• This record comes from PubMed

Quantitative Palynology Informing Conservation Ecology in the Bohemian/Bavarian Forests of Central Europe

. 2017 ; 8 () : 2268. [epub] 20180117

Status PubMed-not-MEDLINE Language English Country Switzerland Media electronic-ecollection

Document type Journal Article

In 1927, the first pollen diagram was published from the Bohemian/Bavarian Forest region of Central Europe, providing one of the first qualitative views of the long-term vegetation development in the region. Since then significant methodological advances in quantitative approaches such as pollen influx and pollen-based vegetation models (e.g., Landscape Reconstruction Algorithm, LRA) have contributed to enhance our understanding of temporal and spatial ecology. These types of quantitative reconstructions are fundamental for conservation and restoration ecology because they provide long-term perspectives on ecosystem functioning. In the Bohemian/Bavarian Forests, forest managers have a goal to restore the original forest composition at mid-elevation forests, yet they rely on natural potential vegetation maps that do not take into account long-term vegetation dynamics. Here we reconstruct the Holocene history of forest composition and discuss the implications the LRA has for regional forest management and conservation. Two newly analyzed pollen records from Prášilské jezero and Rachelsee were compared to 10 regional peat bogs/mires and two other regional lakes to reconstruct total land-cover abundance at both the regional- and local-scales. The results demonstrate that spruce has been the dominant canopy cover across the region for the past 9,000 years at both high- (>900 m) and mid-elevations (>700-900 m). At the regional-scale inferred from lake records, spruce has comprised an average of ~50% of the total forest canopy; whereas at the more local-scale at mid-elevations, spruce formed ~59%. Beech established ~6,000 cal. years BP while fir established later around 5,500 cal. years BP. Beech and fir growing at mid-elevations reached a maximum land-cover abundance of 24% and 13% roughly 1,000 years ago. Over the past 500 years spruce has comprised ~47% land-cover, while beech and fir comprised ~8% and <5% at mid-elevations. This approach argues for the "natural" development of spruce and fir locally in zones where the paleoecology indicates the persistence of these species for millennia. Contrasting local and regional reconstructions of forest canopy cover points to a patchwork mosaic with local variability in the dominant taxa. Incorporation of paleoecological data in dialogues about biodiversity and ecosystem management is an approach that has wider utility.

See more in PubMed

Abraham V., Kozáková R. (2012). Relative pollen productivity estimates in the modern agricultural landscape of Central Bohemia (Czech Republic). Rev. Palaeob. Palynol. 179, 1–12. 10.1016/j.revpalbo.2012.04.004 DOI

Abraham V., Oušková V., Kuneš P. (2014). Present-day vegetation helps quantifying past land cover in selected regions of the Czech Republic. PLoS ONE 9:e100117. 10.1371/journal.pone.0100117 PubMed DOI PMC

Abraham V., Kuneš P., Petr L., Svitavská-Svobodová H., Kozáková R., Jamrichová E., et al. (2016). A pollen-based quantitative reconstruction of the Holocene vegetation updates a perspective on the natural vegetation in the Czech Republic and Slovakia. Preslia 88, 409–434. Available online at: http://www.preslia.cz/P164Abraham.pdf

Appleby P. G. (1978). The calculation of lead-210 dates assuming a constant rate of supply of unsupported 210Pb to the sediment. Catena 5, 1–8. 10.1016/S0341-8162(78)80002-2 DOI

Bennett K. D. (1996). Determination of the number of zones in a biostratigraphical sequence. New Phytol. 132, 155–170. 10.1111/j.1469-8137.1996.tb04521.x PubMed DOI

Birks H. J. B., Birks H. H. (1980). Quaternary Palaeoecology. London: Edward Arnold.

Birks H. J. B. (1996). Contributions of quaternary palaeoecology to nature conservation. J. Veg. Sci. 7, 89–98. 10.2307/3263420 DOI

Birks H. J. B. (2012). Ecological palaeoecology and conservation biology: controversies, challenges, and compromises. Int. J. Biodivers. Sci. Ecosyst. Serv. Manage. 8, 292–304. 10.1080/21513732.2012.701667 DOI

Blaauw M., Christen J. A. (2011). Flexible paleoclimate age-depth models using an autoregressive gamma process. Bayesian Anal. 6, 457–474. 10.1214/11-BA618 DOI

Bolte A., Ammer C., Löf M., Madsen P., Nabuurs G.-J., Schall P., et al. (2009). Adaptive forest management in central Europe: climate change impacts, strategies, and integrative concept. Scand. J. For. Res. 24, 473–482. 10.1080/02827580903418224 DOI

Boyle J. F. (1995). A simple closure mechanism for a compact, large-diameter, gravity corer. J. Paleolim. 13, 85–87. 10.1007/BF00678113 DOI

Brázdil R., Szabó P., Stucki P., Dobrovolný P., Řezníčková L., Kotyza O., et al. (2017). The extraordinary windstorm of 7 December 1868 in the Czech Lands and its central European context. Int. J. Climatol. 37, 14–29. 10.1002/joc.4973 DOI

Čada V., Morrissey R. C., Michalová Z., Bače R., Janda P., Svoboda M. (2016). Frequent severe natural disturbances and non-equilibrium landscape dynamics shaped the mountain spruce forest in central Europe. For. Ecol. Manage. 363, 169–178. 10.1016/j.foreco.2015.12.023 DOI

Cheddadi R., Araújo M. B., Maiorano L., Edwards M., Guisan A., Carré M., et al. . (2016). Temperature range shifts for three European tree species over the last 10,000 years. Front. Plant Sci. 7:1581. 10.3389/fpls.2016.01581 PubMed DOI PMC

Christen J. A., Pérez E. S. (2009). A new robust statistical model for radiocarbon data. Radiocarbon 15, 1047–1059. 10.1017/S003382220003410X DOI

Davis M. B. (2000). Palynology after Y2K-understanding the source area of pollen in sediments. Ann. Rev. Earth Planet. Sci. 28, 1–18. 10.1146/annurev.earth.28.1.1 DOI

Ellenberg H., Leuschner C. (1996). Vegetation mitteleuropas mit den Alpen, in Ökologischer, dynamischer und historischer Sicht (Stuttgart: Ulmer; ), 1–1095.

Faegri K., Kaland P. E., Kzywinski K. (1989). Textbook of Pollen Analysis. New York, NY: Wiley.

Feurdean A., Willis K. J. (2008). Long-term variability of Abies alba in NW Romania: implication for its conservation management. Divers. Distrib. 14, 1004–1017. 10.1111/j.1472-4642.2008.00514.x DOI

Feyen L., Dankers R. (2009). Impact of global warming on streamflow drought in Europe. J. Geophys. Res. 114:D17116 10.1029/2008JD011438 DOI

Fischer A., Lindner M., Abs C., Lasch P. (2002). Vegetation dynamics in Central European forest ecosystems (near-natural as well as managed) after storm events. Folia Geobot. 37, 17–32. 10.1007/BF02803188 DOI

Foster D. R., Swanson F. J., Aber J., Burke I., Brokaw N., Tilman D., et al. (2003). The importance of land-use legacies to ecology and conservation. Bioscience 53, 77–87. 10.1641/0006-3568(2003)053[0077:TIOLUL]2.0.CO;2 DOI

Froyd C. A., Willis K. J. (2008). Emerging issues in biodiversity and conservation management: the need for a palaeoecological perspective. Quat. Sci. Rev. 27, 1723–1732. 10.1016/j.quascirev.2008.06.006 DOI

Gamfeldt L., Snäll T., Bagchi R., Jonsson M., Gustafsson L., Kjellander P., et al. . (2013). Higher levels of multiple ecosystem services are found in forests with more tree species. Nat. Commun. 4:1340. 10.1038/ncomms2328 PubMed DOI PMC

Gao X., Giorgi F. (2008). Increased aridity in the Mediterranean region under greenhouse gas forcing estimated from high resolution simulations with a regional climate model. Glob. Planet. Change 62, 195–209. 10.1016/j.gloplacha.2008.02.002 DOI

Gillson L., Willis K. J. (2004). ‘As earth’s testimonies tell': wildness conservation in a changing world. Ecol. Lett. 7, 990–998. 10.1111/j.1461-0248.2004.00658.x DOI

Grimm E. C. (1987). CONISS: a fortran 77 program for stratigraphically constrained cluster analysis by the method of incremental sum of squares. Comput. Geosci. 13, 13–35. 10.1016/0098-3004(87)90022-7 DOI

Grove J. (2001). The onset of the Little Ice Age, in History and Climate: Memories of the Future?, eds Jones P. D., Ogilvie A. E. J., Davies T. D., Briffa K. R. (New York, NY; Boston; Dordrecht; London; Moscow: Kluwer Academic/Plenum Publishers; ), 153–185.

Hanewinkel M., Cullmann D. A., Schelhaas M.-J., Nabuurs G. J., Zimmermann K. E. (2012). Climate change may cause severe loss in the economic value of European forest land. Nat. Clim. Change 3, 203–207. 10.1038/nclimate1687 DOI

Heurich M., Englmaier K. H. (2010). The development of tree species composition in the Rachel–Lusen region of the Bavarian Forest National Park. Silva Gabreta 16, 165–186. Available online at: http://www.npsumava.cz/gallery/11/3587-sg16_3_heurichenglmaier.pdf

Holeksa J., Cybulski M. (2001). Canopy gaps in a Carpathian subalpine spruce forest. Forest Res. 120, 331–348. 10.1007/BF02796104 DOI

Holeksa J., Saniga M., Szwagrzyk J., Dziedzic T., Ferenc S., Wodka M. (2007). Altitudinal variability of stand structure and regeneration in the subalpine spruce forests of the Pol'ana biosphere reserve, Central Slovakia. Eur. J. For. Res. 126, 303–313. 10.1007/s10342-006-0149-z DOI

Hrubý P., Hejhal P., Malý K., Kočár P., Petr L. (2014). Centrální ceskomoravská vrchovina na prahu vrcholného střdovéku. Brno: Masarykova univerzita.

Iucn P. (1994). Guidelines for Protected Areas Management Categories. Cambridge, UK; Gland: IUCN. 261.

Jackson S. T. (1997). Documenting natural and human-caused plant invasions using paleoecological methods, in Assessment and Management of Plant Invasions, eds Luken J. O., Thieret J. W. (New York, NY: Springer Verlag; ), 37–55.

Janda P., Trotsiuk V., Mikoláš M., Bače R., Nagel T. A., Seidl R., et al. . (2017). The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For. Ecol. Manage. 388, 67–78. 10.1016/j.foreco.2016.08.014 PubMed DOI PMC

Jankovská M. (2006). Natural Regeneration and Vegetation Changes in Disturbed Norway Spruce Forests. dissertation thesis, University of South Bohemia, Ceské Budějovice.

Knipping M. (1989). Zur spät- und postglazialen Vegetationsgeschichte des Oberpfälzer Waldes. Berlin; Stuttgart: J. Cramer.

Kozáková R., Šamonil R., Kuneš P., Novák J., Kočár P., Kočárová R. (2011). Contrasting local and regional Holocene histories of Abies alba in the Czech Republic in relation to human impact: evidence from forestry, pollen and anthracological data. Holocene 21, 431–444. 10.1177/0959683610385721 DOI

Křenová Z., Hruška J. (2012). Proper zonation – an essential tool for the future conservation of the Šumava National Park European. Eur. J. Environ. Sci. 2, 62–72. Available online at: http://ejes.cz/index.php/ejes/article/view/81/35

Kulakowski D. (2017). The central role of disturbances in mountain forests of Europe. For. Ecol. Manage. 388, 1–2. 10.1016/j.foreco.2016.07.034 PubMed DOI PMC

Kuneš P., Abraham V., Kovárík O., Kopecký M., PALYCZ contributors (2009). Czech quaternary palynological database – PALYCZ: a review and basic statistics of the data. Preslia 81, 209–238. Available online at: http://www.preslia.cz/P093Kunes.pdf

Landres P. B., Morgan P., Swanson F. J. (1999). Overview of the use of natural variability concepts in managing ecological systems. Ecol. Appl. 9, 1179–1188.

Loidi J., Fernández-González F. (2012). Potential natural vegetation: reburying or reboring? J. Veg. Sci. 23, 596–604. 10.1111/j.1654-1103.2012.01387.x PubMed DOI

Loidi J., del Arco M., Pérez de Paz P. L., Asensi A., Díez Garretas B., Costa M., et al. (2010). Understanding properly the ”potential natural vegetation”concept. J. Biogeogr. 37, 2209–2211. 10.1111/j.1365-2699.2010.02302.x DOI

Málek J. (1981). Problematik der Ökologie der Tanne (Abies alba Mill.) und ihres Sterbens in der ČSSR. Forest Res. 100, 170–174. 10.1007/BF02640631 DOI

Manten A. A. (1967). Lennart von Post and the foundation of modern palynology. Rev. Palaeobot. Palynol. 1, 11–22. 10.1016/0034-6667(67)90105-4 DOI

Mazier F., Gaillard M.-J., Kuneš P., Sugita S., Trondman A.-K., Broström A. (2012). Testing the effect of site selection and parameter setting on REVEALS-model estimates of plant abundance using the Czech Quaternary palynological database. Rev. Palaeobot. Palynol. 187, 38–49. 10.1016/j.revpalbo.2012.07.017 DOI

Meyer T., Kiener H., Křenová Z. (2009). Wild heart of Europe. Int. J. Wilderness. 15, 33–40. Available online at: http://ijw.wpengine.com/wp-content/uploads/2009/04/Dec09-IJW-vol-15-no-3small2.pdf

Mikyška R., Deyl M., Holub J., Husová M., Moravec J., Neuhäusl R., Neuhäuslová-Novotná Z. (1968–1972). Geobotanická mapa ČSSR 1. České země [Geobotanical map of the ČSSR 1. Czech Lands]. Praha: Vegetace ČSSR, Ser. A, Academia.

Müller F. (1927). Paläofloristische untersuchungen dreier hochmoore des böhmerwaldes. Lotos 75, 53–80.

National Research Council (2005). The Geological Record of Ecological Dynamics. Understanding the Biotic Effects of Future Environmental Change. Washington, DC: National Academy Press.

Neuhäuslová Z., Blažková D., Grulich V., Husová M., Chytrý M., Jeník J., et al. (1998). Mapa potenciální Přirozené vegetace České Republiky. Map of potential natural vegetation of the Czech Republic. Praha: Academia.

Nožička J. (1957). Přehled vývoje našich lesu. Praha: Státní zemědělské nakladatelství.

Prentice I. C. (1985). Pollen representation, source area, and basin size: toward a unified theory of pollen analysis. Quatern. Res. 23, 76–86. 10.1016/0033-5894(85)90073-0 DOI

Pruša E. (2001). Pěstování Lesu na Typologických Základech Praha: Lesnická práce; 593.

R Core Team (2016). R: A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing; Available online at: https://www.R-project.org/

Reimer P. J., Bard E., Bayliss A., Beck J. W., Blackwell P. G., Ramsey C. B., et al. (2013). IntCal13 and Marine13 radiocarbon age calibration curves 0–50,000 years cal BP. Radiocarbon 55, 1869–1887. 10.2458/azu_js_rc.55.16947 DOI

Röder J., Gossner M. M., Müller J. (2010). Anthropod species richness in the Norway Spruce (Picea abies (L.) Karst) canopy along an elevation gradient. For. Ecol. Manage. 259, 1513–1521. 10.1016/j.foreco.2010.01.027 DOI

Spathef P., van der Maaten E., van der Maaten-Theunissen M., Campioli M., Dobrowolska D. (2014). Climate change impacts in European forests: the expert views of local observers. Ann. For. Sci. 71, 131–137. 10.1007/s13595-013-0280-1 DOI

Stalling H. (1987). Untersuchungen zur spät- und postglazialen Vegetationsgeschichte im Bayerischen Wald. Dissertation thesis. Göttingen: Georg-August-University Göttingen.

Stockmarr J. (1972). Tablets with spores used in absolute pollen analysis. Pollen Spores 13, 614–621.

Sugita S. (1994). Pollen representation of vegetation in quaternary sediments: theory and method in patchy vegetation. J. Ecol. 82, 881–897. 10.2307/2261452 DOI

Sugita S. (2007a). Theory of quantitative reconstruction of vegetation I: pollen from large sites REVEALS regional vegetation composition. Holocene 17, 229–241. 10.1177/0959683607075837 DOI

Sugita S. (2007b). Theory of quantitative reconstruction of vegetation II: all you need is LOVE. Holocene 17, 243–257. 10.1177/0959683607075838 DOI

Svoboda M., Fraver S., Janda P., Bače R., Zenáhlíková J. (2010). Natural development and regeneration of a Central European montane spruce forest. For. Ecol. Manage. 260, 707–714. 10.1016/j.foreco.2010.05.027 DOI

Svoboda M., Janda P., Nagel T. A., Fraver S., Rejzek J., Bače R. (2012). Disturbance history of an old-growth sub-alpine Picea abies stand in the Bohemian Forest, Czech Republic. J. Veg. Sci. 23, 86–97. 10.1111/j.1654-1103.2011.01329.x DOI

Svoboda M., Janda P., Bače R., Fraver S., Nagel T. A., Rejzek J., et al. (2014). Landscape-level variability in historical disturbance in primary Picea abies mountain forests of the Eastern Carpathians, Romania. J. Veg. Sci. 25, 386–401. 10.1111/jvs.12109 DOI

Svobodová H., Reille M., Goeury C. (2001). Past vegetation dynamics of Vltavský luh, upper Vltava river valley in the Šumava mountains, Czech Republic. Veget. Hist. Archaeobot. 10, 185–199. 10.1007/PL00006930 DOI

Svobodová H., Soukupová L., Reille M. (2002). Diversified development of mountain mires, Bohemian Forest, Central Europe, in the last 13,000 years. Quatern. Int. 91, 123–135. 10.1016/S1040-6182(01)00106-9 DOI

Swetnam T. W., Allen C. D., Betancourt J. L. (1999). Applied historical ecology: using the past to manage for the future. Ecol. Appl. 9, 1189–1206. 10.1890/1051-0761(1999)009[1189:AHEUTP]2.0.CO;2 DOI

Szabó P., Kuneš P., Svobodová-Svitavská H., Švarcová M. G., Krížová L., Suchánková S., et al. . (2017). Using historical ecology to reassess the conservation status of coniferous forests in central Europe. Conserv. Biol. 31, 150–160. 10.1111/cobi.12763 PubMed DOI PMC

Tinner W., Lotter A. F. (2005). Holocene expansion of Fagus sylvatica and Abies alba in Central Europe: where are we after eight decades of debate? Quatern. Sci. Rev. 25, 626–649. 10.1016/j.quascirev.2005.03.017 DOI

Tinner W., Hubschmid P., Wehrli M., Ammann B., Conedera M. (1999). Long-term forest fire ecology and dynamics in the southern Switzerland. J. Ecol. 87, 273–289. 10.1046/j.1365-2745.1999.00346.x DOI

Tinner W., Colombaroli D., Heiri O., Henne P. D., Steinacher M., Untenecker J., et al. (2013). The past ecology of Abies abla provides new perspectives on future responses of silver fir forests to global warming. Ecol. Monogr. 83, 419–439. 10.1890/12-2231.1 DOI

Vacek S., Mayová J. (2000). K problematice vegetační stupňovitosti NP Šumava, in Monitoring, Výzkum a management ekosystému Národního parku Šumava. Sbor. z Celost. konf. Kostelec nad Černými lesy, 27–28 Listopadu 2000, eds Podrázský V., Ryšánková H., Vacek S., Ulbrichová I. (Praha: ČZU; ), 138–141. Available online at: http://maxbot.botany.pl/cgi-bin/pubs/data/article_pdf?id=393

van der Knaap W. O., van Leeuwen J. F. N., Ammann B. (2004). The first rise and fall of Fagus sylvatica and interactions with Abies alba at Faulenseemoos (Weiss Plateau) 6900–6000 cal yr BP. Acta Palaeobotan. 44, 249–266.

Willis K. J., Birks H. J. B. (2006). What is natural? The need for a long-term perspective in biodiversity conservation. Science 314, 1261–1265. 10.1126/science.1122667 PubMed DOI

Wright H. E., Jr. (1967). A square-rod piston sampler for lake sediments. J. Sediment. Petrol 37, 975–976. 10.1306/74D71807-2B21-11D7-8648000102C1865D DOI

Zeppenfeld T., Svoboda M., DeRose R. J., Heurich M., Müller J., Čížková P., et al. (2015). Response of mountain Picea abies forests to stand-replacing bark beetle outbreaks: neighbourhood effects lead to self-replacement. J. Appl. Ecol. 52, 1402–1411. 10.1111/1365-2664.12504 DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...