Divergent Trends in Insect Disturbance Across Europe's Temperate and Boreal Forests

. 2025 Nov ; 31 (11) : e70580.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41158024

Grantová podpora
QK23020039 National Agency for Agriculture Research of the Czech Republic
101001905, FORWARD European Research Council under the European Union's Horizon 2020 Research and Innovation Program
101187384 Horizon Europe Climate, Energy and Mobility (HIVE)

Ongoing shifts in climate and land use have altered interactions between trees and insect herbivores, changing biotic disturbance regimes. However, as these changes are complex and vary across host species, insect taxa, and feeding guilds, they remain poorly understood. We compiled annual records of forest insect disturbance from 15 countries in temperate and boreal Europe, spanning the period from 2000 to 2022. The dataset comprises 1361 time series characterizing the dynamics of 50 herbivorous insects. We used this dataset to test whether insect disturbance has systematically changed during the 23-year period across host trees and feeding guilds, whether it varies along latitudinal and climatic gradients, and whether synchrony exists among species in the same guild or among species sharing the same host. Since 2000, borer disturbance was predominantly concentrated on gymnosperms, while defoliators impacted gymnosperms and angiosperms more evenly. While 85.8% of gymnosperm disturbance was inflicted by a single species, Ips typographus, the majority of disturbances to angiosperms were caused by six different species. Borer impact on gymnosperms has increased in the 21st century, while defoliator impact has decreased across both clades. In contrast to diverging temporal trends, disturbance was consistently greater in warmer and drier conditions across feeding guilds and host types. We identified significant synchrony in insect disturbance within host types and feeding guilds but not between these groups, suggesting shared drivers within guilds and host types. Increasing insect disturbance to gymnosperms may catalyze adaptive transformations in Europe's forests, promoting a shift from historical conifer-dominated management to broadleaved trees, which are less affected by insect herbivores. Our findings reveal a diversity of trends in insect herbivory, underscoring the need to strengthen monitoring and research in order to better understand underlying mechanisms and identify emerging threats that may not be apparent in currently available data.

Austrian Research Centre for Forests BFW Vienna Austria

Berchtesgaden National Park Berchtesgaden Germany

Biogeco INRAE University of Bordeaux Cestas France

Croatian Forest Research Institute Jastrebarsko Croatia

Department of Agronomy Food Natural Resources Animals and the Environment University of Padua Legnaro PD Italy

Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany

Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden

Department of Forest Protection and Forest Protection Service National Forest Centre Banská Štiavnica Slovakia

European Forest Institute Bonn Germany

Faculty of Forest Sciences and Forest Ecology Georg August University Göttingen Germany

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague Suchdol Czech Republic

Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Faculty of Forestry University of Belgrade Belgrade Serbia

Forest Research Institute Bulgarian Academy of Sciences Sofia Bulgaria

Forest Research Institute Sękocin Stary Raszyn Poland

Forest Research Institute University of Sopron Mátrafüred Hungary

Forestry Faculty Stefan cel Mare University of Suceava Suceava Romania

Institute for Forest Protection Julius Kühn Institute Federal Research Centre for Cultivated Plants Quedlinburg Germany

National Institute for Research and Development in Forestry Marin Drăcea Voluntari Romania

Natural Resources Institute Finland Helsinki Finland

Natural Resources Institute Finland Joensuu Finland

Nature Research Center Vilnius Lithuania

Norwegian Institute for Nature Research Oslo Norway

Norwegian Institute of Bioeconomy Research Ås Norway

Potsdam Institute for Climate Impact Research Potsdam Germany

Regional Plant Health Service ERSA Friuli Venezia Giulia Italy

Slovenia Forest Service Ljubljana Slovenia

Slovenian Forestry Institute Ljubljana Slovenia

Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland

TUM School of Life Sciences Technical University of Munich Freising Germany

Vytautas Magnus University Agricultural Academy Kaunas County Lithuania

Zobrazit více v PubMed

Allstadt, A. J. , Haynes K. J., Liebhold A. M., and Johnson D. M.. 2013. “Long‐Term Shifts in the Cyclicity of Outbreaks of a Forest‐Defoliating Insect.” Oecologia 172, no. 1: 141–151. 10.1007/S00442-012-2474-X. PubMed DOI

Baier, P. , Pennerstorfer J., and Schopf A.. 2007. “PHENIPS—A Comprehensive Phenology Model of DOI

Bejer, B. 1988. “The Nun Moth in European Spruce Forests.” In Dynamics of Forest Insect Populations. Population Ecology, edited by Berryman A. A.. Springer. 10.1007/978-1-4899-0789-9_11. DOI

Bentz, B. J. , Rgnire J., Fettig C. J., et al. 2010. “Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects.” Bioscience 60, no. 8: 602–613. 10.1525/BIO.2010.60.8.6. DOI

Bose, A. K. , Gessler A., Büntgen U., and Rigling A.. 2024. “Tamm Review: Drought‐Induced Scots Pine Mortality—Trends, Contributing Factors, and Mechanisms.” Forest Ecology and Management 561: 121873. 10.1016/J.FORECO.2024.121873. DOI

Brooks, M. E. , Kristensen K., van Benthem K. J., et al. 2017. “glmmTMB Balances Speed and Flexibility Among Packages for Zero‐Inflated Generalized Linear Mixed Modeling.” R Journal 9, no. 2: 378–400. 10.32614/RJ-2017-066. DOI

Caduff, M. E. , Brožová N., Kupferschmid A. D., Krumm F., and Bebi P.. 2022. “How Large‐Scale Bark Beetle Infestations Influence the Protective Effects of Forest Stands Against Avalanches: A Case Study in the Swiss Alps.” Forest Ecology and Management 514: 120201. 10.1016/J.FORECO.2022.120201. DOI

Chinellato, F. , Battisti A., Finozzi V., and Faccoli M.. 2014. “Better Today but Worse Tomorrow: How Warm Summers Affect Breeding Performance of a Scots Pine Pest.” Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 58: 133–145. 10.1400/226737. DOI

Das, A. K. , Baldo M., Dobor L., et al. 2025. “The Increasing Role of Drought as an Inciting Factor of Bark Beetle Outbreaks Can Cause Large‐Scale Transformation of Central European Forests.” Landscape Ecology 40, no. 6: 108. 10.1007/s10980-025-02125-w. PubMed DOI PMC

de Frenne, P. , Graae B. J., Rodríguez‐Sánchez F., et al. 2013. “Latitudinal Gradients as Natural Laboratories to Infer Species' Responses to Temperature.” Journal of Ecology 101, no. 3: 784–795. 10.1111/1365-2745.12074. DOI

del Castillo, E. M. , Zang C. S., Buras A., et al. 2022. “Climate‐Change‐Driven Growth Decline of European Beech Forests.” Communications Biology 5, no. 1: 1–9. 10.1038/s42003-022-03107-3. PubMed DOI PMC

Duursma, R. A. 2015. “Plantecophys—An R Package for Analysing and Modelling Leaf gas Exchange Data.” PLoS One 10, no. 11: e0143346. 10.1371/journal.pone.0143346. PubMed DOI PMC

EC . 2024. “Overview—NUTS—Nomenclature of Territorial Units for Statistics—Eurostat.” https://ec.europa.eu/eurostat/web/nuts.

EC , and JRC . 2021. “Joint Research Centre Data Catalogue—Salvage Loggings—European Commission.” http://data.europa.eu/89h/2100b612‐a4b0‐4897‐829b‐72b7b1e5782c.

Fält‐Nardmann, J. J. J. , Tikkanen O. P., Ruohomäki K., et al. 2018. “The Recent Northward Expansion of DOI

FAO . 2022. “FRA Platform | Global Forest Resources Data | Food and Agriculture Organization of the United Nations.” https://fra‐data.fao.org/assessments/fra/2020.

Forzieri, G. , Dutrieux L. P., Elia A., et al. 2023. “The Database of European Forest Insect and Disease Disturbances: DEFID2.” Global Change Biology 29, no. 21: 6040–6065. 10.1111/GCB.16912. PubMed DOI

Gely, C. , Laurance S. G. W., and Stork N. E.. 2020. “How Do Herbivorous Insects Respond to Drought Stress in Trees?” Biological Reviews 95, no. 2: 434–448. 10.1111/BRV.12571. PubMed DOI

George, J. P. , Bürkner P. C., Sanders T. G. M., et al. 2022. “Long‐Term Forest Monitoring Reveals Constant Mortality Rise in European Forests.” Plant Biology 24, no. 7: 1108–1119. 10.1111/PLB.13469. PubMed DOI

Georgieva, M. , Georgiev G., Pilarska D., et al. 2013. First Record of Entomophaga Maimaiga (Entomophthorales: Entomophthoraceae) in

Godefroid, M. , Meurisse N., Groenen F., Kerdelhué C., and Rossi J. P.. 2020. “Current and Future Distribution of the Invasive Oak Processionary Moth.” Biological Invasions 22, no. 2: 523–534. 10.1007/S10530-019-02108-4/FIGURES/3. DOI

Grégoire, J.‐C. , and Evans H. F.. 2007. “Damage and Control of Bawbilt Organisms an Overview.” In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis, 19–37. Springer. 10.1007/978-1-4020-2241-8_4. DOI

Haavik, L. J. , Billings S. A., Guldin J. M., and Stephen F. M.. 2015. “Emergent Insects, Pathogens and Drought Shape Changing Patterns in Oak Decline in North America and Europe.” Forest Ecology and Management 354: 190–205. 10.1016/J.FORECO.2015.06.019. DOI

Hallas, T. , Steyrer G., Laaha G., and Hoch G.. 2024. “Two Unprecedented Outbreaks of the European Spruce Bark Beetle, DOI

Hammond, W. M. , Williams A. P., Abatzoglou J. T., et al. 2022. “Global Field Observations of Tree Die‐Off Reveal Hotter‐Drought Fingerprint for Earth's Forests.” Nature Communications 13, no. 1: 1–11. 10.1038/s41467-022-29289-2. PubMed DOI PMC

Hanewinkel, M. , Cullmann D. A., Schelhaas M. J., Nabuurs G. J., and Zimmermann N. E.. 2012. “Climate Change May Cause Severe Loss in the Economic Value of European Forest Land.” Nature Climate Change 3, no. 3: 203–207. 10.1038/nclimate1687. DOI

Hartmann, H. , Moura C. F., Anderegg W. R. L., et al. 2018. “Research Frontiers for Improving Our Understanding of Drought‐Induced Tree and Forest Mortality.” New Phytologist 218, no. 1: 15–28. 10.1111/nph.15048. PubMed DOI

Haynes, K. J. , Allstadt A. J., and Klimetzek D.. 2014. “Forest Defoliator Outbreaks Under Climate Change: Effects on the Frequency and Severity of Outbreaks of Five Pine Insect Pests.” Global Change Biology 20, no. 6: 2004–2018. 10.1111/GCB.12506. PubMed DOI

Hetemäki, L. , Kangas J., and Peltola H.. 2022. Forest Bioeconomy and Climate Change, 42. Springer Nature. 10.1007/978-3-030-99206-4. DOI

Hicke, J. A. , Meddens A. J. H., and Kolden C. A.. 2016. “Recent Tree Mortality in the Western United States From Bark Beetles and Forest Fires.” Forest Science 62, no. 2: 141–153. 10.5849/FORSCI.15-086. DOI

Hlásny, T. , König L., Krokene P., et al. 2021. “Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management.” Current Forestry Reports 7, no. 3: 138–165. 10.1007/S40725-021-00142-X/TABLES/1. DOI

Hlásny, T. , Mátyás C., Seidl R., et al. 2014. “Climate Change Increases the Drought Risk in Central European Forests: What Are the Options for Adaptation?” Forestry Journal 60, no. 1: 5–18. 10.2478/FORJ-2014-0001. DOI

Hlásny, T. , Modlinger R., Gohli J., et al. 2025. “Data From: Divergent Trends in Insect Disturbance Across Europe's Temperate and Boreal Forests [Data Set].” Zenodo. 10.5281/zenodo.15863174. PubMed DOI PMC

Hlásny, T. , Perunová M., Modlinger R., et al. 2025. “Perspectives: State of National Forest Damage Survey Programmes in Europe and Ways Toward Improved Harmonization and Data Sharing.” Forest Ecology and Management 597: 123111. 10.1016/j.foreco.2025.123111. DOI

Hlásny, T. , Zimová S., Merganičová K., Štěpánek P., Modlinger R., and Turčáni M.. 2021. “Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications.” Forest Ecology and Management 490: 119075. 10.1016/J.FORECO.2021.119075. DOI

Hlávková, D. , and Doležal P.. 2022. “Cambioxylophagous Pests of Scots Pine: Ecological Physiology of European Populations—A Review.” Frontiers in Forests and Global Change 5: 864651. 10.3389/FFGC.2022.864651. DOI

Holuša, J. , Zúbrik M., Resnerová K., et al. 2021. “Further Spread of the Gypsy Moth Fungal Pathogen, Entomophaga Maimaiga, to the West and North in Central Europe.” Journal of Plant Diseases and Protection 128, no. 1: 323–331. 10.1007/S41348-020-00366-2/TABLES/2. DOI

Huang, J. , Kautz M., Trowbridge A. M., et al. 2020. “Tree Defence and Bark Beetles in a Drying World: Carbon Partitioning, Functioning and Modelling.” New Phytologist 225, no. 1: 26–36. 10.1111/nph.16173. PubMed DOI

Ims, R. A. , Henden J. A., and Killengreen S. T.. 2008. “Collapsing Population Cycles.” Trends in Ecology & Evolution 23, no. 2: 79–86. 10.1016/J.TREE.2007.10.010. PubMed DOI

Ivashov, A. v. , Boyko G. E., and Simchuk A. P.. 2002. “The Role of Host Plant Phenology in the Development of the Oak Leafroller Moth, DOI

Jactel, H. , Desprez‐Loustau M. L., Battisti A., et al. 2020. “Pathologists and Entomologists Must Join Forces Against Forest Pest and Pathogen Invasions.” NeoBiota 58: 107–127. 10.3897/neobiota.58.54389. DOI

Jactel, H. , Koricheva J., and Castagneyrol B.. 2019. “Responses of Forest Insect Pests to Climate Change: Not So Simple.” Current Opinion in Insect Science 35: 103–108. 10.1016/J.COIS.2019.07.010. PubMed DOI

Jactel, H. , Petit J., Desprez‐Loustau M. L., et al. 2012. “Drought Effects on Damage by Forest Insects and Pathogens: A Meta‐Analysis.” Global Change Biology 18, no. 1: 267–276. 10.1111/J.1365-2486.2011.02512.X. DOI

Jaime, L. , Batllori E., Ferretti M., and Lloret F.. 2022. “Climatic and Stand Drivers of Forest Resistance to Recent Bark Beetle Disturbance in European Coniferous Forests.” Global Change Biology 28, no. 8: 2830–2841. 10.1111/GCB.16106. PubMed DOI

Johnson, D. M. , Büntgen U., Frank D. C., et al. 2010. “Climatic Warming Disrupts Recurrent Alpine Insect Outbreaks.” Proceedings of the National Academy of Sciences of the United States of America 107, no. 47: 20576–20581. 10.1073/PNAS.1010270107/SUPPL_FILE/PNAS.201010270SI.PDF. PubMed DOI PMC

Johnson, D. M. , and Haynes K. J.. 2023. “Spatiotemporal Dynamics of Forest Insect Populations Under Climate Change.” Current Opinion in Insect Science 56: 101020. 10.1016/J.COIS.2023.101020. PubMed DOI

Kambach, S. , Kuhn I., Castagneyrol B., and Bruelheide H.. 2016. “The Impact of Tree Diversity on Different Aspects of Insect Herbivory Along a Global Temperature Gradient—A Meta‐Analysis.” PLoS One 11, no. 11: e0165815. 10.1371/journal.pone.0165815. PubMed DOI PMC

Kärvemo, S. , Huo L., Öhrn P., Lindberg E., and Persson H. J.. 2023. “Different Triggers, Different Stories: Bark‐Beetle Infestation Patterns After Storm and Drought‐Induced Outbreaks.” Forest Ecology and Management 545: 121255. 10.1016/J.FORECO.2023.121255. DOI

Kautz, M. , Meddens A. J. H., Hall R. J., and Arneth A.. 2017. “Biotic Disturbances in Northern Hemisphere Forests—A Synthesis of Recent Data, Uncertainties and Implications for Forest Monitoring and Modelling.” Global Ecology and Biogeography 26, no. 5: 533–552. 10.1111/GEB.12558. DOI

Knížek, M. , Liška J., and Velé A.. 2023. “Výskyt a význam kůrovců rodu Pityokteines v porostech jedle bělokoré ( DOI

Knoke, T. , Ammer C., Stimm B., and Mosandl R.. 2008. “Admixing Broadleaved to Coniferous Tree Species: A Review on Yield, Ecological Stability and Economics.” European Journal of Forest Research 127, no. Issue 2: 89–101. 10.1007/s10342-007-0186-2. DOI

Knoke, T. , Gosling E., Thom D., Chreptun C., Rammig A., and Seidl R.. 2021. “Economic Losses From Natural Disturbances in Norway Spruce Forests—A Quantification Using Monte‐Carlo Simulations.” Ecological Economics 185: 107046. 10.1016/J.ECOLECON.2021.107046. DOI

Kunca, A. , Zúbrik M., Galko J., et al. 2019. “Salvage Felling in the Slovak Republic's Forests During the Last Twenty Years (1998–2017).” Central European Forestry Journal 65, no. 1: 3–11. 10.2478/FORJ-2019-0007. DOI

Kurz, W. A. , Dymond C. C., Stinson G., et al. 2008. “Mountain Pine Beetle and Forest Carbon Feedback to Climate Change.” Nature 452, no. 7190: 987–990. 10.1038/nature06777. PubMed DOI

Lecina‐Diaz, J. , Senf C., Grünig M., and Seidl R.. 2024. “Ecosystem Services at Risk From Disturbance in Europe's Forests.” Global Change Biology 30, no. 3: e17242. 10.1111/GCB.17242. PubMed DOI

Lim, J. Y. , Fine P. V. A., and Mittelbach G. G.. 2015. “Assessing the Latitudinal Gradient in Herbivory.” Global Ecology and Biogeography 24, no. 10: 1106–1112. 10.1111/geb.12336. DOI

Lindner, M. , Maroschek M., Netherer S., et al. 2010. “Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems.” Forest Ecology and Management 259, no. 4: 698–709. 10.1016/J.FORECO.2009.09.023. DOI

Liu, M. , Jiang P., Chase J. M., and Liu X.. 2024. “Global Insect Herbivory and Its Response to Climate Change.” Current Biology 34, no. 12: 2558–2569.e3. 10.1016/j.cub.2024.04.062. PubMed DOI

Lorenz, M. 1995. “International Co‐Operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests‐ICP Forests.” Water, Air, and Soil Pollution 85, no. 3: 1221–1226. 10.1007/BF00477148. DOI

Macháčová, M. , Nakládal O., Samek M., Baťa D., Zumr V., and Pešková V.. 2022. “Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study From The Czech Republic.” Forests 13, no. 8: 1223. 10.3390/F13081223/S1. DOI

Melin, M. , Viiri H., Tikkanen O. P., Elfving R., and Neuvonen S.. 2020. “From a Rare Inhabitant Into a Potential Pest—Status of the nun Moth in Finland Based on Pheromone Trapping.” Silva Fennica 54, no. 1: 9. 10.14214/SF.10262. DOI

Muñoz‐Sabater, J. , Dutra E., Agustí‐Panareda A., et al. 2021. “ERA5‐Land: A State‐of‐the‐Art Global Reanalysis Dataset for Land Applications.” Earth System Science Data 13, no. 9: 4349–4383. 10.5194/essd-13-4349-2021. DOI

Myers, J. H. , and Cory J. S.. 2013. “Population Cycles in Forest lepidoptera Revisited.” Annual Review of Ecology, Evolution, and Systematics 44: 565–592. 10.1146/ANNUREV-ECOLSYS-110512-135858/CITE/REFWORKS. DOI

Nabuurs, G. J. , Lindner M., Verkerk P. J., et al. 2013. “First Signs of Carbon Sink Saturation in European Forest Biomass.” Nature Climate Change 3, no. 9: 792–796. 10.1038/nclimate1853. DOI

Nagavciuc, V. , Michel S. L. L., Balting D. F., et al. 2024. “A Past and Present Perspective on the European Summer Vapor Pressure Deficit.” Climate of the Past 20, no. 3: 573–595. 10.5194/cp-20-573-2024. DOI

Nakládal, O. , and Brinkeová H.. 2015. “Review of Historical Outbreaks of the nun Moth ( DOI

Netherer, S. , and Schopf A.. 2010. “Potential Effects of Climate Change on Insect Herbivores in European Forests—General Aspects and the Pine Processionary Moth as Specific Example.” Forest Ecology and Management 259, no. 4: 831–838. 10.1016/J.FORECO.2009.07.034. DOI

Nosenko, T. , Schroeder H., Zimmer I., et al. 2025. “Patterns of Adaptation to Drought in PubMed DOI PMC

Obladen, N. , Dechering P., Skiadaresis G., et al. 2021. “Tree Mortality of European Beech and Norway Spruce Induced by 2018–2019 Hot Droughts in Central Germany.” Agricultural and Forest Meteorology 307: 108482. 10.1016/J.AGRFORMET.2021.108482. DOI

Oliva, J. , and Colinas C.. 2007. “Decline of Silver Fir ( DOI

Papek, E. , Ritzer E., Biedermann P. H. W., et al. 2024. “The Pine Bark Beetle DOI

Patacca, M. , Lindner M., Lucas‐Borja M. E., et al. 2023. “Significant Increase in Natural Disturbance Impacts on European Forests Since 1950.” Global Change Biology 29, no. 5: 1359–1376. 10.1111/GCB.16531. PubMed DOI PMC

Peltonen, M. , Liebhold A. M., Bjørnstad O. N., and Williams D. W.. 2002. “Spatial Synchrony in Forest Insect Outbreaks: Roles of Regional Stochasticity and Dispersal.” Ecology 83, no. 11: 3120–3129. 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2. DOI

Peters, W. , Bastos A., Ciais P., and Vermeulen A.. 2020. “A Historical, Geographical and Ecological Perspective on the 2018 European Summer Drought.” Philosophical Transactions of the Royal Society B 375, no. 1810: 20190505. 10.1098/RSTB.2019.0505. PubMed DOI PMC

Podlaski, R. , Wojdan D., and Żelezik M.. 2020. “A Quantitative Approach for Assessing Bark Beetle Infestations: A Study of DOI

Potterf, M. , Frühbrodt T., Thom D., Lemme H., Hahn A., and Seidl R.. 2025. “Hotter Drought Increases Population Levels and Accelerates Phenology of the European Spruce Bark Beetle Ips Typographus.” Forest Ecology and Management 585: 122615. 10.1016/j.foreco.2025.122615. DOI

Pugh, T. A. M. , Arneth A., Kautz M., Poulter B., and Smith B.. 2019. “Important Role of Forest Disturbances in the Global Biomass Turnover and Carbon Sinks.” Nature Geoscience 12, no. 9: 730–735. 10.1038/s41561-019-0427-2. PubMed DOI PMC

Pureswaran, D. S. , Roques A., and Battisti A.. 2018. “Forest Insects and Climate Change.” Current Forestry Reports 4, no. 2: 35–50. 10.1007/s40725-018-0075-6. DOI

R Core Team . 2024. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing, Vienna, Austria.

Raffa, K. F. , Aukema B. H., Bentz B. J., et al. 2008. “Cross‐Scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions.” Bioscience 58, no. 6: 501–517. 10.1641/B580607. DOI

Raimondo, S. , Turcáni M., Patoèka J., and Liebhold A. M.. 2004. “Interspecific Synchrony Among Foliage‐Feeding Forest Lepidoptera Species and the Potential Role of Generalist Predators as Synchronizing Agents.” Oikos 107, no. 3: 462–470. 10.1111/J.0030-1299.2004.13449.X. DOI

Rindos, M. , Yakovlev R. V., Mclachlan Hamilton K., Fric Z. F., Knyazev S. A., and Zahiri R.. 2024. “Phylogeography and Bioclimatic Models Revealed a Complicated Genetic Structure and Future Range Shifts of DOI

Roques, A. , Rousselet J., Avci M., et al. 2015. “Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa.” In Processionary Moths and Climate Change: An Update, 81–161. Springer. 10.1007/978-94-017-9340-7_3. DOI

Rouault, G. , Candau J. N., Lieutier F., Nageleisen L. M., Martin J. C., and Warzée N.. 2006. “Effects of Drought and Heat on Forest Insect Populations in Relation to the 2003 Drought in Western Europe.” Annals of Forest Science 63, no. 6: 613–624. 10.1051/FOREST:2006044. DOI

Santini, A. , Ghelardini L., de Pace C., et al. 2013. “Biogeographical Patterns and Determinants of Invasion by Forest Pathogens in Europe.” New Phytologist 197, no. 1: 238–250. 10.1111/j.1469-8137.2012.04364.x. PubMed DOI

Schuck, A. , van Brusselen J., Päivinen R., Häme T., Kennedy P., and Folving S.. 2002. “Compilation of a Calibrated European Forest Map Derived From NOAA‐AVHRR Data.” http://www.efi.fi/.

Schuldt, B. , Buras A., Arend M., et al. 2020. “A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests.” Basic and Applied Ecology 45: 86–103. 10.1016/J.BAAE.2020.04.003. DOI

Seidl, R. , Müller J., Hothorn T., Bässler C., Heurich M., and Kautz M.. 2016. “Small Beetle, Large‐Scale Drivers: How Regional and Landscape Factors Affect Outbreaks of the European Spruce Bark Beetle.” Journal of Applied Ecology 53, no. 2: 530–540. 10.1111/1365-2664.12540. PubMed DOI PMC

Seidl, R. , Potterf M., Müller J., Turner M. G., and Rammer W.. 2024. “Patterns of Early Post‐Disturbance Reorganization in Central European Forests.” Proceedings of the Royal Society B: Biological Sciences 291, no. 2031: 20240625. 10.1098/RSPB.2024.0625. PubMed DOI PMC

Seidl, R. , Thom D., Kautz M., et al. 2017. “Forest Disturbances Under Climate Change.” Nature Climate Change 7, no. 6: 395–402. 10.1038/NCLIMATE3303. PubMed DOI PMC

Seidl, R. , and Turner M. G.. 2022. “Post‐Disturbance Reorganization of Forest Ecosystems in a Changing World.” Proceedings of the National Academy of Sciences of the United States of America 119, no. 28: e2202190119. 10.1073/PNAS.2202190119. PubMed DOI PMC

Senf, C. , Buras A., Zang C. S., Rammig A., and Seidl R.. 2020. “Excess Forest Mortality Is Consistently Linked to Drought Across Europe.” Nature Communications 11, no. 1: 1–8. 10.1038/s41467-020-19924-1. PubMed DOI PMC

Senf, C. , and Seidl R.. 2017. “Natural Disturbances Are Spatially Diverse but Temporally Synchronized Across Temperate Forest Landscapes in Europe.” Global Change Biology 24, no. 3: 1201–1211. 10.1111/GCB.13897. PubMed DOI PMC

Senf, C. , and Seidl R.. 2021. “Persistent Impacts of the 2018 Drought on Forest Disturbance Regimes in Europe.” Biogeosciences 18, no. 18: 5223–5230. 10.5194/BG-18-5223-2021. DOI

Senf, C. , Seidl R., and Hostert P.. 2017. “Remote Sensing of Forest Insect Disturbances: Current State and Future Directions.” International Journal of Applied Earth Observation and Geoinformation 60: 49–60. 10.1016/J.JAG.2017.04.004. PubMed DOI PMC

Singh, V. V. , Naseer A., Mogilicherla K., et al. 2024. “Understanding Bark Beetle Outbreaks: Exploring the Impact of Changing Temperature Regimes, Droughts, Forest Structure, and Prospects for Future Forest Pest Management.” Reviews in Environmental Science and Bio/Technology 23, no. 2: 257–290. 10.1007/S11157-024-09692-5. DOI

Sousa‐Silva, R. , Verbist B., Lomba Â., et al. 2018. “Adapting Forest Management to Climate Change in Europe: Linking Perceptions to Adaptive Responses.” Forest Policy and Economics 90: 22–30. 10.1016/J.FORPOL.2018.01.004. DOI

Stahl, A. T. , Andrus R., Hicke J. A., Hudak A. T., Bright B. C., and Meddens A. J. H.. 2023. “Automated Attribution of Forest Disturbance Types From Remote Sensing Data: A Synthesis.” Remote Sensing of Environment 285: 113416. 10.1016/J.RSE.2022.113416. DOI

Stephenson, N. L. , Das A. J., Ampersee N. J., Bulaon B. M., and Yee J. L.. 2019. “Which Trees Die During Drought? The Key Role of Insect Host‐Tree Selection.” Journal of Ecology 107, no. 5: 2383–2401. 10.1111/1365-2745.13176. DOI

Thom, D. , Rammer W., and Seidl R.. 2017. “Disturbances Catalyze the Adaptation of Forest Ecosystems to Changing Climate Conditions.” Global Change Biology 23, no. 1: 269–282. 10.1111/GCB.13506. PubMed DOI PMC

Thomas, F. M. , Blank R., and Hartmann G.. 2002. “Abiotic and Biotic Factors and Their Interactions as Causes of Oak Decline in Central Europe.” Forest Pathology 32, no. 4–5: 277–307. 10.1046/J.1439-0329.2002.00291.X. DOI

Tinner, W. , Colombaroli D., Heiri O., et al. 2013. “The Past Ecology of DOI

Valdés‐Correcher, E. , Moreira X., Augusto L., et al. 2021. “Search for Top‐Down and Bottom‐Up Drivers of Latitudinal Trends in Insect Herbivory in Oak Trees in Europe.” Global Ecology and Biogeography 30, no. 3: 651–665. 10.1111/geb.13244. DOI

van Lierop, P. , Lindquist E., Sathyapala S., and Franceschini G.. 2015. “Global Forest Area Disturbance From Fire, Insect Pests, Diseases and Severe Weather Events.” Forest Ecology and Management 352: 78–88. 10.1016/J.FORECO.2015.06.010. DOI

Viljur, M. L. , Abella S. R., Adámek M., et al. 2022. “The Effect of Natural Disturbances on Forest Biodiversity: An Ecological Synthesis.” Biological Reviews 97, no. 5: 1930–1947. 10.1111/BRV.12876. PubMed DOI

Vitasse, Y. , Bottero A., Rebetez M., et al. 2019. “What Is the Potential of Silver Fir to Thrive Under Warmer and Drier Climate?” European Journal of Forest Research 138, no. 4: 547–560. 10.1007/S10342-019-01192-4. DOI

Weed, A. S. , Ayres M. P., and Hicke J. A.. 2013. “Consequences of Climate Change for Biotic Disturbances in North American Forests.” Ecological Monographs 83, no. 4: 441–470. 10.1890/13-0160.1. DOI

Wermelinger, B. 2004. “Ecology and Management of the Spruce Bark Beetle Ips Typographus—A Review of Recent Research.” Forest Ecology and Management 202, no. 1–3: 67–82. 10.1016/j.foreco.2004.07.018. DOI

Wessely, J. , Essl F., Fiedler K., et al. 2024. “A Climate‐Induced Tree Species Bottleneck for Forest Management in Europe.” Nature Ecology & Evolution 8, no. 6: 1109–1117. 10.1038/s41559-024-02406-8. PubMed DOI

Zúbrik, M. , Špilda I., Pilarska D., et al. 2018. “Distribution of the Entomopathogenic Fungus Entomophaga Maimaiga (Entomophthorales: Entomophthoraceae) at the Northern Edge of Its Range in Europe.” Annals of Applied Biology 173, no. 1: 35–41. 10.1111/AAB.12431. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...