czech Republic

Environmental Measuring Systems Ltd 621 00 Brno Czech Republic

European Forest Institute Resilience Programme 53113 Bonn Germany

Forest Ecology and Forest Management Wageningen University and Research 6700 AA Wageningen The Netherlands

Forestry and Game Management Research Institute 252 02 Jíloviště Czech Republic

Geography Department Humboldt University 12489 Berlin Germany

Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic

Grupo de Investigación Sistemas Naturales e Historia Forestal Universidad Politécnica de Madrid 28040 Madrid Spain

ICREA 08010 Barcelona Spain

IFER Institute of Forest Ecosystem Research 254 01 Jilove u Prahy Czech Republic

Institute for Alpine Environment Eurac Research 39100 Bozen Bolzano Italy

Institute for Atmospheric and Earth System Research Forest Sciences Faculty of Agriculture and Forestry University of Helsinki 00014 Helsinki Finland

Institute for Atmospheric and Earth System Research Physics Faculty of Science University of Helsinki 00014 Helsinki Finland

Institute for environmental studies Faculty of Science Charles University Praha Czech Republic

Institute of Biology University of Hohenheim Stuttgart Germany

Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic

Institute of Forest Ecology Slovak Academy of Sciences 96053 Zvolen Slovakia

Izmir Katip Çelebi University Faculty of Forestry Çigli Izmir Turkey

Laboratory for Climatology and Remote Sensing Faculty of Geography 35032 Marburg Germany

Laboratory for Wood Anatomy and Dendrochronology Department of Geology Lund University Lund Sweden

Laboratory of Plant Ecology Department of Plants and Crops Faculty of Bioscience Engineering Ghent University 9000 Ghent Belgium

Laboratory of Tree Ring Research University of Arizona Tucson AZ 85721 USA

National Forest Centre Forest Research Institute 96001 Zvolen Slovakia

National Museum of Natural Sciences CSIC 28006 Madrid Spain

Natural Sciences Unit German Archaeological Institute 14195 Berlin Germany

Office National des Forêts Département Recherche Développement et Innovation 77300 Fontainebleau France

School of Natural Resources and the Environment University of Arizona Tucson AZ 85721 USA

Siberian Federal University 660041 Krasnoyarsk Russia

Southern Swedish Forest Research Centre Swedish University of Agricultural Sciences 230 53 Alnarp Sweden

Southwest Anatolia Forest Research Institute Antalya Turkey

Swiss Federal Institute for Forest Snow and Landscape Research WSL 8903 Birmensdorf Switzerland

Swiss Federal Research Institute WSL Insubric Ecosystems Research Group 6593 Cadenazzo Switzerland

Technical University in Zvolen Faculty of Forestry 96001 Zvolen Slovakia

Trinity College Dublin School of Natural Sciences Botany Department Dublin Ireland

UCD Earth Institute University College Dublin Belfield Dublin Ireland

UCD Forestry School of Agriculture and Food Science University College Dublin Dublin Ireland

UCD School of Biology and Environmental Science University College Dublin Belfield Dublin Ireland

Universitat Autònoma de Barcelona E08193 Bellaterra Catalonia Spain

Universite de Bordeaux INRAE BIOGECO 33615 Pessac France

Université de Lorraine AgroParisTech INRAE SILVA F 54000 Nancy France

Université Paris Saclay CNRS AgroParisTech Ecologie Systématique et Evolution 91405 Orsay France

Wageningen Environmental Research Wageningen University and Research 6700 AA Wageningen The Netherlands

Zobrazit více v PubMed

Rahmstorf S, Coumou D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 2011;108:17905–17909. PubMed PMC

Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science. 2011;332:220–224. PubMed

Fischer EM, Knutti R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014;41:547–554.

Della-Marta PM, Haylock MR, Luterbacher J, Wanner H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 2007;112:D15103.

Zscheischler J, et al. Future climate risk from compound events. Nat. Clim. Chang. 2018;8:469–477.

Teskey R, et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 2015;38:1699–1712. PubMed

Ciais P, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437:529–533. PubMed

Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 2015;20:335–343. PubMed

Peters RL, et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 2021;229:213–229. PubMed

Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 2009;23:922–930.

Anderegg WRL, Berry JA, Field CB. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 2012;17:693–700. PubMed

Martínez‐Vilalta J, Anderegg WRL, Sapes G, Sala A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 2019;223:22–32. PubMed

Zweifel R, Haeni M, Buchmann N, Eugster W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 2016;211:839–849. PubMed

Dietrich L, Zweifel R, Kahmen A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 2018;38:941–952. PubMed

Zweifel R, et al. Why trees grow at night. N. Phytol. 2021;231:2174–2185. PubMed PMC

Buras A, Rammig A, Zang CS. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences. 2020;17:1655–1672.

Bastos A, et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020;6:eaba2724. PubMed PMC

Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190505. PubMed PMC

Albergel C, et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 2019;11:520.

Smith NE, et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190509. PubMed PMC

Brun P, et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 2020;26:7021–7035. PubMed PMC

Ramonet M, et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190513. PubMed PMC

Bastos A, et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190507. PubMed PMC

Lin Y-S, et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 2015;5:459–464.

Schuldt B, et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020;45:86–103.

Rita A, et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 2020;26:851–863. PubMed

Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013;3:203–207.

Larysch E, Stangler DF, Nazari M, Seifert T, Kahle H-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests. 2021;12:75.

Rohner B, Kumar S, Liechti K, Gessler A, Ferretti M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 2021;120:106903.

Scharnweber T, Smiljanic M, Cruz-García R, Manthey M, Wilmking M. Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 2020;15:074022.

Kowalska N, et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190518. PubMed PMC

Zweifel R, et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 2020;171:302–305.

Cuny HE, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants. 2015;1:15160. PubMed

D’Orangeville L, et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 2018;24:2339–2351. PubMed

Delpierre N, Berveiller D, Granda E, Dufrêne E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 2016;210:459–470. PubMed

Babst F, et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 2014;201:1289–1303. PubMed

Zweifel R, et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 2020;227:1081–1096. PubMed PMC

Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. PubMed

Zweifel R, Zimmermann L, Newbery DM. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 2005;25:147–156. PubMed

Gleason SM, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 2016;209:123–136. PubMed

Duursma RA, et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 2019;221:693–705. PubMed

Poyatos R, Aguadé D, Martínez-Vilalta J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 2018;75:100.

Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 2012;195:48–53. PubMed

Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A. 2014;111:14489–14493. PubMed PMC

Choat B, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–755. PubMed

Drake JE, et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 2018;24:2390–2402. PubMed

Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 2020;10:1091–1095.

Leuzinger S, Zotz G, Asshoff R, Korner C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 2005;25:641–650. PubMed

Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 2016;36:1508–1519. PubMed

Rosengren U, et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 2006;21:77–100.

Salomón RL, Limousin J-M, Ourcival J-M, Rodríguez-Calcerrada J, Steppe K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 2017;40:1379–1391. PubMed

Mencuccini M, et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 2019;224:1544–1556. PubMed

Guerrero-Ramírez NR, et al. Global root traits (GRooT) Database Glob. Ecol. Biogeogr. 2021;30:25–37.

Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed

van der Maaten E, et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 2017;7:2585–2594. PubMed PMC

Körner C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 2019;39:695–700. PubMed

Walthert L, et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 2021;753:141792. PubMed

Preisler Y, Tatarinov F, Grünzweig JM, Yakir D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 2021;44:1315–1328. PubMed

Poyatos R, et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data. 2021;13:2607–2649.

Steppe K, von der Crone JS, De Pauw DJW. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 2016;7:993. PubMed PMC

Sass-Klaassen U, et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 2016;7:1–6. PubMed PMC

Cailleret M, et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 2017;23:1675–1690. PubMed

Sparks AH, Hengl T, Nelson A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2017;2:177.

Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).

Granier A, et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 2007;143:123–145.

Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC

Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018;123:9391–9409.

Frich P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002;19:193–212.

Alexander LV, et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006;111:1–22.

Knüsel S, Peters RL, Haeni M, Wilhelm M, Zweifel R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests. 2021;12:765.

Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology. 1999;80:1150–1156.

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48.

R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019).

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...