Significant increase in natural disturbance impacts on European forests since 1950
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
2218WK09B4
BMU/BMEL, FKZ
IGA A_08_22
Fakulta Lesnická a Drevarská, Česká Zemědělská Univerzita v Praze
2219NR189
Fachagentur Nachwachsende Rohstoffe (FNR)
773324
Forest Value EU
101001905
H2020 European Research Council
101000574
H2020-RUR-2020-2 project RESONATE
HRZZ IP-2019-04-6325
Hrvatska Zaklada za Znanost
Lister Buildings
PubMed
36504289
PubMed Central
PMC10107665
DOI
10.1111/gcb.16531
Knihovny.cz E-zdroje
- Klíčová slova
- European forests, bark beetles, climate change, empirical disturbance data, fire, forest natural disturbances, windstorms,
- MeSH
- brouci * MeSH
- ekosystém * MeSH
- lesy MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Over the last decades, the natural disturbance is increasingly putting pressure on European forests. Shifts in disturbance regimes may compromise forest functioning and the continuous provisioning of ecosystem services to society, including their climate change mitigation potential. Although forests are central to many European policies, we lack the long-term empirical data needed for thoroughly understanding disturbance dynamics, modeling them, and developing adaptive management strategies. Here, we present a unique database of >170,000 records of ground-based natural disturbance observations in European forests from 1950 to 2019. Reported data confirm a significant increase in forest disturbance in 34 European countries, causing on an average of 43.8 million m3 of disturbed timber volume per year over the 70-year study period. This value is likely a conservative estimate due to under-reporting, especially of small-scale disturbances. We used machine learning techniques for assessing the magnitude of unreported disturbances, which are estimated to be between 8.6 and 18.3 million m3 /year. In the last 20 years, disturbances on average accounted for 16% of the mean annual harvest in Europe. Wind was the most important disturbance agent over the study period (46% of total damage), followed by fire (24%) and bark beetles (17%). Bark beetle disturbance doubled its share of the total damage in the last 20 years. Forest disturbances can profoundly impact ecosystem services (e.g., climate change mitigation), affect regional forest resource provisioning and consequently disrupt long-term management planning objectives and timber markets. We conclude that adaptation to changing disturbance regimes must be placed at the core of the European forest management and policy debate. Furthermore, a coherent and homogeneous monitoring system of natural disturbances is urgently needed in Europe, to better observe and respond to the ongoing changes in forest disturbance regimes.
Berchtesgaden National Park Berchtesgaden Germany
Castilla La Mancha University Albacete Spain
Chair of Forest Growth and Woody Biomass Production TU Dresden Tharandt Germany
Croatian Forest Research Institute Jastrebarsko Croatia
Dendrology Department University of Forestry Sofia Bulgaria
Department of Earth and Environmental Sciences KU Leuven Leuven Belgium
Department of Forestry University of Belgrade Faculty of Forestry Belgrade Serbia
European Commission Joint Research Centre Ispra Italy
European Forest Institute Bonn Germany
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Suchdol Czech Republic
Gund Institute for Environment University of Vermont Burlington Vermont USA
INRAE UR LESSEM University of Grenoble Alpes Grenoble France
Institut Européen De La Forêt Cultivée Cestas France
Potsdam Institute for Climate Impact Research Member of the Leibniz Association Potsdam Germany
School of Life Sciences Technical University of Munich Freising Germany
Wageningen Environmental Research Wageningen University and Research Wageningen The Netherlands
Zobrazit více v PubMed
Albrich, K. , Seidl, R. , Rammer, W. , & Thom, D. (2022). From sink to source: Changing climate and disturbance regimes could tip the 21st century carbon balance of an unmanaged mountain forest landscape. Forestry: An International Journal of Forest Research, cpac022. 10.1093/forestry/cpac022 DOI
Annila, E. (1969). Influence of temperature upon the development and voltinism of Ips typographus L. (Coleoptera, Scolytidae). In Annales Zoologici Fennici (pp. 161–208). Societas Biologica Fennica Vanamo.
Baier, P. , Pennerstorfer, J. , & Schopf, A. (2007). PHENIPS—A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. Forest Ecology and Management, 249, 171–186. 10.1016/j.foreco.2007.05.020 DOI
Brázdil, R. , Zahradník, P. , Szabó, P. , Chromá, K. , Dobrovolný, P. , Dolák, L. , Trnka, M. , Řehoř, J. , & Suchánková, S. (2022). Meteorological and climatological triggers of notable past and present bark beetle outbreaks in the Czech Republic. Climate of the Past, 18(9), 2155–2180. 10.5194/cp-2022-50 DOI
Breiman, L. (2001). Random forests. Machine Learning, 45(1), 5–32.
Chirici, G. , Giannetti, F. , Mazza, E. , Francini, S. , Travaglini, D. , Pegna, R. , & White, J. C. (2020). Monitoring clearcutting and subsequent rapid recovery in Mediterranean coppice forests with Landsat time series. Annals of Forest Science, 77(2), 40. 10.1007/s13595-020-00936-2 DOI
Chirici, G. , Giannetti, F. , Travaglini, D. , Nocentini, S. , Francini, S. , D'Amico, G. , Calvo, E. , Fasolini, D. , Broll, M. , Maistrelli, F. , Tonner, J. , Pietrogiovanna, M. , Oberlechner, K. , Andriolo, A. , Comino, R. , Faidiga, A. , Pasutto, I. , Carraro, G. , Zen, S. , … Marchetti, M. (2019). Forest damage inventory after the “Vaia” storm in Italy. Forest@—Rivista di Selvicoltura ed Ecologia Forestale, 16(1), 3–9. 10.3832/efor3070-016 DOI
Churkina, G. , Organschi, A. , Reyer, C. P. O. , Ruff, A. , Vinke, K. , Liu, Z. , Reck, B. K. , Graedel, T. E. , & Schellnhuber, H. J. (2020). Buildings as a global carbon sink. Nature Sustainability, 3(4), 269–276. 10.1038/s41893-019-0462-4 DOI
Copernicus Climate Data Store (CDS) . https://cds.climate.copernicus.eu/
Destatis . (2022). Total timber cutting after cutting cause and forest ownership types . https://www.destatis.de/EN/Themes/Economic‐Sectors‐Enterprises/Agriculture‐Forestry‐Fisheries/Forestry‐Wood/Tables/timber‐cutting‐causes.html
Doerr, S. H. , & Santín, C. (2016). Global trends in wildfire and its impacts: Perceptions versus realities in a changing world. Philosophical Transactions of the Royal Society B: Biological Sciences, 371. 10.1098/rstb.2015.0345 PubMed DOI PMC
Dowdy, A. J. , Fromm, M. D. , & McCarthy, N. (2017). Pyrocumulonimbus lightning and fire ignition on black Saturday in Southeast Australia. Journal of Geophysical Research: Atmospheres, 122(14), 7342–7354. 10.1002/2017JD026577 DOI
Dupuy, J. , Fargeon, H. , Martin‐StPaul, N. , Pimont, F. , Ruffault, J. , Guijarro, M. , Hernando, C. , Madrigal, J. , & Fernandes, P. (2020). Climate change impact on future wildfire danger and activity in southern Europe: A review. Annals of Forest Science, 77(2), 1–24. 10.1007/s13595-020-00933-5 DOI
Dymond, C. C. , Neilson, E. T. , Stinson, G. , Porter, K. , MacLean, D. A. , Gray, D. R. , Campagna, M. , & Kurz, W. A. (2010). Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems, 13(6), 917–931.
Enderle, R. , Stenlid, J. , & Vasaitis, R. (2019). An overview of ash (Fraxinus spp.) and the ash dieback disease in Europe. CAB Reviews, 14, 1–12.
European Commission . (2021). EU Biodiversity Strategy for 2030: Bringing nature back into our lives—European Parliament resolution of 9 June 2021 on the EU Biodiversity Strategy for 2030: Bringing nature back into our lives (2020/2273(INI)) .
European Commission, European Green Deal . (2019). https://ec.europa.eu/info/strategy/priorities‐2019‐2024/european‐green‐deal_en
European Commission—Eurostat/GISCO . (2021). https://ec.europa.eu/eurostat/web/gisco/geodata/reference‐data/administrative‐units‐statistical‐units/nuts
European Commission, Proposal for a Nature Restoration law . (2022a). Brussels, 14.7.2021, COM(2021) 554 final, 2021/0201 (COD). https://environment.ec.europa.eu/publications/nature‐restoration‐law_en
European Commission, Renewable Energy Directive II . (2021). Recast to 2030 . https://joint‐research‐centre.ec.europa.eu/welcome‐jec‐website/reference‐regulatory‐framework/renewable‐energy‐recast‐2030‐red‐ii_en
European Commission, Sustainable Finance . (2022b). Brussels, 4.6.2021, C(2021) 2800 final, ANNEX 1. https://eur‐lex.europa.eu/legal‐content/EN/TXT/?uri=PI_COM:C(2021)2800
FAO . (2020). Global Forest Resources Assessment 2020: Main report . 10.4060/ca9825en DOI
Fernandez‐Carrillo, A. , Patočka, Z. , Dobrovolný, L. , Franco‐Nieto, A. , & Revilla‐Romero, B. (2020). Monitoring bark beetle Forest damage in Central Europe. A remote sensing approach validated with field data. Remote Sensing, 12(21), 3634. 10.3390/rs12213634 DOI
Food and Agriculture Organization of the United Nations . (1997). FAOSTAT statistical database. FAO.
FOREST EUROPE, State of European forests . (2015).
FOREST EUROPE, State of European forests . (2020).
FOREST EUROPE, UNECE, FAO . (2020). Joint questionnaire on the quantitative pan‐European indicators for sustainable forest management . https://fra‐data.fao.org/FE/panEuropean/home/
Forzieri, G. , Girardello, M. , Ceccherini, G. , Spinoni, J. , Feyen, L. , Hartmann, H. , Beck, P. S. A. , Camps‐Valls, G. , Chirici, G. , Mauri, A. , & Cescatti, A. (2021). Emergent vulnerability to climate‐driven disturbances in European forests. Nature Communications, 12(1), 1081. 10.1038/s41467-021-21399-7 PubMed DOI PMC
Francini, S. , McRoberts, R. E. , D'Amico, G. , Coops, N. C. , Hermosilla, T. , White, J. C. , Wulder, M. A. , Marchetti, M. , Mugnozza, G. S. , & Chirici, G. (2022). An open science and open data approach for the statistically robust estimation of forest disturbance areas. International Journal of Applied Earth Observation and Geoinformation, 106, 102663. 10.1016/j.jag.2021.102663 DOI
Franklin, J. F. , Spies, T. A. , Pelt, R. V. , Carey, A. B. , Thornburgh, D. A. , Berg, D. R. , Lindenmayer, D. B. , Harmon, M. E. , Keeton, W. S. , Shaw, D. C. , Bible, K. , & Chen, J. (2002). Disturbances and structural development of natural forest ecosystems with silvicultural implications, using Douglas‐fir forests as an example. Forest Ecology and Management, 155, 399–423. 10.1016/S0378-1127(01)00575-8 DOI
Gardiner, B. , Blennow, K. , Carnus, J.‐M. , Fleischer, P. , Ingemarson, F. , Landmann, G. , Lindner, M. , Marzano, M. , Nicoll, B. , Orazio, C. , Peyron, J.‐L. , Schelhaas, M.‐J. , Schuck, A. , & Usbeck, T. (2010). Destructive storms in European forests: Past and forthcoming impacts .
Gardiner, B. , Byrne, K. , Hale, S. , Kamimura, K. , Mitchell, S. J. , Peltola, H. , & Ruel, J. C. (2008). A review of mechanistic modelling of wind damage risk to forests. Forestry, 81(3), 447–463.
Gregow, H. , Laaksonen, A. , & Alper, M. E. (2017). Increasing large scale windstorm damage in Western, central and northern European forests, 1951–2010. Scientific Reports, 7(1), 46397. 10.1038/srep46397 PubMed DOI PMC
Hamed, K. H. , & Rao, A. R. (1998). A modified Mann‐Kendall trend test for autocorrelated data. Journal of Hydrology, 204(1–4), 182–196. 10.1016/S0022-1694(97)00125-X DOI
Hanewinkel, M. , Cullmann, D. A. , Schelhaas, M. J. , Nabuurs, G. J. , & Zimmermann, N. E. (2013). Climate change may cause severe loss in the economic value of European forest land. Nature Climate Change, 3(3), 203–207.
Harmon, M. E. (2019). Have product substitution carbon benefits been overestimated? A sensitivity analysis of key assumptions. Environmental Research Letters, 14(6), 065008. 10.1088/1748-9326/ab1e95 DOI
Hartmann, H. , Bastos, A. , Das, A. J. , Esquivel‐Muelbert, A. , Hammond, W. M. , Martínez‐Vilalta, J. , McDowell, N. G. , Powers, J. S. , Pugh, T. A. M. , Ruthrof, K. X. , & Allen, C. D. (2022). Climate change risks to global Forest health: Emergence of unexpected events of elevated tree mortality worldwide. Annual Review of Plant Biology, 73(1), 673–702. 10.1146/annurev-arplant-102820-012804 PubMed DOI
Hermosilla, T. , Wulder, M. A. , White, J. C. , Coops, N. C. , & Hobart, G. W. (2015). Regional detection, characterization, and attribution of annual forest change from 1984 to 2012 using Landsat‐derived time‐series metrics. Remote Sensing of Environment, 170, 121–132. 10.1016/j.rse.2015.09.004 DOI
Herold, A. , Böttcher, H. , Gores, S. , & Urrutia, C. (2021). Background paper: 2030 Climate target: Review of LULUCF regulation, Öko‐institut e.V, May 2021 . https://www.europarl.europa.eu/cmsdata/233827/Background_paper_LULUCF_Regulation_2030_Climate_target.pdf
Hicke, J. A. , Allen, C. D. , Desai, A. R. , Dietze, M. C. , Hall, R. J. , (Ted) Hogg, E. H. , Kashian, D. M. , Moore, D. , Raffa, K. F. , Sturrock, R. N. , & Vogelmann, J. (2012). Effects of biotic disturbances on forest carbon cycling in the United States and Canada. Global Change Biology, 18(1), 7–34. 10.1111/j.1365-2486.2011.02543.x DOI
Hipel, K. W. , & McLeod, A. I. (1994). Time series modelling of water resources and environmental systems. Elsevier.
Hlásny, T. , König, L. , Krokene, P. , Lindner, M. , Montagné‐Huck, C. , Müller, J. , Qin, H. , Raffa, K. F. , Schelhaas, M.‐J. , Svoboda, M. , Viiri, H. , & Seidl, R. (2021). Bark beetle outbreaks in Europe: State of knowledge and ways forward for management. Current Forestry Reports, 7(3), 138–165. 10.1007/s40725-021-00142-x DOI
Hlásny, T. , Zimová, S. , Merganičová, K. , Štěpánek, P. , Modlinger, R. , & Turčáni, M. (2021). Devastating outbreak of bark beetles in the Czech Republic: Drivers, impacts, and management implications. Forest Ecology and Management, 490, 119075. 10.1016/j.foreco.2021.119075 DOI
Honkaniemi, J. , Rammer, W. , & Seidl, R. (2021). From mycelia to mastodons—A general approach for simulating biotic disturbances in forest ecosystems. Environmental Modelling & Software, 138, 104977. 10.1016/j.envsoft.2021.104977 DOI
Jakoby, O. , Lischke, H. , & Wermelinger, B. (2019). Climate change alters elevational phenology patterns of the European spruce bark beetle (Ips typographus). Global Change Biology, 25(12), 4048–4063. 10.1111/gcb.14766 PubMed DOI
Jiménez‐Ruano, A. , Rodrigues Mimbrero, M. , & de la Riva Fernández, J. (2017). Exploring spatial–temporal dynamics of fire regime features in mainland Spain. Natural Hazards and Earth System Sciences, 17(10), 1697–1711. 10.5194/nhess-17-1697-2017 DOI
Jones, M. W. , Abatzoglou, J. T. , Veraverbeke, S. , Andela, N. , Lasslop, G. , Forkel, M. , Smith, A. J. P. , Burton, C. , Betts, R. A. , van der Werf, G. R. , Sitch, S. , Canadell, J. G. , Santín, C. , Kolden, C. , Doerr, S. H. , & Le Quéré, C. (2022). Global and regional trends and drivers of fire under climate change. Reviews of Geophysics, 60, e2020RG000726. 10.1029/2020RG000726 DOI
Kendall, M. G. (1975). Rank correlation methods (4th ed.). Charles Griffin.
Kern, A. , Marjanović, H. , Csóka, G. , Móricz, N. , Pernek, M. , Hirka, A. , Matošević, D. , Paulin, M. , & Kovač, G. (2022). Detecting the oak lace bug infestation in oak forests using MODIS and meteorological data. Agricultural and Forest Meteorology, 306, 108436. 10.1016/j.agrformet.2021.108436 DOI
Kosiba, A. M. , Meigs, G. W. , Duncan, J. A. , Pontius, J. A. , Keeton, W. S. , & Tait, E. R. (2018). Spatiotemporal patterns of forest damage and disturbance in the northeastern United States: 2000–2016. Forest Ecology and Management, 430, 94–104.
Larsen, J. B. , Angelstam, P. , Bauhus, J. , Carvalho, J. F. , Diaci, J. , Dobrowolska, D. , Gazda, A. , Gustafsson, L. , Krumm, F. , Knoke, T. , Konczal, A. , Kuuluvainen, T. , Mason, B. , Motta, R. , Pötzelsberger, E. , Rigling, A. , & Schuck, A. (2022). Closer‐to‐nature forest management. European Forest Institute.
Lehtonen, I. , Kämäräinen, M. , Gregow, H. , Venäläinen, A. , & Peltola, H. (2016). Heavy snow loads in Finnish forests respond regionally asymmetrically to projected climate change. Natural Hazards and Earth System Sciences, 16(10), 2259–2271. 10.5194/nhess-16-2259-2016 DOI
Lerink, B. J. W. , Schelhaas, M. J. , Schreiber, R. , Aurenhammer, P. , Kies, U. , Vuillermoz, M. , Ruch, P. , Pupin, C. , Kitching, A. , Kerr, G. , Sing, L. , Calvert, A. , Dhubhain, A. N. , Nieuwenhuis, M. , Vayreda, J. , Reumerman, P. , Gustavsonn, G. , Jakobsson, R. , & Nabuurs, G. J. (2022). How much wood can we expect from European forests in the near future? Forestry. In review.
Leskinen, P. , Cardellini, G. , González‐García, S. , Hurmekoski, E. , Sathre, R. , Seppälä, J. , Smyth, C. , Stern, T. , Verkerk, P. J. , & European Forest Institute . (2018). Substitution effects of wood‐based products in climate change mitigation [From science to policy]. European Forest Institute. 10.36333/fs07 DOI
Ließ, M. , Glaser, B. , & Huwe, B. (2012). Uncertainty in the spatial prediction of soil texture. Geoderma, 170, 70–79. 10.1016/j.geoderma.2011.10.010 DOI
Lindenmayer, D. B. , & Noss, R. F. (2006). Salvage logging, ecosystem processes, and biodiversity conservation. Conservation Biology, 20(4), 949–958. 10.1111/j.1523-1739.2006.00497.x PubMed DOI
Lindner, M. , Maroschek, M. , Netherer, S. , Kremer, A. , Barbati, A. , Garcia‐Gonzalo, J. , Seidl, R. , Delzon, S. , Corona, P. , Kolström, M. , Lexer, M. J. , & Marchetti, M. (2010). Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. Forest Ecology and Management, 259(4), 698–709. 10.1016/j.foreco.2009.09.023 DOI
Linley, G. D. , Jolly, C. J. , Doherty, T. S. , Geary, W. L. , Armenteras, D. , Belcher, C. M. , Bliege Bird, R. , Duane, A. , Fletcher, M.‐S. , Giorgis, M. A. , Haslem, A. , Jones, G. M. , Kelly, L. T. , Lee, C. K. F. , Nolan, R. H. , Parr, C. L. , Pausas, J. G. , Price, J. N. , Regos, A. , … Poulter, B. (2022). What do you mean, ‘megafire’? Global Ecology and Biogeography, 31, 1906–1922. 10.1111/geb.13499 DOI
Machado‐Nunez Morerio, J. , Eid, T. , Antón‐Fernández, C. , Kangas, A. , & Trømborg, E. (2022). Natural disturbances risks in European boreal and temperate forests and their links to climate change—A review of modelling approaches. Forest Ecology and Management, 509, 120071. 10.1016/j.foreco.2022.120071 DOI
Mann, H. B. (1945). Nonparametric tests against trend. Econometrica, 13(3), 245–259. 10.2307/1907187 DOI
Mayer, M. , Sandén, H. , Rewald, B. , Godbold, D. L. , & Katzensteiner, K. (2017). Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Functional Ecology, 31(5), 1163–1172. 10.1111/1365-2435.12805 DOI
Messier, C. , Bauhus, J. , Doyon, F. , Maure, F. , Sousa‐Silva, R. , Nolet, P. , Mina, M. , Aquilué, N. , Fortin, M.‐J. , & Puettmann, K. (2019). The functional complex network approach to foster forest resilience to global changes. Forest Ecosystems, 6(1), 21. 10.1186/s40663-019-0166-2 DOI
Montiel, C. , & Kraus, D. (Eds.). (2010). Best practices of fire use—Prescribed burning and suppression fire programmes in selected case‐study region in Europe. European Forest Institute.
Mouillot, D. , Graham, N. A. J. , Villéger, S. , Mason, N. W. H. , & Bellwood, D. R. (2013). A functional approach reveals community responses to disturbances. Trends in Ecology & Evolution, 28(3), 167–177. 10.1016/j.tree.2012.10.004 PubMed DOI
Nabuurs, G.‐J. , Delacote, P. , Ellison, D. , Hanewinkel, M. , Hetemäki, L. , & Lindner, M. (2017). By 2050 the mitigation effects of EU forests could nearly double through climate smart forestry. Forests, 8(12), 484. 10.3390/f8120484 DOI
Nabuurs, G.‐J. , Lindner, M. , Verkerk, P. J. , Gunia, K. , Deda, P. , Michalak, R. , & Grassi, G. (2013). First signs of carbon sink saturation in European forest biomass. Nature Climate Change, 3(9), 792–796. 10.1038/nclimate1853 DOI
Nagel, T. A. , Mikac, S. , Dolinar, M. , Klopcic, M. , Keren, S. , Svoboda, M. , Diaci, J. , Boncina, A. , & Paulic, V. (2017). The natural disturbance regime in forests of the Dinaric Mountains: A synthesis of evidence. Forest Ecology and Management, 388, 29–42. 10.1016/j.foreco.2016.07.047 DOI
Outten, S. , & Sobolowski, S. (2021). Extreme wind projections over Europe from the euro‐CORDEX regional climate models. Weather and Climate Extremes, 33, 100363. 10.1016/j.wace.2021.100363 DOI
Palahí, M. , Valbuena, R. , Senf, C. , Acil, N. , Pugh, T. A. , Sadler, J. , Seidl, R. , Potapov, P. , Gardiner, B. , Hetemäki, L. , Chirici, G. , Francini, S. , Hlásny, T. , Lerink, B. J. W. , Olsson, H. , Olabarria, J. R. G. , Ascoli, D. , Asikainen, A. , Bauhus, J. , … Nabuurs, G. J. (2021). Concerns about reported harvests in European forests. Nature, 592(7856), E15–E17. PubMed
Patacca, M. , Schelhaas, M.‐J. , Zudin, S. , & Lindner, M. (2021). Technical description of the Database of Forest Disturbances in Europe (DFDE)—Project I‐Maestro (ERA‐NET Cofund ForestValue) . https://dfde.efi.int/db/docs/DFDE‐Report‐final‐11Feb2020.pdf
Pausas, J. G. , & Keeley, J. E. (2021). Wildfires and global change. Frontiers in Ecology and the Environment, 19(7), 387–395. 10.1002/fee.2359 DOI
Pausas, J. G. , Llovet, J. , Rodrigo, A. , & Vallejo, R. (2008). Are wildfires a disaster in the Mediterranean basin?—A review. International Journal of Wildland Fire, 17(6), 713. 10.1071/WF07151 DOI
Peters, J. M. R. , López, R. , Nolf, M. , Hutley, L. B. , Wardlaw, T. , Cernusak, L. A. , & Choat, B. (2021). Living on the edge: A continental‐scale assessment of forest vulnerability to drought. Global Change Biology, 27(15), 3620–3641. 10.1111/gcb.15641 PubMed DOI
Piñol, J. , Castellnou, M. , & Beven, K. J. (2007). Conditioning uncertainity in ecological models: Assessing the impact of fire management strategies. Ecological Modelling, 207, 34–44. 10.1016/j.ecolmodel.2007.03.020 DOI
Pugh, T. A. M. , Arneth, A. , Kautz, M. , Poulter, B. , & Smith, B. (2019). Important role of forest disturbances in the global biomass turnover and carbon sinks. Nature Geoscience, 12(9), 730–735. 10.1038/s41561-019-0427-2 PubMed DOI PMC
Rumpf, S. B. , Gravey, M. , Brönnimann, O. , Luoto, M. , Cianfrani, C. , Mariethoz, G. , & Guisan, A. (2022). From white to green: Snow cover loss and increased vegetation productivity in the European Alps. Science, 376(6597), 1119–1122. PubMed
Salguero, J. , Li, J. , Farahmand, A. , & Reager, J. T. (2020). Wildfire trend analysis over the Contiguous United States using remote sensing observations. Remote Sensing, 12(16), 2565.
Salomón, R. L. , Peters, R. L. , Zweifel, R. , Sass‐Klaassen, U. G. , Stegehuis, A. I. , Smiljanic, M. , Poyatos, R. , Babst, F. , Cienciala, E. , Fonti, P. , Lerink, B. J. W. , Lindner, M. , Martinez‐Vilalta, J. , Mencuccini, M. , Nabuurs, G.‐J. , van der Maaten, E. , von Arx, G. , Bär, A. , Akhmetzyanov, L. , … Steppe, K. (2022). The 2018 European heatwave led to stem dehydration but not to consistent growth reductions in forests. Nature Communications, 13(1), 1–11. PubMed PMC
San‐Miguel‐Ayanz, J. , Durrant, T. , Boca, R. , Maianti, P. , Libertá, G. , Artés‐Vivancos, T. , Oom, D. , Branco, A. , de Rigo, D. , Ferrari, D. , Pfeiffer, H. , Grecchi, R. , & Nuijten, D. (2022). Advance Report on Forest Fires in Europe, Middle East and North Africa 2021 , EUR 31028 EN. Publications Office of the European Union, Luxembourg, 2022, ISBN 978‐92‐76‐49633‐5. 10.2760/039729, JRC128678. DOI
San‐Miguel‐Ayanz, J. , Moreno, J. M. , & Camia, A. (2013). Analysis of large fires in European Mediterranean landscapes: Lessons learned and perspectives. Forest Ecology and Management, 294, 11–22. 10.1016/j.foreco.2012.10.050 DOI
Schelhaas, M.‐J. , Nabuurs, G.‐J. , & Schuck, A. (2003). Natural disturbances in the European forests in the 19th and 20th centuries: Natural disturbances in the European forests. Global Change Biology, 9(11), 1620–1633. 10.1046/j.1365-2486.2003.00684.x DOI
Schelhaas, M. J. , Patacca, M. , Lindner, M. , & Zudin, S. (2020). Database on forest disturbances in Europe (DFDE). European Forest Institute. https://dfde.efi.int/db/dfde_app.php
Sebald, J. , Senf, C. , & Seidl, R. (2021). Human or natural? Landscape context improves the attribution of forest disturbances mapped from Landsat in Central Europe. Remote Sensing of Environment, 262, 112502. 10.1016/j.rse.2021.112502 DOI
Segal, M. R. (2003). Machine learning benchmarks and random forest regression. Center for Bioinformatics and Molecular Biostatistics.
Seidl, R. , Schelhaas, M.‐J. , & Lexer, M. J. (2011). Unraveling the drivers of intensifying forest disturbance regimes in Europe: Drivers of forest disturbance intensification. Global Change Biology, 17(9), 2842–2852. 10.1111/j.1365-2486.2011.02452.x DOI
Seidl, R. , Schelhaas, M.‐J. , Rammer, W. , & Verkerk, P. J. (2014). Increasing forest disturbances in Europe and their impact on carbon storage. Nature Climate Change, 4(9), 806–810. 10.1038/nclimate2318 PubMed DOI PMC
Seidl, R. , Thom, D. , Kautz, M. , Martin‐Benito, D. , Peltoniemi, M. , Vacchiano, G. , Wild, J. , Ascoli, D. , Petr, M. , Honkaniemi, J. , Lexer, M. J. , Trotsiuk, V. , Mairota, P. , Svoboda, M. , Fabrika, M. , Nagel, T. A. , & Reyer, C. P. O. (2017). Forest disturbances under climate change. Nature Climate Change, 7(6), 395–402. 10.1038/nclimate3303 PubMed DOI PMC
Sen, P. K. (1968). Estimates of the regression coefficient based on Kendall's tau. Journal of the American Statistical Association, 63(324), 1379–1389. 10.2307/2285891 DOI
Senf, C. , Buras, A. , Zang, C. S. , Rammig, A. , & Seidl, R. (2020). Excess forest mortality is consistently linked to drought across Europe. Nature Communications, 11(1), 6200. 10.1038/s41467-020-19924-1 PubMed DOI PMC
Senf, C. , Pflugmacher, D. , Zhiqiang, Y. , Sebald, J. , Knorn, J. , Neumann, M. , Hostert, P. , & Seidl, R. (2018). Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nature Communications, 9(1), 4978. 10.1038/s41467-018-07539-6 PubMed DOI PMC
Senf, C. , & Seidl, R. (2021a). Post‐disturbance canopy recovery and the resilience of Europe's forests. Global Ecology and Biogeography, 31, 25–36. 10.1111/geb.13406 DOI
Senf, C. , & Seidl, R. (2021b). Storm and fire disturbances in Europe: Distribution and trends. Global Change Biology, 27(15), 3605–3619. 10.1111/gcb.15679 PubMed DOI
Senf, C. , & Seidl, R. (2021c). Mapping the forest disturbance regimes of Europe. Nature Sustainability, 4(1), 63–70. 10.1038/s41893-020-00609-y DOI
Sierota, Z. , Grodzki, W. , & Szczepkowski, A. (2019). Abiotic and biotic disturbances affecting forest health in Poland over the past 30 years: Impacts of climate and forest management. Forests, 10(1), 75. 10.3390/f10010075 DOI
Sommerfeld, A. , Senf, C. , Buma, B. , D'Amato, A. W. , Després, T. , Díaz‐Hormazábal, I. , Fraver, S. , Frelich, L. E. , Gutiérrez, Á. G. , Hart, S. J. , Harvey, B. J. , He, H. S. , Hlásny, T. , Holz, A. , Kitzberger, T. , Kulakowski, D. , Lindenmayer, D. , Mori, A. S. , Müller, J. , … Seidl, R. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 9(1), 4355. 10.1038/s41467-018-06788-9 PubMed DOI PMC
Strobl, C. , Boulesteix, A.‐L. , Zeileis, A. , & Hothorn, T. (2007). Bias in random forest variable importance measures: Illustrations, sources and a solution. BMC Bioinformatics, 8(1), 25. 10.1186/1471-2105-8-25 PubMed DOI PMC
Suvanto, S. , Lehtonen, A. , Nevalainen, S. , Lehtonen, I. , Viiri, H. , Strandström, M. , & Peltoniemi, M. (2020). Mapping the probability of forest snow disturbances in Finland [preprint]. Ecology. 10.1101/2020.12.23.424139 PubMed DOI PMC
Swanson, M. E. , Franklin, J. F. , Beschta, R. L. , Crisafulli, C. M. , DellaSala, D. A. , Hutto, R. L. , Lindenmayer, D. B. , & Swanson, F. J. (2011). The forgotten stage of forest succession: Early‐successional ecosystems on forest sites. Frontiers in Ecology and the Environment, 9(2), 117–125. 10.1890/090157 DOI
Tedim, F. , Xanthopoulos, G. , & Leone, V. (2015). Forest fires in Europe. In Wildfire hazards, risks and disasters (pp. 77–99). Elsevier. 10.1016/B978-0-12-410434-1.00005-1 DOI
Thom, D. , Rammer, W. , Dirnböck, T. , Müller, J. , Kobler, J. , Katzensteiner, K. , Helm, N. , & Seidl, R. (2017). The impacts of climate change and disturbance on spatio‐temporal trajectories of biodiversity in a temperate forest landscape. Journal of Applied Ecology, 54(1), 28–38. 10.1111/1365-2664.12644 PubMed DOI PMC
Thom, D. , & Seidl, R. (2016). Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biological Reviews, 91(3), 760–781. 10.1111/brv.12193 PubMed DOI PMC
Thonfeld, F. , Gessner, U. , Holzwarth, S. , Kriese, J. , da Ponte, E. , Huth, J. , & Kuenzer, C. (2022). A first assessment of canopy cover loss in Germany's forests after the 2018–2020 drought years. Remote Sensing, 14, 562.
Turco, M. , Bedia, J. , Di Liberto, F. , Fiorucci, P. , von Hardenberg, J. , Koutsias, N. , Llasat, M.‐C. , Xystrakis, F. , & Provenzale, A. (2016). Decreasing fires in Mediterranean Europe. PLoS ONE, 11(3), e0150663. 10.1371/journal.pone.0150663 PubMed DOI PMC
Turner, M. G. (2010). Disturbance and landscape dynamics in a changing world. Ecology, 91(10), 2833–2849. 10.1890/10-0097.1 PubMed DOI
UNECE/FAO, Forest Sector Outlook Study—FSOS . (2021). https://unece.org/info/Forests/pub/362308
UNFCCC, Czech Republic, Common Reporting Format, Czechia, UNFCCC . (2022). https://unfccc.int/documents/461886
Usbeck, T. , Wohlgemuth, T. , Dobbertin, M. , Pfister, C. , Bürgi, A. , & Rebetez, M. (2010). Increasing storm damage to forests in Switzerland from 1858 to 2007. Agricultural and Forest Meteorology, 150(1), 47–55. 10.1016/j.agrformet.2009.08.010 DOI
Van Buuren, S. , & Groothuis‐Oudshoorn, K. (2011). mice: Multivariate imputation by chained equations in R. Journal of Statistical Software, 45, 1–67.
Verkerk, P. J. , Costanza, R. , Hetemäki, L. , Kubiszewski, I. , Leskinen, P. , Nabuurs, G. J. , Potočnik, J. , & Palahí, M. (2020). Climate‐smart forestry: The missing link. Forest Policy and Economics, 115, 102164. 10.1016/j.forpol.2020.102164 DOI
Vilén, T. , Gunia, K. , Verkerk, P. J. , Seidl, R. , Schelhaas, M.‐J. , Lindner, M. , & Bellassen, V. (2012). Reconstructed forest age structure in Europe 1950–2010. Forest Ecology and Management, 286, 203–218. 10.1016/j.foreco.2012.08.048 DOI
Weng, E. , Luo, Y. , Wang, W. , Wang, H. , Hayes, D. J. , McGuire, A. D. , Hastings, A. , & Schimel, D. S. (2012). Ecosystem carbon storage capacity as affected by disturbance regimes: A general theoretical model. Journal of Geophysical Research: Biogeosciences, 117(G3). 10.1029/2012JG002040 DOI