Divergent Trends in Insect Disturbance Across Europe's Temperate and Boreal Forests
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články
Grantová podpora
QK23020039
National Agency for Agriculture Research of the Czech Republic
101001905, FORWARD
European Research Council under the European Union's Horizon 2020 Research and Innovation Program
101187384
Horizon Europe Climate, Energy and Mobility (HIVE)
PubMed
41158024
PubMed Central
PMC12569566
DOI
10.1111/gcb.70580
Knihovny.cz E-zdroje
- Klíčová slova
- climate change, ecosystem adaptation, forest disturbance, forest insect herbivores, host tree types, insect feeding guilds,
- MeSH
- býložravci * MeSH
- hmyz * fyziologie MeSH
- klimatické změny * MeSH
- lesy * MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Ongoing shifts in climate and land use have altered interactions between trees and insect herbivores, changing biotic disturbance regimes. However, as these changes are complex and vary across host species, insect taxa, and feeding guilds, they remain poorly understood. We compiled annual records of forest insect disturbance from 15 countries in temperate and boreal Europe, spanning the period from 2000 to 2022. The dataset comprises 1361 time series characterizing the dynamics of 50 herbivorous insects. We used this dataset to test whether insect disturbance has systematically changed during the 23-year period across host trees and feeding guilds, whether it varies along latitudinal and climatic gradients, and whether synchrony exists among species in the same guild or among species sharing the same host. Since 2000, borer disturbance was predominantly concentrated on gymnosperms, while defoliators impacted gymnosperms and angiosperms more evenly. While 85.8% of gymnosperm disturbance was inflicted by a single species, Ips typographus, the majority of disturbances to angiosperms were caused by six different species. Borer impact on gymnosperms has increased in the 21st century, while defoliator impact has decreased across both clades. In contrast to diverging temporal trends, disturbance was consistently greater in warmer and drier conditions across feeding guilds and host types. We identified significant synchrony in insect disturbance within host types and feeding guilds but not between these groups, suggesting shared drivers within guilds and host types. Increasing insect disturbance to gymnosperms may catalyze adaptive transformations in Europe's forests, promoting a shift from historical conifer-dominated management to broadleaved trees, which are less affected by insect herbivores. Our findings reveal a diversity of trends in insect herbivory, underscoring the need to strengthen monitoring and research in order to better understand underlying mechanisms and identify emerging threats that may not be apparent in currently available data.
Austrian Research Centre for Forests BFW Vienna Austria
Berchtesgaden National Park Berchtesgaden Germany
Biogeco INRAE University of Bordeaux Cestas France
Croatian Forest Research Institute Jastrebarsko Croatia
Department of Biogeochemical Processes Max Planck Institute for Biogeochemistry Jena Germany
Department of Ecology Swedish University of Agricultural Sciences Uppsala Sweden
European Forest Institute Bonn Germany
Faculty of Forest Sciences and Forest Ecology Georg August University Göttingen Germany
Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic
Faculty of Forestry University of Belgrade Belgrade Serbia
Forest Research Institute Bulgarian Academy of Sciences Sofia Bulgaria
Forest Research Institute Sękocin Stary Raszyn Poland
Forest Research Institute University of Sopron Mátrafüred Hungary
Forestry Faculty Stefan cel Mare University of Suceava Suceava Romania
National Institute for Research and Development in Forestry Marin Drăcea Voluntari Romania
Natural Resources Institute Finland Helsinki Finland
Natural Resources Institute Finland Joensuu Finland
Nature Research Center Vilnius Lithuania
Norwegian Institute for Nature Research Oslo Norway
Norwegian Institute of Bioeconomy Research Ås Norway
Potsdam Institute for Climate Impact Research Potsdam Germany
Regional Plant Health Service ERSA Friuli Venezia Giulia Italy
Slovenia Forest Service Ljubljana Slovenia
Slovenian Forestry Institute Ljubljana Slovenia
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
TUM School of Life Sciences Technical University of Munich Freising Germany
Vytautas Magnus University Agricultural Academy Kaunas County Lithuania
Zobrazit více v PubMed
Allstadt, A. J. , Haynes K. J., Liebhold A. M., and Johnson D. M.. 2013. “Long‐Term Shifts in the Cyclicity of Outbreaks of a Forest‐Defoliating Insect.” Oecologia 172, no. 1: 141–151. 10.1007/S00442-012-2474-X. PubMed DOI
Baier, P. , Pennerstorfer J., and Schopf A.. 2007. “PHENIPS—A Comprehensive Phenology Model of DOI
Bejer, B. 1988. “The Nun Moth in European Spruce Forests.” In Dynamics of Forest Insect Populations. Population Ecology, edited by Berryman A. A.. Springer. 10.1007/978-1-4899-0789-9_11. DOI
Bentz, B. J. , Rgnire J., Fettig C. J., et al. 2010. “Climate Change and Bark Beetles of the Western United States and Canada: Direct and Indirect Effects.” Bioscience 60, no. 8: 602–613. 10.1525/BIO.2010.60.8.6. DOI
Bose, A. K. , Gessler A., Büntgen U., and Rigling A.. 2024. “Tamm Review: Drought‐Induced Scots Pine Mortality—Trends, Contributing Factors, and Mechanisms.” Forest Ecology and Management 561: 121873. 10.1016/J.FORECO.2024.121873. DOI
Brooks, M. E. , Kristensen K., van Benthem K. J., et al. 2017. “glmmTMB Balances Speed and Flexibility Among Packages for Zero‐Inflated Generalized Linear Mixed Modeling.” R Journal 9, no. 2: 378–400. 10.32614/RJ-2017-066. DOI
Caduff, M. E. , Brožová N., Kupferschmid A. D., Krumm F., and Bebi P.. 2022. “How Large‐Scale Bark Beetle Infestations Influence the Protective Effects of Forest Stands Against Avalanches: A Case Study in the Swiss Alps.” Forest Ecology and Management 514: 120201. 10.1016/J.FORECO.2022.120201. DOI
Chinellato, F. , Battisti A., Finozzi V., and Faccoli M.. 2014. “Better Today but Worse Tomorrow: How Warm Summers Affect Breeding Performance of a Scots Pine Pest.” Agrochimica: International Journal of Plant Chemistry, Soil Science and Plant Nutrition of the University of Pisa 58: 133–145. 10.1400/226737. DOI
Das, A. K. , Baldo M., Dobor L., et al. 2025. “The Increasing Role of Drought as an Inciting Factor of Bark Beetle Outbreaks Can Cause Large‐Scale Transformation of Central European Forests.” Landscape Ecology 40, no. 6: 108. 10.1007/s10980-025-02125-w. PubMed DOI PMC
de Frenne, P. , Graae B. J., Rodríguez‐Sánchez F., et al. 2013. “Latitudinal Gradients as Natural Laboratories to Infer Species' Responses to Temperature.” Journal of Ecology 101, no. 3: 784–795. 10.1111/1365-2745.12074. DOI
del Castillo, E. M. , Zang C. S., Buras A., et al. 2022. “Climate‐Change‐Driven Growth Decline of European Beech Forests.” Communications Biology 5, no. 1: 1–9. 10.1038/s42003-022-03107-3. PubMed DOI PMC
Duursma, R. A. 2015. “Plantecophys—An R Package for Analysing and Modelling Leaf gas Exchange Data.” PLoS One 10, no. 11: e0143346. 10.1371/journal.pone.0143346. PubMed DOI PMC
EC . 2024. “Overview—NUTS—Nomenclature of Territorial Units for Statistics—Eurostat.” https://ec.europa.eu/eurostat/web/nuts.
EC , and JRC . 2021. “Joint Research Centre Data Catalogue—Salvage Loggings—European Commission.” http://data.europa.eu/89h/2100b612‐a4b0‐4897‐829b‐72b7b1e5782c.
Fält‐Nardmann, J. J. J. , Tikkanen O. P., Ruohomäki K., et al. 2018. “The Recent Northward Expansion of DOI
FAO . 2022. “FRA Platform | Global Forest Resources Data | Food and Agriculture Organization of the United Nations.” https://fra‐data.fao.org/assessments/fra/2020.
Forzieri, G. , Dutrieux L. P., Elia A., et al. 2023. “The Database of European Forest Insect and Disease Disturbances: DEFID2.” Global Change Biology 29, no. 21: 6040–6065. 10.1111/GCB.16912. PubMed DOI
Gely, C. , Laurance S. G. W., and Stork N. E.. 2020. “How Do Herbivorous Insects Respond to Drought Stress in Trees?” Biological Reviews 95, no. 2: 434–448. 10.1111/BRV.12571. PubMed DOI
George, J. P. , Bürkner P. C., Sanders T. G. M., et al. 2022. “Long‐Term Forest Monitoring Reveals Constant Mortality Rise in European Forests.” Plant Biology 24, no. 7: 1108–1119. 10.1111/PLB.13469. PubMed DOI
Georgieva, M. , Georgiev G., Pilarska D., et al. 2013. First Record of Entomophaga Maimaiga (Entomophthorales: Entomophthoraceae) in
Godefroid, M. , Meurisse N., Groenen F., Kerdelhué C., and Rossi J. P.. 2020. “Current and Future Distribution of the Invasive Oak Processionary Moth.” Biological Invasions 22, no. 2: 523–534. 10.1007/S10530-019-02108-4/FIGURES/3. DOI
Grégoire, J.‐C. , and Evans H. F.. 2007. “Damage and Control of Bawbilt Organisms an Overview.” In Bark and Wood Boring Insects in Living Trees in Europe, a Synthesis, 19–37. Springer. 10.1007/978-1-4020-2241-8_4. DOI
Haavik, L. J. , Billings S. A., Guldin J. M., and Stephen F. M.. 2015. “Emergent Insects, Pathogens and Drought Shape Changing Patterns in Oak Decline in North America and Europe.” Forest Ecology and Management 354: 190–205. 10.1016/J.FORECO.2015.06.019. DOI
Hallas, T. , Steyrer G., Laaha G., and Hoch G.. 2024. “Two Unprecedented Outbreaks of the European Spruce Bark Beetle, DOI
Hammond, W. M. , Williams A. P., Abatzoglou J. T., et al. 2022. “Global Field Observations of Tree Die‐Off Reveal Hotter‐Drought Fingerprint for Earth's Forests.” Nature Communications 13, no. 1: 1–11. 10.1038/s41467-022-29289-2. PubMed DOI PMC
Hanewinkel, M. , Cullmann D. A., Schelhaas M. J., Nabuurs G. J., and Zimmermann N. E.. 2012. “Climate Change May Cause Severe Loss in the Economic Value of European Forest Land.” Nature Climate Change 3, no. 3: 203–207. 10.1038/nclimate1687. DOI
Hartmann, H. , Moura C. F., Anderegg W. R. L., et al. 2018. “Research Frontiers for Improving Our Understanding of Drought‐Induced Tree and Forest Mortality.” New Phytologist 218, no. 1: 15–28. 10.1111/nph.15048. PubMed DOI
Haynes, K. J. , Allstadt A. J., and Klimetzek D.. 2014. “Forest Defoliator Outbreaks Under Climate Change: Effects on the Frequency and Severity of Outbreaks of Five Pine Insect Pests.” Global Change Biology 20, no. 6: 2004–2018. 10.1111/GCB.12506. PubMed DOI
Hetemäki, L. , Kangas J., and Peltola H.. 2022. Forest Bioeconomy and Climate Change, 42. Springer Nature. 10.1007/978-3-030-99206-4. DOI
Hicke, J. A. , Meddens A. J. H., and Kolden C. A.. 2016. “Recent Tree Mortality in the Western United States From Bark Beetles and Forest Fires.” Forest Science 62, no. 2: 141–153. 10.5849/FORSCI.15-086. DOI
Hlásny, T. , König L., Krokene P., et al. 2021. “Bark Beetle Outbreaks in Europe: State of Knowledge and Ways Forward for Management.” Current Forestry Reports 7, no. 3: 138–165. 10.1007/S40725-021-00142-X/TABLES/1. DOI
Hlásny, T. , Mátyás C., Seidl R., et al. 2014. “Climate Change Increases the Drought Risk in Central European Forests: What Are the Options for Adaptation?” Forestry Journal 60, no. 1: 5–18. 10.2478/FORJ-2014-0001. DOI
Hlásny, T. , Modlinger R., Gohli J., et al. 2025. “Data From: Divergent Trends in Insect Disturbance Across Europe's Temperate and Boreal Forests [Data Set].” Zenodo. 10.5281/zenodo.15863174. PubMed DOI PMC
Hlásny, T. , Perunová M., Modlinger R., et al. 2025. “Perspectives: State of National Forest Damage Survey Programmes in Europe and Ways Toward Improved Harmonization and Data Sharing.” Forest Ecology and Management 597: 123111. 10.1016/j.foreco.2025.123111. DOI
Hlásny, T. , Zimová S., Merganičová K., Štěpánek P., Modlinger R., and Turčáni M.. 2021. “Devastating Outbreak of Bark Beetles in the Czech Republic: Drivers, Impacts, and Management Implications.” Forest Ecology and Management 490: 119075. 10.1016/J.FORECO.2021.119075. DOI
Hlávková, D. , and Doležal P.. 2022. “Cambioxylophagous Pests of Scots Pine: Ecological Physiology of European Populations—A Review.” Frontiers in Forests and Global Change 5: 864651. 10.3389/FFGC.2022.864651. DOI
Holuša, J. , Zúbrik M., Resnerová K., et al. 2021. “Further Spread of the Gypsy Moth Fungal Pathogen, Entomophaga Maimaiga, to the West and North in Central Europe.” Journal of Plant Diseases and Protection 128, no. 1: 323–331. 10.1007/S41348-020-00366-2/TABLES/2. DOI
Huang, J. , Kautz M., Trowbridge A. M., et al. 2020. “Tree Defence and Bark Beetles in a Drying World: Carbon Partitioning, Functioning and Modelling.” New Phytologist 225, no. 1: 26–36. 10.1111/nph.16173. PubMed DOI
Ims, R. A. , Henden J. A., and Killengreen S. T.. 2008. “Collapsing Population Cycles.” Trends in Ecology & Evolution 23, no. 2: 79–86. 10.1016/J.TREE.2007.10.010. PubMed DOI
Ivashov, A. v. , Boyko G. E., and Simchuk A. P.. 2002. “The Role of Host Plant Phenology in the Development of the Oak Leafroller Moth, DOI
Jactel, H. , Desprez‐Loustau M. L., Battisti A., et al. 2020. “Pathologists and Entomologists Must Join Forces Against Forest Pest and Pathogen Invasions.” NeoBiota 58: 107–127. 10.3897/neobiota.58.54389. DOI
Jactel, H. , Koricheva J., and Castagneyrol B.. 2019. “Responses of Forest Insect Pests to Climate Change: Not So Simple.” Current Opinion in Insect Science 35: 103–108. 10.1016/J.COIS.2019.07.010. PubMed DOI
Jactel, H. , Petit J., Desprez‐Loustau M. L., et al. 2012. “Drought Effects on Damage by Forest Insects and Pathogens: A Meta‐Analysis.” Global Change Biology 18, no. 1: 267–276. 10.1111/J.1365-2486.2011.02512.X. DOI
Jaime, L. , Batllori E., Ferretti M., and Lloret F.. 2022. “Climatic and Stand Drivers of Forest Resistance to Recent Bark Beetle Disturbance in European Coniferous Forests.” Global Change Biology 28, no. 8: 2830–2841. 10.1111/GCB.16106. PubMed DOI
Johnson, D. M. , Büntgen U., Frank D. C., et al. 2010. “Climatic Warming Disrupts Recurrent Alpine Insect Outbreaks.” Proceedings of the National Academy of Sciences of the United States of America 107, no. 47: 20576–20581. 10.1073/PNAS.1010270107/SUPPL_FILE/PNAS.201010270SI.PDF. PubMed DOI PMC
Johnson, D. M. , and Haynes K. J.. 2023. “Spatiotemporal Dynamics of Forest Insect Populations Under Climate Change.” Current Opinion in Insect Science 56: 101020. 10.1016/J.COIS.2023.101020. PubMed DOI
Kambach, S. , Kuhn I., Castagneyrol B., and Bruelheide H.. 2016. “The Impact of Tree Diversity on Different Aspects of Insect Herbivory Along a Global Temperature Gradient—A Meta‐Analysis.” PLoS One 11, no. 11: e0165815. 10.1371/journal.pone.0165815. PubMed DOI PMC
Kärvemo, S. , Huo L., Öhrn P., Lindberg E., and Persson H. J.. 2023. “Different Triggers, Different Stories: Bark‐Beetle Infestation Patterns After Storm and Drought‐Induced Outbreaks.” Forest Ecology and Management 545: 121255. 10.1016/J.FORECO.2023.121255. DOI
Kautz, M. , Meddens A. J. H., Hall R. J., and Arneth A.. 2017. “Biotic Disturbances in Northern Hemisphere Forests—A Synthesis of Recent Data, Uncertainties and Implications for Forest Monitoring and Modelling.” Global Ecology and Biogeography 26, no. 5: 533–552. 10.1111/GEB.12558. DOI
Knížek, M. , Liška J., and Velé A.. 2023. “Výskyt a význam kůrovců rodu Pityokteines v porostech jedle bělokoré ( DOI
Knoke, T. , Ammer C., Stimm B., and Mosandl R.. 2008. “Admixing Broadleaved to Coniferous Tree Species: A Review on Yield, Ecological Stability and Economics.” European Journal of Forest Research 127, no. Issue 2: 89–101. 10.1007/s10342-007-0186-2. DOI
Knoke, T. , Gosling E., Thom D., Chreptun C., Rammig A., and Seidl R.. 2021. “Economic Losses From Natural Disturbances in Norway Spruce Forests—A Quantification Using Monte‐Carlo Simulations.” Ecological Economics 185: 107046. 10.1016/J.ECOLECON.2021.107046. DOI
Kunca, A. , Zúbrik M., Galko J., et al. 2019. “Salvage Felling in the Slovak Republic's Forests During the Last Twenty Years (1998–2017).” Central European Forestry Journal 65, no. 1: 3–11. 10.2478/FORJ-2019-0007. DOI
Kurz, W. A. , Dymond C. C., Stinson G., et al. 2008. “Mountain Pine Beetle and Forest Carbon Feedback to Climate Change.” Nature 452, no. 7190: 987–990. 10.1038/nature06777. PubMed DOI
Lecina‐Diaz, J. , Senf C., Grünig M., and Seidl R.. 2024. “Ecosystem Services at Risk From Disturbance in Europe's Forests.” Global Change Biology 30, no. 3: e17242. 10.1111/GCB.17242. PubMed DOI
Lim, J. Y. , Fine P. V. A., and Mittelbach G. G.. 2015. “Assessing the Latitudinal Gradient in Herbivory.” Global Ecology and Biogeography 24, no. 10: 1106–1112. 10.1111/geb.12336. DOI
Lindner, M. , Maroschek M., Netherer S., et al. 2010. “Climate Change Impacts, Adaptive Capacity, and Vulnerability of European Forest Ecosystems.” Forest Ecology and Management 259, no. 4: 698–709. 10.1016/J.FORECO.2009.09.023. DOI
Liu, M. , Jiang P., Chase J. M., and Liu X.. 2024. “Global Insect Herbivory and Its Response to Climate Change.” Current Biology 34, no. 12: 2558–2569.e3. 10.1016/j.cub.2024.04.062. PubMed DOI
Lorenz, M. 1995. “International Co‐Operative Programme on Assessment and Monitoring of Air Pollution Effects on Forests‐ICP Forests.” Water, Air, and Soil Pollution 85, no. 3: 1221–1226. 10.1007/BF00477148. DOI
Macháčová, M. , Nakládal O., Samek M., Baťa D., Zumr V., and Pešková V.. 2022. “Oak Decline Caused by Biotic and Abiotic Factors in Central Europe: A Case Study From The Czech Republic.” Forests 13, no. 8: 1223. 10.3390/F13081223/S1. DOI
Melin, M. , Viiri H., Tikkanen O. P., Elfving R., and Neuvonen S.. 2020. “From a Rare Inhabitant Into a Potential Pest—Status of the nun Moth in Finland Based on Pheromone Trapping.” Silva Fennica 54, no. 1: 9. 10.14214/SF.10262. DOI
Muñoz‐Sabater, J. , Dutra E., Agustí‐Panareda A., et al. 2021. “ERA5‐Land: A State‐of‐the‐Art Global Reanalysis Dataset for Land Applications.” Earth System Science Data 13, no. 9: 4349–4383. 10.5194/essd-13-4349-2021. DOI
Myers, J. H. , and Cory J. S.. 2013. “Population Cycles in Forest lepidoptera Revisited.” Annual Review of Ecology, Evolution, and Systematics 44: 565–592. 10.1146/ANNUREV-ECOLSYS-110512-135858/CITE/REFWORKS. DOI
Nabuurs, G. J. , Lindner M., Verkerk P. J., et al. 2013. “First Signs of Carbon Sink Saturation in European Forest Biomass.” Nature Climate Change 3, no. 9: 792–796. 10.1038/nclimate1853. DOI
Nagavciuc, V. , Michel S. L. L., Balting D. F., et al. 2024. “A Past and Present Perspective on the European Summer Vapor Pressure Deficit.” Climate of the Past 20, no. 3: 573–595. 10.5194/cp-20-573-2024. DOI
Nakládal, O. , and Brinkeová H.. 2015. “Review of Historical Outbreaks of the nun Moth ( DOI
Netherer, S. , and Schopf A.. 2010. “Potential Effects of Climate Change on Insect Herbivores in European Forests—General Aspects and the Pine Processionary Moth as Specific Example.” Forest Ecology and Management 259, no. 4: 831–838. 10.1016/J.FORECO.2009.07.034. DOI
Nosenko, T. , Schroeder H., Zimmer I., et al. 2025. “Patterns of Adaptation to Drought in PubMed DOI PMC
Obladen, N. , Dechering P., Skiadaresis G., et al. 2021. “Tree Mortality of European Beech and Norway Spruce Induced by 2018–2019 Hot Droughts in Central Germany.” Agricultural and Forest Meteorology 307: 108482. 10.1016/J.AGRFORMET.2021.108482. DOI
Oliva, J. , and Colinas C.. 2007. “Decline of Silver Fir ( DOI
Papek, E. , Ritzer E., Biedermann P. H. W., et al. 2024. “The Pine Bark Beetle DOI
Patacca, M. , Lindner M., Lucas‐Borja M. E., et al. 2023. “Significant Increase in Natural Disturbance Impacts on European Forests Since 1950.” Global Change Biology 29, no. 5: 1359–1376. 10.1111/GCB.16531. PubMed DOI PMC
Peltonen, M. , Liebhold A. M., Bjørnstad O. N., and Williams D. W.. 2002. “Spatial Synchrony in Forest Insect Outbreaks: Roles of Regional Stochasticity and Dispersal.” Ecology 83, no. 11: 3120–3129. 10.1890/0012-9658(2002)083[3120:SSIFIO]2.0.CO;2. DOI
Peters, W. , Bastos A., Ciais P., and Vermeulen A.. 2020. “A Historical, Geographical and Ecological Perspective on the 2018 European Summer Drought.” Philosophical Transactions of the Royal Society B 375, no. 1810: 20190505. 10.1098/RSTB.2019.0505. PubMed DOI PMC
Podlaski, R. , Wojdan D., and Żelezik M.. 2020. “A Quantitative Approach for Assessing Bark Beetle Infestations: A Study of DOI
Potterf, M. , Frühbrodt T., Thom D., Lemme H., Hahn A., and Seidl R.. 2025. “Hotter Drought Increases Population Levels and Accelerates Phenology of the European Spruce Bark Beetle Ips Typographus.” Forest Ecology and Management 585: 122615. 10.1016/j.foreco.2025.122615. DOI
Pugh, T. A. M. , Arneth A., Kautz M., Poulter B., and Smith B.. 2019. “Important Role of Forest Disturbances in the Global Biomass Turnover and Carbon Sinks.” Nature Geoscience 12, no. 9: 730–735. 10.1038/s41561-019-0427-2. PubMed DOI PMC
Pureswaran, D. S. , Roques A., and Battisti A.. 2018. “Forest Insects and Climate Change.” Current Forestry Reports 4, no. 2: 35–50. 10.1007/s40725-018-0075-6. DOI
R Core Team . 2024. “R: A Language and Environment for Statistical Computing.” R Foundation for Statistical Computing, Vienna, Austria.
Raffa, K. F. , Aukema B. H., Bentz B. J., et al. 2008. “Cross‐Scale Drivers of Natural Disturbances Prone to Anthropogenic Amplification: The Dynamics of Bark Beetle Eruptions.” Bioscience 58, no. 6: 501–517. 10.1641/B580607. DOI
Raimondo, S. , Turcáni M., Patoèka J., and Liebhold A. M.. 2004. “Interspecific Synchrony Among Foliage‐Feeding Forest Lepidoptera Species and the Potential Role of Generalist Predators as Synchronizing Agents.” Oikos 107, no. 3: 462–470. 10.1111/J.0030-1299.2004.13449.X. DOI
Rindos, M. , Yakovlev R. V., Mclachlan Hamilton K., Fric Z. F., Knyazev S. A., and Zahiri R.. 2024. “Phylogeography and Bioclimatic Models Revealed a Complicated Genetic Structure and Future Range Shifts of DOI
Roques, A. , Rousselet J., Avci M., et al. 2015. “Climate Warming and Past and Present Distribution of the Processionary Moths (Thaumetopoea spp.) in Europe, Asia Minor and North Africa.” In Processionary Moths and Climate Change: An Update, 81–161. Springer. 10.1007/978-94-017-9340-7_3. DOI
Rouault, G. , Candau J. N., Lieutier F., Nageleisen L. M., Martin J. C., and Warzée N.. 2006. “Effects of Drought and Heat on Forest Insect Populations in Relation to the 2003 Drought in Western Europe.” Annals of Forest Science 63, no. 6: 613–624. 10.1051/FOREST:2006044. DOI
Santini, A. , Ghelardini L., de Pace C., et al. 2013. “Biogeographical Patterns and Determinants of Invasion by Forest Pathogens in Europe.” New Phytologist 197, no. 1: 238–250. 10.1111/j.1469-8137.2012.04364.x. PubMed DOI
Schuck, A. , van Brusselen J., Päivinen R., Häme T., Kennedy P., and Folving S.. 2002. “Compilation of a Calibrated European Forest Map Derived From NOAA‐AVHRR Data.” http://www.efi.fi/.
Schuldt, B. , Buras A., Arend M., et al. 2020. “A First Assessment of the Impact of the Extreme 2018 Summer Drought on Central European Forests.” Basic and Applied Ecology 45: 86–103. 10.1016/J.BAAE.2020.04.003. DOI
Seidl, R. , Müller J., Hothorn T., Bässler C., Heurich M., and Kautz M.. 2016. “Small Beetle, Large‐Scale Drivers: How Regional and Landscape Factors Affect Outbreaks of the European Spruce Bark Beetle.” Journal of Applied Ecology 53, no. 2: 530–540. 10.1111/1365-2664.12540. PubMed DOI PMC
Seidl, R. , Potterf M., Müller J., Turner M. G., and Rammer W.. 2024. “Patterns of Early Post‐Disturbance Reorganization in Central European Forests.” Proceedings of the Royal Society B: Biological Sciences 291, no. 2031: 20240625. 10.1098/RSPB.2024.0625. PubMed DOI PMC
Seidl, R. , Thom D., Kautz M., et al. 2017. “Forest Disturbances Under Climate Change.” Nature Climate Change 7, no. 6: 395–402. 10.1038/NCLIMATE3303. PubMed DOI PMC
Seidl, R. , and Turner M. G.. 2022. “Post‐Disturbance Reorganization of Forest Ecosystems in a Changing World.” Proceedings of the National Academy of Sciences of the United States of America 119, no. 28: e2202190119. 10.1073/PNAS.2202190119. PubMed DOI PMC
Senf, C. , Buras A., Zang C. S., Rammig A., and Seidl R.. 2020. “Excess Forest Mortality Is Consistently Linked to Drought Across Europe.” Nature Communications 11, no. 1: 1–8. 10.1038/s41467-020-19924-1. PubMed DOI PMC
Senf, C. , and Seidl R.. 2017. “Natural Disturbances Are Spatially Diverse but Temporally Synchronized Across Temperate Forest Landscapes in Europe.” Global Change Biology 24, no. 3: 1201–1211. 10.1111/GCB.13897. PubMed DOI PMC
Senf, C. , and Seidl R.. 2021. “Persistent Impacts of the 2018 Drought on Forest Disturbance Regimes in Europe.” Biogeosciences 18, no. 18: 5223–5230. 10.5194/BG-18-5223-2021. DOI
Senf, C. , Seidl R., and Hostert P.. 2017. “Remote Sensing of Forest Insect Disturbances: Current State and Future Directions.” International Journal of Applied Earth Observation and Geoinformation 60: 49–60. 10.1016/J.JAG.2017.04.004. PubMed DOI PMC
Singh, V. V. , Naseer A., Mogilicherla K., et al. 2024. “Understanding Bark Beetle Outbreaks: Exploring the Impact of Changing Temperature Regimes, Droughts, Forest Structure, and Prospects for Future Forest Pest Management.” Reviews in Environmental Science and Bio/Technology 23, no. 2: 257–290. 10.1007/S11157-024-09692-5. DOI
Sousa‐Silva, R. , Verbist B., Lomba Â., et al. 2018. “Adapting Forest Management to Climate Change in Europe: Linking Perceptions to Adaptive Responses.” Forest Policy and Economics 90: 22–30. 10.1016/J.FORPOL.2018.01.004. DOI
Stahl, A. T. , Andrus R., Hicke J. A., Hudak A. T., Bright B. C., and Meddens A. J. H.. 2023. “Automated Attribution of Forest Disturbance Types From Remote Sensing Data: A Synthesis.” Remote Sensing of Environment 285: 113416. 10.1016/J.RSE.2022.113416. DOI
Stephenson, N. L. , Das A. J., Ampersee N. J., Bulaon B. M., and Yee J. L.. 2019. “Which Trees Die During Drought? The Key Role of Insect Host‐Tree Selection.” Journal of Ecology 107, no. 5: 2383–2401. 10.1111/1365-2745.13176. DOI
Thom, D. , Rammer W., and Seidl R.. 2017. “Disturbances Catalyze the Adaptation of Forest Ecosystems to Changing Climate Conditions.” Global Change Biology 23, no. 1: 269–282. 10.1111/GCB.13506. PubMed DOI PMC
Thomas, F. M. , Blank R., and Hartmann G.. 2002. “Abiotic and Biotic Factors and Their Interactions as Causes of Oak Decline in Central Europe.” Forest Pathology 32, no. 4–5: 277–307. 10.1046/J.1439-0329.2002.00291.X. DOI
Tinner, W. , Colombaroli D., Heiri O., et al. 2013. “The Past Ecology of DOI
Valdés‐Correcher, E. , Moreira X., Augusto L., et al. 2021. “Search for Top‐Down and Bottom‐Up Drivers of Latitudinal Trends in Insect Herbivory in Oak Trees in Europe.” Global Ecology and Biogeography 30, no. 3: 651–665. 10.1111/geb.13244. DOI
van Lierop, P. , Lindquist E., Sathyapala S., and Franceschini G.. 2015. “Global Forest Area Disturbance From Fire, Insect Pests, Diseases and Severe Weather Events.” Forest Ecology and Management 352: 78–88. 10.1016/J.FORECO.2015.06.010. DOI
Viljur, M. L. , Abella S. R., Adámek M., et al. 2022. “The Effect of Natural Disturbances on Forest Biodiversity: An Ecological Synthesis.” Biological Reviews 97, no. 5: 1930–1947. 10.1111/BRV.12876. PubMed DOI
Vitasse, Y. , Bottero A., Rebetez M., et al. 2019. “What Is the Potential of Silver Fir to Thrive Under Warmer and Drier Climate?” European Journal of Forest Research 138, no. 4: 547–560. 10.1007/S10342-019-01192-4. DOI
Weed, A. S. , Ayres M. P., and Hicke J. A.. 2013. “Consequences of Climate Change for Biotic Disturbances in North American Forests.” Ecological Monographs 83, no. 4: 441–470. 10.1890/13-0160.1. DOI
Wermelinger, B. 2004. “Ecology and Management of the Spruce Bark Beetle Ips Typographus—A Review of Recent Research.” Forest Ecology and Management 202, no. 1–3: 67–82. 10.1016/j.foreco.2004.07.018. DOI
Wessely, J. , Essl F., Fiedler K., et al. 2024. “A Climate‐Induced Tree Species Bottleneck for Forest Management in Europe.” Nature Ecology & Evolution 8, no. 6: 1109–1117. 10.1038/s41559-024-02406-8. PubMed DOI
Zúbrik, M. , Špilda I., Pilarska D., et al. 2018. “Distribution of the Entomopathogenic Fungus Entomophaga Maimaiga (Entomophthorales: Entomophthoraceae) at the Northern Edge of Its Range in Europe.” Annals of Applied Biology 173, no. 1: 35–41. 10.1111/AAB.12431. DOI
Divergent Trends in Insect Disturbance Across Europe's Temperate and Boreal Forests