The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
P 22280
Austrian Science Fund FWF - Austria
P 25643
Austrian Science Fund FWF - Austria
P 29896
Austrian Science Fund FWF - Austria
PubMed
35013178
PubMed Central
PMC8748979
DOI
10.1038/s41467-021-27579-9
PII: 10.1038/s41467-021-27579-9
Knihovny.cz E-zdroje
- MeSH
- borovice lesní MeSH
- dehydratace * MeSH
- ekologie * MeSH
- ekosystém MeSH
- infračervené záření * MeSH
- klimatické změny * MeSH
- lesy * MeSH
- období sucha MeSH
- podnebí MeSH
- půda MeSH
- smrk MeSH
- stromy MeSH
- voda MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Norsko MeSH
- Názvy látek
- půda MeSH
- voda MeSH
Heatwaves exert disproportionately strong and sometimes irreversible impacts on forest ecosystems. These impacts remain poorly understood at the tree and species level and across large spatial scales. Here, we investigate the effects of the record-breaking 2018 European heatwave on tree growth and tree water status using a collection of high-temporal resolution dendrometer data from 21 species across 53 sites. Relative to the two preceding years, annual stem growth was not consistently reduced by the 2018 heatwave but stems experienced twice the temporary shrinkage due to depletion of water reserves. Conifer species were less capable of rehydrating overnight than broadleaves across gradients of soil and atmospheric drought, suggesting less resilience toward transient stress. In particular, Norway spruce and Scots pine experienced extensive stem dehydration. Our high-resolution dendrometer network was suitable to disentangle the effects of a severe heatwave on tree growth and desiccation at large-spatial scales in situ, and provided insights on which species may be more vulnerable to climate extremes.
Brandenburg State Forestry Center of Excellence Eberswalde Germany
Chair of Forest Growth and Dendroecology University of Freiburg 79085 Freiburg Germany
Chair of Forest Growth and Woody Biomass Production TU Dresden 01737 Tharandt Germany
CREAF E08193 Bellaterra Catalonia Spain
Department for Geography University of Bonn 53115 Bonn Germany
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Botany University of Innsbruck 6020 Innsbruck Austria
Department of Geomatics Forest Research Institute 05 090 Raszyn Poland
Department of Land Environment Agriculture and Forestry University of Padua Padua Italy
Department of Natural Forests Forest Research Institute 17 230 Białowieża Poland
Environmental Measuring Systems Ltd 621 00 Brno Czech Republic
European Forest Institute Resilience Programme 53113 Bonn Germany
Forestry and Game Management Research Institute 252 02 Jíloviště Czech Republic
Geography Department Humboldt University 12489 Berlin Germany
Global Change Research Institute of the Czech Academy of Sciences 603 00 Brno Czech Republic
IFER Institute of Forest Ecosystem Research 254 01 Jilove u Prahy Czech Republic
Institute for Alpine Environment Eurac Research 39100 Bozen Bolzano Italy
Institute for environmental studies Faculty of Science Charles University Praha Czech Republic
Institute of Biology University of Hohenheim Stuttgart Germany
Institute of Botany of the Czech Academy of Sciences Průhonice Czech Republic
Institute of Forest Ecology Slovak Academy of Sciences 96053 Zvolen Slovakia
Izmir Katip Çelebi University Faculty of Forestry Çigli Izmir Turkey
Laboratory for Climatology and Remote Sensing Faculty of Geography 35032 Marburg Germany
Laboratory for Wood Anatomy and Dendrochronology Department of Geology Lund University Lund Sweden
Laboratory of Tree Ring Research University of Arizona Tucson AZ 85721 USA
National Forest Centre Forest Research Institute 96001 Zvolen Slovakia
National Museum of Natural Sciences CSIC 28006 Madrid Spain
Natural Sciences Unit German Archaeological Institute 14195 Berlin Germany
School of Natural Resources and the Environment University of Arizona Tucson AZ 85721 USA
Siberian Federal University 660041 Krasnoyarsk Russia
Southwest Anatolia Forest Research Institute Antalya Turkey
Swiss Federal Institute for Forest Snow and Landscape Research WSL 8903 Birmensdorf Switzerland
Swiss Federal Research Institute WSL Insubric Ecosystems Research Group 6593 Cadenazzo Switzerland
Technical University in Zvolen Faculty of Forestry 96001 Zvolen Slovakia
Trinity College Dublin School of Natural Sciences Botany Department Dublin Ireland
UCD Earth Institute University College Dublin Belfield Dublin Ireland
UCD Forestry School of Agriculture and Food Science University College Dublin Dublin Ireland
UCD School of Biology and Environmental Science University College Dublin Belfield Dublin Ireland
Universitat Autònoma de Barcelona E08193 Bellaterra Catalonia Spain
Universite de Bordeaux INRAE BIOGECO 33615 Pessac France
Université de Lorraine AgroParisTech INRAE SILVA F 54000 Nancy France
Université Paris Saclay CNRS AgroParisTech Ecologie Systématique et Evolution 91405 Orsay France
Zobrazit více v PubMed
Rahmstorf S, Coumou D. Increase of extreme events in a warming world. Proc. Natl Acad. Sci. 2011;108:17905–17909. PubMed PMC
Barriopedro D, Fischer EM, Luterbacher J, Trigo RM, Garcia-Herrera R. The Hot Summer of 2010: Redrawing the temperature record map of Europe. Science. 2011;332:220–224. PubMed
Fischer EM, Knutti R. Detection of spatially aggregated changes in temperature and precipitation extremes. Geophys. Res. Lett. 2014;41:547–554.
Della-Marta PM, Haylock MR, Luterbacher J, Wanner H. Doubled length of western European summer heat waves since 1880. J. Geophys. Res. 2007;112:D15103.
Zscheischler J, et al. Future climate risk from compound events. Nat. Clim. Chang. 2018;8:469–477.
Teskey R, et al. Responses of tree species to heat waves and extreme heat events. Plant, Cell Environ. 2015;38:1699–1712. PubMed
Ciais P, et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature. 2005;437:529–533. PubMed
Steppe K, Sterck F, Deslauriers A. Diel growth dynamics in tree stems: linking anatomy and ecophysiology. Trends Plant Sci. 2015;20:335–343. PubMed
Peters RL, et al. Turgor—a limiting factor for radial growth in mature conifers along an elevational gradient. N. Phytol. 2021;229:213–229. PubMed
Meinzer FC, Johnson DM, Lachenbruch B, McCulloh KA, Woodruff DR. Xylem hydraulic safety margins in woody plants: Coordination of stomatal control of xylem tension with hydraulic capacitance. Funct. Ecol. 2009;23:922–930.
Anderegg WRL, Berry JA, Field CB. Linking definitions, mechanisms, and modeling of drought-induced tree death. Trends Plant Sci. 2012;17:693–700. PubMed
Martínez‐Vilalta J, Anderegg WRL, Sapes G, Sala A. Greater focus on water pools may improve our ability to understand and anticipate drought‐induced mortality in plants. N. Phytol. 2019;223:22–32. PubMed
Zweifel R, Haeni M, Buchmann N, Eugster W. Are trees able to grow in periods of stem shrinkage? N. Phytol. 2016;211:839–849. PubMed
Dietrich L, Zweifel R, Kahmen A. Daily stem diameter variations can predict the canopy water status of mature temperate trees. Tree Physiol. 2018;38:941–952. PubMed
Zweifel R, et al. Why trees grow at night. N. Phytol. 2021;231:2174–2185. PubMed PMC
Buras A, Rammig A, Zang CS. Quantifying impacts of the 2018 drought on European ecosystems in comparison to 2003. Biogeosciences. 2020;17:1655–1672.
Bastos A, et al. Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity. Sci. Adv. 2020;6:eaba2724. PubMed PMC
Peters W, Bastos A, Ciais P, Vermeulen A. A historical, geographical, and ecological perspective on the 2018 European summer drought. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190505. PubMed PMC
Albergel C, et al. Monitoring and Forecasting the Impact of the 2018 Summer Heatwave on Vegetation. Remote Sens. 2019;11:520.
Smith NE, et al. Spring enhancement and summer reduction in carbon uptake during the 2018 drought in northwestern. Eur. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190509. PubMed PMC
Brun P, et al. Large‐scale early‐wilting response of Central European forests to the 2018 extreme drought. Glob. Chang. Biol. 2020;26:7021–7035. PubMed PMC
Ramonet M, et al. The fingerprint of the summer 2018 drought in Europe on ground-based atmospheric CO2 measurements. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190513. PubMed PMC
Bastos A, et al. Impacts of extreme summers on European ecosystems: A comparative analysis of 2003, 2010 and 2018. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190507. PubMed PMC
Lin Y-S, et al. Optimal stomatal behaviour around the world. Nat. Clim. Chang. 2015;5:459–464.
Schuldt B, et al. A first assessment of the impact of the extreme 2018 summer drought on Central European forests. Basic Appl. Ecol. 2020;45:86–103.
Rita A, et al. The impact of drought spells on forests depends on site conditions: The case of 2017 summer heat wave in southern Europe. Glob. Chang. Biol. 2020;26:851–863. PubMed
Hanewinkel M, Cullmann DA, Schelhaas M-J, Nabuurs G-J, Zimmermann NE. Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Chang. 2013;3:203–207.
Larysch E, Stangler DF, Nazari M, Seifert T, Kahle H-P. Xylem phenology and growth response of European beech, silver fir and scots pine along an elevational gradient during the extreme drought year 2018. Forests. 2021;12:75.
Rohner B, Kumar S, Liechti K, Gessler A, Ferretti M. Tree vitality indicators revealed a rapid response of beech forests to the 2018 drought. Ecol. Indic. 2021;120:106903.
Scharnweber T, Smiljanic M, Cruz-García R, Manthey M, Wilmking M. Tree growth at the end of the 21st century - the extreme years 2018/19 as template for future growth conditions. Environ. Res. Lett. 2020;15:074022.
Kowalska N, et al. Analysis of floodplain forest sensitivity to drought. Philos. Trans. R. Soc. B Biol. Sci. 2020;375:20190518. PubMed PMC
Zweifel R, et al. Baumwasserdefizite erreichten im Sommer 2018 Höchstwerte–war das aus dem All erkennbar. Schweiz Z. Forstwes. 2020;171:302–305.
Cuny HE, et al. Woody biomass production lags stem-girth increase by over one month in coniferous forests. Nat. Plants. 2015;1:15160. PubMed
D’Orangeville L, et al. Drought timing and local climate determine the sensitivity of eastern temperate forests to drought. Glob. Chang. Biol. 2018;24:2339–2351. PubMed
Delpierre N, Berveiller D, Granda E, Dufrêne E. Wood phenology, not carbon input, controls the interannual variability of wood growth in a temperate oak forest. N. Phytol. 2016;210:459–470. PubMed
Babst F, et al. Above-ground woody carbon sequestration measured from tree rings is coherent with net ecosystem productivity at five eddy-covariance sites. N. Phytol. 2014;201:1289–1303. PubMed
Zweifel R, et al. Determinants of legacy effects in pine trees – implications from an irrigation‐stop experiment. N. Phytol. 2020;227:1081–1096. PubMed PMC
Anderegg WRL, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science. 2015;349:528–532. PubMed
Zweifel R, Zimmermann L, Newbery DM. Modeling tree water deficit from microclimate: An approach to quantifying drought stress. Tree Physiol. 2005;25:147–156. PubMed
Gleason SM, et al. Weak tradeoff between xylem safety and xylem-specific hydraulic efficiency across the world’s woody plant species. N. Phytol. 2016;209:123–136. PubMed
Duursma RA, et al. On the minimum leaf conductance: its role in models of plant water use, and ecological and environmental controls. N. Phytol. 2019;221:693–705. PubMed
Poyatos R, Aguadé D, Martínez-Vilalta J. Below-ground hydraulic constraints during drought-induced decline in Scots pine. Ann. Sci. 2018;75:100.
Johnson DM, McCulloh KA, Woodruff DR, Meinzer FC. Hydraulic safety margins and embolism reversal in stems and leaves: Why are conifers and angiosperms so different? Plant Sci. 2012;195:48–53. PubMed
Brodribb TJ, McAdam SAM, Jordan GJ, Martins SCV. Conifer species adapt to low-rainfall climates by following one of two divergent pathways. Proc. Natl Acad. Sci. U.S.A. 2014;111:14489–14493. PubMed PMC
Choat B, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–755. PubMed
Drake JE, et al. Trees tolerate an extreme heatwave via sustained transpirational cooling and increased leaf thermal tolerance. Glob. Chang. Biol. 2018;24:2390–2402. PubMed
Anderegg WRL, Trugman AT, Badgley G, Konings AG, Shaw J. Divergent forest sensitivity to repeated extreme droughts. Nat. Clim. Chang. 2020;10:1091–1095.
Leuzinger S, Zotz G, Asshoff R, Korner C. Responses of deciduous forest trees to severe drought in Central Europe. Tree Physiol. 2005;25:641–650. PubMed
Brinkmann N, Eugster W, Zweifel R, Buchmann N, Kahmen A. Temperate tree species show identical response in tree water deficit but different sensitivities in sap flow to summer soil drying. Tree Physiol. 2016;36:1508–1519. PubMed
Rosengren U, et al. Functional biodiversity aspects on the nutrient sustainability in forests-Importance of root distribution. J. Sustain. 2006;21:77–100.
Salomón RL, Limousin J-M, Ourcival J-M, Rodríguez-Calcerrada J, Steppe K. Stem hydraulic capacitance decreases with drought stress: implications for modelling tree hydraulics in the Mediterranean oak Quercus ilex. Plant. Cell Environ. 2017;40:1379–1391. PubMed
Mencuccini M, et al. Leaf economics and plant hydraulics drive leaf: wood area ratios. N. Phytol. 2019;224:1544–1556. PubMed
Guerrero-Ramírez NR, et al. Global root traits (GRooT) Database Glob. Ecol. Biogeogr. 2021;30:25–37.
Kattge J, et al. TRY plant trait database—enhanced coverage and open access. Glob. Chang. Biol. 2020;26:119–188. PubMed
van der Maaten E, et al. Species distribution models predict temporal but not spatial variation in forest growth. Ecol. Evol. 2017;7:2585–2594. PubMed PMC
Körner C. No need for pipes when the well is dry—a comment on hydraulic failure in trees. Tree Physiol. 2019;39:695–700. PubMed
Walthert L, et al. From the comfort zone to crown dieback: Sequence of physiological stress thresholds in mature European beech trees across progressive drought. Sci. Total Environ. 2021;753:141792. PubMed
Preisler Y, Tatarinov F, Grünzweig JM, Yakir D. Seeking the “point of no return” in the sequence of events leading to mortality of mature trees. Plant. Cell Environ. 2021;44:1315–1328. PubMed
Poyatos R, et al. Global transpiration data from sap flow measurements: The SAPFLUXNET database. Earth Syst. Sci. Data. 2021;13:2607–2649.
Steppe K, von der Crone JS, De Pauw DJW. TreeWatch.net: A water and carbon monitoring and modeling network to assess instant tree hydraulics and carbon status. Front. Plant Sci. 2016;7:993. PubMed PMC
Sass-Klaassen U, et al. A tree-centered approach to assess impacts of extreme climatic events on forests. Front. Plant Sci. 2016;7:1–6. PubMed PMC
Cailleret M, et al. A synthesis of radial growth patterns preceding tree mortality. Glob. Chang. Biol. 2017;23:1675–1690. PubMed
Sparks AH, Hengl T, Nelson A. GSODR: Global summary daily weather data in R. J. Open Source Softw. 2017;2:177.
Muñoz-Sabater, J. et al. ERA5-Land: An improved version of the ERA5 reanalysis land component. in Joint ISWG and LSA-SAF Workshop IPMA. 26–28 (2018).
Granier A, et al. Evidence for soil water control on carbon and water dynamics in European forests during the extremely dry year: 2003. Agric. Meteorol. 2007;143:123–145.
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC
Cornes RC, van der Schrier G, van den Besselaar EJM, Jones PD. An ensemble version of the E-OBS temperature and precipitation data sets. J. Geophys. Res. Atmos. 2018;123:9391–9409.
Frich P, et al. Observed coherent changes in climatic extremes during the second half of the twentieth century. Clim. Res. 2002;19:193–212.
Alexander LV, et al. Global observed changes in daily climate extremes of temperature and precipitation. J. Geophys. Res. Atmos. 2006;111:1–22.
Knüsel S, Peters RL, Haeni M, Wilhelm M, Zweifel R. Processing and extraction of seasonal tree physiological parameters from stem radius time series. Forests. 2021;12:765.
Hedges LV, Gurevitch J, Curtis PS. The meta-analysis of response ratios in experimental ecology. Ecology. 1999;80:1150–1156.
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2015;67:1–48.
R. Core Team. R: A language and environment for statistical computing. R Foundation for Statistical Computing. (2019).
A machine learning approach to fill gaps in dendrometer data
Does lower water availability limit stem CO2 efflux of oak and hornbeam coppices?
Significant increase in natural disturbance impacts on European forests since 1950