Growth and Assemblage Dynamics of Temperate Forest Tree Species Match Physiological Resilience to Changes in Atmospheric Chemistry
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články
Grantová podpora
CZ.02.01.01/00/22_008/0004635
Ministerstvo Školství, Mládeže a Tělovýchovy
23 -07583S
Grantová Agentura České Republiky
24 -11119S
Grantová Agentura České Republiky
PubMed
40135407
PubMed Central
PMC11938019
DOI
10.1111/gcb.70147
Knihovny.cz E-zdroje
- Klíčová slova
- CO2 fertilization, nitrogen deposition, stable isotopes, tree rings, water‐use efficiency,
- MeSH
- atmosféra chemie MeSH
- buk (rod) * růst a vývoj fyziologie MeSH
- dusík metabolismus analýza MeSH
- jedle růst a vývoj fyziologie MeSH
- klimatické změny MeSH
- lesy * MeSH
- období sucha MeSH
- smrk * růst a vývoj fyziologie MeSH
- stromy * růst a vývoj fyziologie MeSH
- voda metabolismus analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- dusík MeSH
- voda MeSH
Human-induced environmental changes are altering forest productivity and species composition, significantly impacting tree physiology, growth, water uptake, and nutrient acquisition. Investigating the intricate interplay between plant physiology and environmental shifts, we analyzed tree-ring isotopes (δ13C, δ18O, and δ15N) to track long-term trends in intrinsic water-use efficiency (iWUE) and nitrogen availability for European beech, Norway spruce, and silver fir in a unique old-growth temperate mountain forest since 1501 ce. Our findings reveal that Norway spruce, a dominant species, exhibited iWUE saturation, exacerbated by acidic precipitation, resulting in growth declines during periods of high acidic air pollution and increased drought frequency. In contrast, deep-rooted, deciduous European beech demonstrated physiological resilience to acid deposition, benefiting from lower dry deposition of precipitation acidity and thriving under conditions of increased nitrogen deposition and elevated air temperatures, thereby sustaining stem growth regardless of potential climatic limitations. Silver fir showed the most dynamic response to acidic air pollution, with contemporary adaptations in leaf gas exchange allowing accelerated stem growth under cleaner air conditions. These different species responses underscore shifts in species competition, with European beech gaining dominance as Norway spruce and silver fir decline. Furthermore, the influence of ontogeny is evident, as tree-rings exhibited lower initial iWUE values and higher δ15N, reflecting changes in nitrogen uptake dynamics and the ecological role of tree age. Our study integrates tree-growth dynamics with physiological and nutrient availability trends, revealing the pivotal role of atmospheric chemistry changes in shaping the competitive dynamics and long-term growth trajectories of dominant tree species in temperate forests.
Czech Geological Survey Prague Czech Republic
Department of Forest Ecology The Silva Tarouca Research Institute Brno Czech Republic
Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic
Global Change Research Institute of the Czech Academy of Sciences Brno Czech Republic
Institute of Geography Masaryk University Brno Czech Republic
Zobrazit více v PubMed
Adams, M. A. , Buckley T. N., Binkley D., Neumann M., and Turnbull T. L.. 2021. “CO2, Nitrogen Deposition and a Discontinuous Climate Response Drive Water Use Efficiency in Global Forests.” Nature Communications 12: 5194. PubMed PMC
Aranda, I. , Bahamonde H. A., and Sánchez‐Gómez D.. 2017. “Intra‐Population Variability in the Drought Response of a Beech ( Fagus sylvatica L.) Population in the Southwest of Europe.” Tree Physiology 37: 938–949. PubMed
Bartoń, K. 2022. “MuMIn: Multi‐Model Inference.”
Belmecheri, S. , and Lavergne A.. 2020. “Compiled Records of Atmospheric CO2 Concentrations and Stable Carbon Isotopes to Reconstruct Climate and Derive Plant Ecophysiological Indices From Tree Rings.” Dendrochronologia 63: 125748.
Bert, D. , Leavitt S. W., and Dupouey J.‐L.. 1997. “Variations of Wood 13 C And Water‐Use Efficiency of Abies Alba During The Last Century.” Ecology 78: 1588–1596.
Birch, J. D. , Lutz J. A., Turner B. L., and Karst J.. 2021. “Divergent, Age‐Associated Fungal Communities of Pinus Flexilis and Pinus longaeva .” Forest Ecology and Management 494: 378–1127.
Black, B. A. , and Abrams M. D.. 2004. “Development and Application of Boundary‐Line Release Criteria.” Dendrochronologia 22: 31–42.
Bobek, P. , Svobodová‐Svitavská H., Pokorný P., et al. 2019. “Divergent Fire History Trajectories in Central European Temperate Forests Revealed a Pronounced Influence of Broadleaved Trees on Fire Dynamics.” Quaternary Science Reviews 222: 105865.
Boettger, T. , Haupt M., Friedrich M., and Waterhouse J. S.. 2014. “Reduced Climate Sensitivity of Carbon, Oxygen and Hydrogen Stable Isotope Ratios in Tree‐Ring Cellulose of Silver Fir ( Abies alba Mill.) Influenced by Background SO2 in Franconia (Germany, Central Europe).” Environmental Pollution 185: 281–294. PubMed
Bolte, A. , Hilbrig L., Grundmann B., Kampf F., Brunet J., and Roloff A.. 2010. “Climate Change Impacts on Stand Structure and Competitive Interactions in a Southern Swedish Spruce‐Beech Forest.” European Journal of Forest Research 129: 261–276.
Brázdil, R. , Dobrovolný P., Trnka M., et al. 2022a. “Documentary‐Based Climate Reconstructions in the Czech Lands 1501–2020 CE and Their European Context.” Climate of the Past 18: 935–959.
Brázdil, R. , Dobrovolný P., Trnka M., et al. 2016. “Documentary and Instrumental‐Based Drought Indices for the Czech Lands Back to AD 1501.” Climate Research 70: 103–117.
Brázdil, R. , Stucki P., Szabó P., et al. 2018. “Windstorms and Forest Disturbances in the Czech Lands: 1801–2015.” Agricultural and Forest Meteorology 250: 47–63.
Brázdil, R. , Szabó P., Stucki P., et al. 2017. “The Extraordinary Windstorm of 7 December 1868 in the Czech Lands and Its Central European Context.” International Journal of Climatology 37: 14–29.
Brázdil, R. , Zahradník P., Szabó P., et al. 2022b. “Meteorological and Climatological Triggers of Notable Past and Present Bark Beetle Outbreaks in The Czech Republic.” Climate of the Past 18: 2155–2180.
Breheny, P. , and Burchett W.. 2017. “Visualization of Regression Models Using Visreg.” R Journal 9, no. 2: 56–71. 10.32614/RJ-2017-046. DOI
Brienen, R. J. W. , Caldwell L., Duchesne L., et al. 2020. “Forest Carbon Sink Neutralized by Pervasive Growth‐Lifespan Trade‐Offs.” Nature Communications 11: 4241. PubMed PMC
Brienen, R. J. W. , Gloor E., Clerici S., et al. 2017. “Tree Height Strongly Affects Estimates of Water‐Use Efficiency Responses to Climate and CO2 Using Isotopes.” Nature Communications 2017 8: 1–10. PubMed PMC
Brodribb, T. J. , Powers J., Cochard H., and Choat B.. 2020. “Hanging by a Thread? Forests and Drought.” Science 368: 261–266. PubMed
Büntgen, U. , Tegel W., Kaplan J. O., et al. 2014. “Placing Unprecedented Recent Fir Growth in a European‐Wide and Holocene‐Long Context.” Frontiers in Ecology and the Environment 12: 100–106.
Cabon, A. , Kannenberg S. A., Arain A., et al. 2022. “Cross‐Biome Synthesis of Source Versus Sink Limits to Tree Growth.” Science 376. PubMed
Cano, F. J. , Sánchez‐Gómez D., Rodríguez‐Calcerrada J., Warren C. R., Gil L., and Aranda I.. 2013. “Effects of Drought on Mesophyll Conductance and Photosynthetic Limitations at Different Tree Canopy Layers.” Plant, Cell and Environment 36: 1961–1980. PubMed
Carter, V. A. , Chiverrell R. C., Clear J. L., et al. 2018. “Quantitative Palynology Informing Conservation Ecology in the Bohemian/Bavarian Forests of Central Europe.” Frontiers in Plant Science 8: 298679. PubMed PMC
Cavlovic, J. , Boncina A., Bozic M., Goršic E., Simončič T., and Teslak K.. 2015. “Depression and Growth Recovery of Silver Fir in Uneven‐Aged Dinaric Forests in Croatia From 1901 to 2001.” Forestry: An International Journal of Forest Research 88: 586–598.
Clark, C. M. , Thomas R. Q., and Horn K. J.. 2023. “Above‐Ground Tree Carbon Storage in Response to Nitrogen Deposition in the U.S. Is Heterogeneous and May Have Weakened.” Communications Earth & Environment 4: 1–8. PubMed PMC
Claus, A. , and George E.. 2011. “Effect of Stand Age on Fine‐Root Biomass and Biomass Distribution in Three European Forest Chronosequences.” Canadian Journal of Forest Research 35: 1617–1625.
Clemmensen, K. E. , Finlay R. D., Dahlberg A., Stenlid J., Wardle D. A., and Lindahl B. D.. 2015. “Carbon Sequestration Is Related to Mycorrhizal Fungal Community Shifts During Long‐Term Succession in Boreal Forests.” New Phytologist 205: 1525–1536. PubMed
Craig, H. 1953. “The Geochemistry of the Stable Carbon Isotopes.” Geochimica et Cosmochimica Acta 3: 53–92.
Craine, J. M. , Elmore A. J., Aidar M. P. M., et al. 2009. “Global Patterns of Foliar Nitrogen Isotopes and Their Relationships With Climate, Mycorrhizal Fungi, Foliar Nutrient Concentrations, and Nitrogen Availability.” New Phytologist 183: 980–992. PubMed
Craine, J. M. , Elmore A. J., Wang L., et al. 2018. “Isotopic Evidence for Oligotrophication of Terrestrial Ecosystems.” Nature Ecology & Evolution 2: 1735–1744. PubMed
Daněk, P. , Šamonil P., and Vrška T.. 2019. “Four Decades of the Coexistence of Beech and Spruce in a Central European Old‐Growth Forest. Which Succeeds on What Soils and Why?” Plant and Soil 437: 257–272.
Davis, E. C. , Sohngen B., and Lewis D. J.. 2022. “The Effect of Carbon Fertilization on Naturally Regenerated and Planted US Forests.” Climatic Change, 13: 1–11. PubMed PMC
Delpierre, N. , Berveiller D., Granda E., and Dufrêne E.. 2016. “Wood Phenology, Not Carbon Input, Controls the Interannual Variability of Wood Growth in a Temperate Oak Forest.” New Phytologist 210: 459–470. PubMed
Dobrovolný, P. , Brázdil R., Trnka M., Kotyza O., and Valášek H.. 2015. “Precipitation Reconstruction for the Czech Lands, AD 1501–2010.” International Journal of Climatology 35: 1–14.
Dobrovolný, P. , Moberg A., Brázdil R., et al. 2010. “Monthly, Seasonal and Annual Temperature Reconstructions for Central Europe Derived From Documentary Evidence and Instrumental Records Since AD 1500.” Climatic Change 101: 69–107.
Duffy, K. A. , Schwalm C. R., Arcus V. L., Koch G. W., Liang L. L., and Schipper L. A.. 2021. “How Close Are We to the Temperature Tipping Point of the Terrestrial Biosphere?” Science Advances 7, no. 3: eaay1052. 10.1126/sciadv.aay1052. PubMed DOI PMC
EEA . 2017. Biogeographical Regions in Europe.
Elling, W. , Dittmar C., Pfaffelmoser K., and Rotzer T.. 2009. “Dendroecological Assessment of the Complex Causes of Decline and Recovery of the Growth of Silver Fir ( Abies alba Mill.) in Southern Germany.” Forest Ecology and Management 257: 1175–1187.
EMEP . 2023. “Transboundary Particulate Matter, Photo‐Oxidants, Acidifying and Eutrophying Components.” pp. 300.
Etzold, S. , Ferretti M., Reinds G. J., et al. 2020. “Nitrogen Deposition Is the Most Important Environmental Driver of Growth of Pure, Even‐Aged and Managed European Forests.” Forest Ecology and Management 458: 117762.
Fang, J. , Kato T., Guo Z., et al. 2014. “Evidence for Environmentally Enhanced Forest Growth.” Proceedings of the National Academy of Sciences of the United States of America 111: 9527–9532. PubMed PMC
Fang, Y. , Koba K., Makabe A., et al. 2015. “Microbial Denitrification Dominates Nitrate Losses From Forest Ecosystems.” Proceedings of the National Academy of Sciences 112: 1470–1474. PubMed PMC
Farquhar, G. , O'Leary M., and Berry J.. 1982. “On the Relationship Between Carbon Isotope Discrimination and the Intercellular Carbon Dioxide Concentration in Leaves.” Australian Journal of Plant Physiology 9: 171.
Farquhar, G. D. , Ehleringer J. R., and Hubick K. T.. 1989. “Carbon Isotope Discrimination and Photosynthesis.” Annual Review of Plant Physiology and Plant Molecular Biology 40: 503–537.
Forzieri, G. , Girardello M., Ceccherini G., et al. 2021. “Emergent Vulnerability to Climate‐Driven Disturbances in European Forests.” NatureCommunications 12: 1–12. PubMed PMC
Fox, J. , and Weisberg S.. 2019. An R Companion to Applied Regression. 3rd ed. Sage.
Gbur, P. , Wrzesiński P., Klisz M., Jevšenak J., Niemczyk M., and Drozdowski S.. 2025. “Consistent Growth Responses of Silver Fir ( Abies alba Mill.) and European Beech ( Fagus sylvatica L.) to Drought in Mixed and Monospecific Forests: Insights From Central European Forests.” Forest Ecology and Management 577: 122415.
Gharun, M. , Klesse S., Tomlinson G., et al. 2021. “Effect of Nitrogen Deposition on Centennial Forest Water‐Use Efficiency.” Environmental Research Letters 16: 114036.
Guerrieri, R. , Belmecheri S., Ollinger S. V., et al. 2019. “Disentangling the Role of Photosynthesis and Stomatal Conductance on Rising Forest Water‐Use Efficiency.” Proceedings of the National Academy of Sciences 116: 16909–16914. PubMed PMC
Guerrieri, R. , Mencuccini M., Sheppard L. J., et al. 2011. “The Legacy of Enhanced N and S Deposition as Revealed by the Combined Analysis of δ13C, δ18O and δ15N in Tree Rings.” Global Change Biology 17: 1946–1962.
Heklau, H. , Schindler N., Buscot F., et al. 2021. “Mixing Tree Species Associated With Arbuscular or Ectotrophic Mycorrhizae Reveals Dual Mycorrhization and Interactive Effects on the Fungal Partners.” Ecology and Evolution 11: 5424–5440. PubMed PMC
Hesse, B. D. , Hikino K., Gebhardt T., et al. 2024. “Acclimation of Mature Spruce and Beech to Five Years of Repeated Summer Drought – the Role of Stomatal Conductance and Leaf Area Adjustment for Water Use.” Science of the Total Environment 951: 175805. PubMed
Hlásny, T. , Zimová S., Merganičová K., Štěpánek P., Modlinger R., and Turčáni M.. 2021. “Devastating Outbreak of Bark Beetles in The Czech Republic: Drivers, Impacts, and Management Implications.” Forest Ecology and Management 490: 119075.
Hobbie, E. A. , Macko S. A., and Shugart H. H.. 1999. “Insights Into Nitrogen and Carbon Dynamics of Ectomycorrhizal and Saprotrophic Fungi From Isotopic Evidence.” Oecologia 118: 353–360. PubMed
Hobbie, E. A. , and Ouimette A. P.. 2009. “Controls of Nitrogen Isotope Patterns in Soil Profiles.” Biogeochemistry 95: 355–371.
Hodge, A. , and Storer K.. 2014. “Arbuscular Mycorrhiza and Nitrogen: Implications for Individual Plants Through to Ecosystems.” Plant and Soil 386, no. 1‐2: 1–19. 10.1007/s11104-014-2162-1. DOI
Hogan, J. A. , Domke G. M., Zhu K., Johnson D. J., and Lichstein J. W.. 2024. “Climate Change Determines the Sign of Productivity Trends in US Forests.” Proceedings of the National Academy of Sciences 121: e2311132121. PubMed PMC
Högberg, P. , Johannisson C., Yarwood S., et al. 2011. “Recovery of Ectomycorrhiza After ‘Nitrogen Saturation’ of a Conifer Forest.” New Phytologist 189: 515–525. PubMed
Holmes, R. L. 1983. “Computer‐Assisted Quality Control in Tree‐Ring Dating and Measurement.” Data in Brief 43: 51–67.
Houlton, B. Z. , and Bai E.. 2009. “Imprint of Denitrifying Bacteria on the Global Terrestrial Biosphere.” Proceedings of the National Academy of Sciences 106: 21713–21716. PubMed PMC
Kašpar, J. , Krůček M., and Král K.. 2024. “The Effects of Solar Radiation on Daily and Seasonal Stem Increment of Canopy Trees in European Temperate Old‐Growth Forests.” New Phytologist 243: 662–673. PubMed
Johann, E. , Agnoletti M., Axelsson A.‐L., et al. 2004. “History of Secondary Norway Spruce Forests in Europe.” In Norway Spruce Conversion, edited by Spiecker H., Jörg H., Klimo E., Skovsgaard J. P., Sterba H., and von Teuffel K., 25–62. Brill.
Kašpar, J. , Šamonil P., Vašíčková I., Adam D., and Daněk P.. 2020. “Woody Species‐Specific Disturbance Regimes and Strategies in Mixed Mountain Temperate Forests in the Šumava Mts., Czech Republic.” European Journal of Forest Research 139: 97–109.
Kašpar, J. , Tumajer J., Šamonil P., and Vašíčková I.. 2021. “Species‐Specific Climate–Growth Interactions Determine Tree Species Dynamics in Mixed Central European Mountain Forests.” Environmental Research Letters 16: 034039.
Kassambara, A. , and Mundt F.. 2020. “Extract and Visualize the Results of Multivariate Data Analyses (v. 1.0.7).”
Klesse, S. , Weigt R., Treydte K., et al. 2018. “Oxygen Isotopes in Tree Rings Are Less Sensitive to Changes in Tree Size and Relative Canopy Position Than Carbon Isotopes.” Plant, Cell & Environment 41: 2899–2914. PubMed
Koch, G. W. , Stillet S. C., Jennings G. M., and Davis S. D.. 2004. “The Limits to Tree Height.” Nature 428: 851–854. PubMed
Kopáček, J. , Bače R., Choma M., et al. 2023. “Carbon and Nutrient Pools and Fluxes in Unmanaged Mountain Norway Spruce Forests, and Losses After Natural Tree Dieback.” Science of the Total Environment 903: 166233. PubMed
Kopáček, J. , Hejzlar J., Krám P., Oulehle F., and Posch M.. 2016. “Effect of Industrial Dust on Precipitation Chemistry in The Czech Republic (Central Europe) From 1850 to 2013.” Water Research 103: 30–37. PubMed
Kopáček, J. , and Posch M.. 2011. “Anthropogenic Nitrogen Emissions During the Holocene and Their Possible Effects on Remote Ecosystems.” Global Biogeochemical Cycles 25, no. 2: GB2017. 10.1029/2010gb003779. DOI
Körner, C. 2015. “Paradigm Shift in Plant Growth Control.” Current Opinion in Plant Biology 25: 107–114. PubMed
Kranabetter, J. M. , McKeown K., and Hawkins B. J.. 2021. “Post‐Disturbance Conifer Tree‐Ring δ15N Reflects Openness of the Nitrogen Cycle Across Temperate Coastal Rainforests.” Journal of Ecology 109: 342–353.
Kulla, L. , Roessiger J., Bošeľa M., et al. 2023. “Changing Patterns of Natural Dynamics in Old‐Growth European Beech ( Fagus sylvatica L.) Forests Can Inspire Forest Management in Central Europe.” Forest Ecology and Management 529: 120633.
Laubhann, D. , Sterba H., Reinds G. J., and De Vries W.. 2009. “The Impact of Atmospheric Deposition and Climate on Forest Growth in European Monitoring Plots: An Individual Tree Growth Model.” Forest Ecology and Management 258: 1751–1761.
Lavergne, A. , Graven H., De Kauwe M. G., Keenan T. F., Medlyn B. E., and Prentice I. C.. 2019. “Observed and Modelled Historical Trends in the Water‐Use Efficiency of Plants and Ecosystems.” Global Change Biology 25: 2242–2257. PubMed
Lin, W. , Barbour M. M., and Song X.. 2022. “Do Changes in Tree‐Ring δ18O Indicate Changes in Stomatal Conductance?” New Phytologist 236: 803–808. PubMed
Linares, J. C. , and Camarero J. J.. 2012. “From Pattern to Process: Linking Intrinsic Water‐Use Efficiency to Drought‐Induced Forest Decline.” Global Change Biology 18: 1000–1015.
Ma, H. , Crowther T. W., Mo L., et al. 2023. “The Global Biogeography of Tree Leaf Form and Habit.” Nature Plants 9: 1795–1809. PubMed PMC
Martínez‐Sancho, E. , Cernusak L. A., Fonti P., et al. 2023. “Unenriched Xylem Water Contribution During Cellulose Synthesis Influenced by Atmospheric Demand Governs the Intra‐Annual Tree‐Ring δ 18 O Signature.” New Phytologist 240, no. 5: 1743–1757. 10.1111/nph.19278. PubMed DOI
Mathias, J. M. , and Hudiburg T. W.. 2022. “isocalcR: An R Package to Streamline and Standardize Stable Isotope Calculations in Ecological Research.” Global Change Biology 28, no. 24: 7428–7436. 10.1111/gcb.16407. PubMed DOI
Mathias, J. M. , Smith K. R., Lantz K. E., et al. 2023. “Differences in Leaf Gas Exchange Strategies Explain Quercus Rubra and Liriodendron tulipifera Intrinsic Water Use Efficiency Responses to Air Pollution and Climate Change.” Global Change Biology 29: 3449–3462. PubMed
Mathias, J. M. , and Thomas R. B.. 2018. “Disentangling the Effects of Acidic Air Pollution, Atmospheric CO2, and Climate Change on Recent Growth of Red Spruce Trees in the Central Appalachian Mountains.” Global Change Biology 24, no. 9: 3938–3953. 10.1111/gcb.14273. PubMed DOI
Mathias, J. M. , and Thomas R. B.. 2021. “Global Tree Intrinsic Water Use Efficiency Is Enhanced by Increased Atmospheric CO2 and Modulated by Climate and Plant Functional Types.” Proceedings of the National Academy of Sciences 118: e2014286118. PubMed PMC
McDowell, N. G. , Allen C. D., Anderson‐Teixeira K., et al. 2020. “Pervasive Shifts in Forest Dynamics in a Changing World.” Science 368, no. 6494: eaaz9463. 10.1126/science.aaz9463. PubMed DOI
McDowell, N. G. , Bond B. J., Dickman L. T., Ryan M. G., and Whitehead D.. 2011. Size‐ and Age‐Related Changes in Tree Structure and Function, edited by Meinzer F., Lachenbruch B., and Dawson T., 255–286. Springer.
McLauchlan, K. K. , and Craine J. M.. 2012. “Species‐Specific Trajectories of Nitrogen Isotopes in Indiana Hardwood Forests, USA.” Biogeosciences 9, no. 2: 867–874. 10.5194/bg-9-867-2012. DOI
McMahon, S. M. , Parker G. G., and Miller D. R.. 2010a. “Evidence for a Recent Increase in Forest Growth.” Proceedings of the National Academy of Sciences of the United States of America 107, no. 8: 3611–3615. 10.1073/pnas.0912376107. PubMed DOI PMC
Motte, F. , Rötzer T., Biber P., et al. 2023. “Growth of European Beech Recovered Faster than That of Norway Spruce After a Five‐Year Experimental Drought in a Mixed Forest Stand.” Trees 37, no. 6: 1695–1715.
Mottl, O. , Flantua S. G. A., Bhatta K. P., et al. 2021. “Global Acceleration in Rates of Vegetation Change Over the Past 18,000 Years.” Science 372: 860–864. PubMed
Muggeo, V. M. R. 2017. “Interval Estimation for the Breakpoint in Segmented Regression: A Smoothed Score‐Based Approach.” Australian & New Zealand Journal of Statistics 59: 311–322.
Nelson, D. B. , Basler D., and Kahmen A.. 2021. “Precipitation Isotope Time Series Predictions From Machine Learning Applied in Europe.” Proceedings of the National Academy of Sciences of the United States of America 118: e2024107118. PubMed PMC
Oulehle, F. , Goodale C. L., Evans C. D., et al. 2021. “Dissolved and Gaseous Nitrogen Losses in Forests Controlled by Soil Nutrient Stoichiometry.” Environmental Research Letters 16: 064025.
Oulehle, F. , Kolář T., Rybníček M., Hruška J., Büntgen U., and Trnka M.. 2024. “Complex Imprint of Air Pollution in the Basal Area Increments of Three European Tree Species.” Science of the Total Environment 951: 175858. PubMed
Oulehle, F. , Kopáček J., Chuman T., et al. 2016. “Predicting Sulphur and Nitrogen Deposition Using a Simple Statistical Method.” Atmospheric Environment 140: 456–468.
Oulehle, F. , Šamonil P., Urban O., et al. 2025. Data Associated with “Growth and Assemblage Dynamics of Temperate Forest Tree Species Match Physiological Resilience to Changes in Atmospheric Chemistry.”
Oulehle, F. , Tahovská K., Ač A., et al. 2022. “Changes in Forest Nitrogen Cycling Across Deposition Gradient Revealed by δ15N in Tree Rings.” Environmental Pollution 304: 119104. PubMed
Oulehle, F. , Wright R. F., Svoboda M., et al. 2018. “Effects of Bark Beetle Disturbance on Soil Nutrient Retention and Lake Chemistry in Glacial Catchment.” Ecosystems 22, no. 4: 725–741. 10.1007/s10021-018-0298-1. DOI
Patacca, M. , Lindner M., Lucas‐Borja M. E., et al. 2023. “Significant Increase in Natural Disturbance Impacts on European Forests Since 1950.” Global Change Biology 29: 1359–1376. PubMed PMC
Peñuelas, J. , Canadell J. G., and Ogaya R.. 2011. “Increased Water‐Use Efficiency During the 20th Century Did Not Translate Into Enhanced Tree Growth.” Global Ecology and Biogeography 20: 597–608.
Peñuelas, J. , Ogaya R., Boada M., and Jump A. S.. 2007. “Migration, Invasion and Decline: Changes in Recruitment and Forest Structure in a Warming‐Linked Shift of European Beech Forest in Catalonia (NE Spain).” Ecography 30, no. 6: 829–837. 10.1111/j.2007.0906-7590.05247.x. DOI
Pinheiro, J. , Bates D., and Team RC . 2022. “nlme: Linear and Nonlinear Mixed Effects Models.”
Posit Team . 2024. “RStudio: Integrated Development Environment for R.”
Pretzsch, H. , Biber P., Schütze G., Uhl E., and Rötzer T.. 2014. “Forest Stand Growth Dynamics in Central Europe Have Accelerated Since 1870.” Nature Communications 5: 4967. PubMed PMC
Pretzsch, H. , del Río M., Arcangeli C., et al. 2023. “Forest Growth in Europe Shows Diverging Large Regional Trends.” Scientific Reports 13: 1–12. PubMed PMC
Ryan, M. G. , Bond B. J., Law B. E., et al. 2000. “Transpiration and Whole‐Tree Conductance in Ponderosa Pine Trees of Different Heights.” Oecologia 124: 553–560. PubMed
Sabatini, F. M. , Bluhm H., Kun Z., et al. 2021. “European Primary Forest Database v2.0.” Scientific Data 8: 220. PubMed PMC
Šamonil, P. , Daněk P., Lutz J. A., et al. 2023. “Tree Mortality May Drive Landscape Formation: Comparative Study From Ten Temperate Forests.” Ecosystems 26: 257–276.
Šamonil, P. , Doleželová P., Vašíčková I., et al. 2013. “Individual‐Based Approach to the Detection of Disturbance History Through Spatial Scales in a Natural Beech‐Dominated Forest.” Journal of Vegetation Science 24: 1167–1184.
Šantrůčková, H. , Šantrůček J., Šetlík J., Svoboda M., and Kopáček J.. 2007. “Carbon Isotopes in Tree Rings of Norway Spruce Exposed to Atmospheric Pollution.” Environmental Science & Technology 41, no. 16: 5778–5782. 10.1021/es070011t. PubMed DOI
Saurer, M. , Cherubini P., Ammann M., De Cinti B., and Siegwolf R.. 2004a. “First Detection of Nitrogen From NOx in Tree Rings: A 15N/14N Study Near a Motorway.” Atmospheric Environment 38: 2779–2787.
Saurer, M. , Siegwolf R. T. W., and Schweingruber F. H.. 2004b. “Carbon Isotope Discrimination Indicates Improving Water‐Use Efficiency of Trees in Northern Eurasia Over the Last 100 Years.” Global Change Biology 10: 2109–2120.
Savard, M. M. 2010. “Tree‐Ring Stable Isotopes and Historical Perspectives on Pollution–An Overview.” Environmental Pollution 158: 2007–2013. PubMed
Savard, M. M. , Bégin C., Parent M., Smirnoff A., and Marion J.. 2004. “Effects of Smelter Sulfur Dioxide Emissions.” Journal of Environmental Quality 33: 13–26. PubMed
Savard, M. M. , Marion J., Bégin C., and Laganière J.. 2023. “On the Significance of Long‐Term Trends in Tree‐Ring N Isotopes–The Interplay of Soil Conditions and Regional NOx Emissions.” Science of the Total Environment 857: 159580. PubMed
Schimel, D. , Stephens B. B., and Fisher J. B.. 2015. “Effect of Increasing CO2 on the Terrestrial Carbon Cycle.” Proceedings of the National Academy of Sciences of the United States of America 112: 436–441. PubMed PMC
Schleser, G. H. , and Jayasekera R.. 1985. “δ13C‐Variations of Leaves in Forests as an Indication of Reassimilated CO2 From the Soil.” Oecologia 65: 536–542. PubMed
Šebková, B. , Šamonil P., Janík D., et al. 2011. “Spatial and Volume Patterns of an Unmanaged Submontane Mixed Forest in Central Europe: 160 Years of Spontaneous Dynamics.” Forest Ecology and Management 262: 873–885.
Seidl, R. , Schelhaas M. J., and Lexer M. J.. 2011. “Unraveling the Drivers of Intensifying Forest Disturbance Regimes in Europe.” Global Change Biology 17: 2842–2852.
Seidl, R. , Schelhaas M.‐J., Rammer W., and Verkerk P. J.. 2014. “Increasing Forest Disturbances in Europe and Their Impact on Carbon Storage.” Nature Climate Change 4: 806–810. PubMed PMC
Senf, C. , Pflugmacher D., Zhiqiang Y., et al. 2018. “Canopy Mortality Has Doubled in Europe's Temperate Forests Over the Last Three Decades.” Nature Communications 9: 1–8. PubMed PMC
Sharma, B. , Kumar J., Ganguly A. R., and Hoffman F. M.. 2023. “Carbon Cycle Extremes Accelerate Weakening of the Land Carbon Sink in the Late 21st Century.” Biogeosciences 20: 1829–1841.
Siegwolf, R. T. W. , Lehmann M. M., Goldsmith G. R., et al. 2023. “Updating the Dual C and O Isotope—Gas‐Exchange Model: A Concept to Understand Plant Responses to the Environment and Its Implications for Tree Rings.” Plant, Cell & Environment 46: 2606–2627. PubMed
Sperry, J. S. , Hacke U. G., Oren R., and Comstock J. P.. 2002. “Water Deficits and Hydraulic Limits to Leaf Water Supply.” Plant, Cell & Environment 25: 251–263. PubMed
Teste, F. P. , Jones M. D., and Dickie I. A.. 2020. “Dual‐Mycorrhizal Plants: Their Ecology and Relevance.” New Phytologist 225: 1835–1851. PubMed
Thomas, R. B. , Spal S. E., Smith K. R., and Nippert J. B.. 2013. “Evidence of Recovery of Juniperus virginiana Trees From Sulfur Pollution After the Clean Air Act.” Proceedings of the National Academy of Sciences 110: 15319–15324. PubMed PMC
Treml, V. , Tumajer J., Jandová K., et al. 2022. “Increasing Water‐Use Efficiency Mediates Effects of Atmospheric Carbon, Sulfur, and Nitrogen on Growth Variability of Central European Conifers.” Science of the Total Environment 838: 156483. PubMed
Ubierna, N. , and Farquhar G. D.. 2014. “Advances in Measurements and Models of Photosynthetic Carbon Isotope Discrimination in C3 Plants.” Plant, Cell & Environment 37: 1494–1498. PubMed
Urban, O. , Ač A., Kolář T., et al. 2021. “The Dendroclimatic Value of Oak Stable Isotopes.” Dendrochronologia 65: 125804.
Vašíčková, I. , Šamonil P., Kašpar J., Román‐Sánchez A., Chuman T., and Adam D.. 2021. “Dead or Alive: Drivers of Wind Mortality Initiate Multiple Disturbance Regime in a Temperate Primeval Mountain Forest.” Forests 12: 1599.
Walker, A. P. , De Kauwe M. G., Bastos A., et al. 2021. “Integrating the Evidence for a Terrestrial Carbon Sink Caused by Increasing Atmospheric CO2.” New Phytologist 229: 2413–2445. PubMed
Wasyliw, J. , and Karst J.. 2020. “Shifts in Ectomycorrhizal Exploration Types Parallel Leaf and Fine Root Area With Forest Age.” Journal of Ecology 108: 2270–2282.
Wickham, H. 2016. ggplot2: Elegant Graphics for Data Analysis. Springer‐Verlag.