Holocene Dotaz Zobrazit nápovědu
Wood mice of the genus Apodemus are an essential component of small mammal communities throughout Europe. Molecular data suggest the postglacial colonization of current ranges from south European glacial refugia, different in particular species. Yet, details on the course of colonization and Holocene history of particular species are not available, partly because of a lack of reliable criteria for species identification in the fossil record. Using a sample of extant species, we analyzed variation patterns and between-species overlaps for a large set of metric and non-metric dental variables and established the criteria enabling the reliable species identification of fragmentary fossil material. The corresponding biometrical analyses were undertaken with fossil material of the genus (2528 items, 747 MNI) from 22 continuous sedimentary series in the Czech Republic and Slovakia, from LGM to Recent. In Central Europe, the genus is invariantly absent in LGM assemblages but regularly appears during the Late Vistulian. All the earliest records belong to A. flavicollis, the species clearly predominating in the fossil record until the Late Holocene. A. uralensis accompanied it in all regions until the late Boreal when disappeared from the fossil record (except for Pannonia). A few items identified as A. sylvaticus had already appeared in the early Holocene assemblages, first in the western part of the region, yet the regular appearance of the species is mostly in the post-Neolithic age. A. agrarius appeared sparsely from the Boreal with a maximum frequency during the post-Neolithic period. The results conform well to the picture suggested by molecular phylogeography but demonstrate considerable differences among particular species in dynamic of the range colonization. Further details concerning Holocene paleobiogeography of individual species in the medium latitude Europe are discussed.
- MeSH
- fylogeografie MeSH
- Murinae fyziologie MeSH
- paleontologie metody MeSH
- zkameněliny * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Slovenská republika MeSH
As a result of specific adaptations and habitat preferences strongly rheophilic fish species may show high levels of endemism. Many temperate rheophilic fish species were subjected to a series of range contractions during the Pleistocene, and then successfully expanded during the Holocene, colonising previously abandoned areas. The Carpathian barbel (Barbus carpathicus Kotlík, Tsigenopoulos, Ráb et Berrebi 2002) occurs in the montane streams in three basins of the main Central European rivers in the northern part of the Carpathian range. We used genetic variation within 3 mitochondrial and 9 microsatellite loci to determine a pattern of postglacial expansion in B. carpathicus. We found that overall genetic variation within the species is relatively low. Estimate of time to the most recent common ancestor (tMRCA) of mitochondrial sequences falls within the Holocene. The highest levels of genetic variation found in upper reaches of the Tisa river in the Danube basin suggest that glacial refugia were located in the south-eastern part of the species range. Our data suggest that the species crossed different watersheds at least six times as three genetically distinct groups (probably established in different expansion episodes) were found in northern part of the species range. Clines of genetic variation were observed in both the Danube and Vistula basins, which probably resulted from subsequent bottlenecks while colonizing successive habitats (south eastern populations) or due to the admixture of genetically diverse individuals to a previously uniform population (Vistula basin). Therefore, B. carpathicus underwent both demographic breakdowns and expansions during the Holocene, showing its distribution and demography are sensitive to environmental change. Our findings are important in the light of the current human-induced habitats alterations.
- MeSH
- Cyprinidae genetika MeSH
- genetická variace MeSH
- haplotypy MeSH
- mikrosatelitní repetice MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce * MeSH
- molekulární sekvence - údaje MeSH
- populační genetika MeSH
- shluková analýza MeSH
- zeměpis MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Analyses of upper limb bone bilateral asymmetry can shed light on manipulative behavior, sexual division of labor, and the effects of economic transitions on skeletal morphology. We compared the maximum (absolute) and directional asymmetry in humeral length, articular breadth, and cross-sectional diaphyseal geometry (CSG) in a large (n > 1200) European sample distributed among 11 archaeological periods from the Early Upper Paleolithic through the 20(th) century. Asymmetry in length and articular breadth is right-biased, but relatively small and fairly constant between temporal periods. Females show more asymmetry in length than males. This suggests a low impact of behavioral changes on asymmetry in length and breadth, but strong genetic control with probable sex linkage of asymmetry in length. Asymmetry in CSG properties is much more marked than in length and articular breadth, with sex-specific variation. In males, a major decline in asymmetry occurs between the Upper Paleolithic and Mesolithic. There is no further decline in asymmetry between the Mesolithic and Neolithic in males and only limited variation during the Holocene. In females, a major decline occurs between the Mesolithic and Neolithic, with resulting average directional asymmetry close to zero. Asymmetry among females continues to be very low in the subsequent Copper and Bronze Ages, but increases again in the Iron Age. Changes in female asymmetry result in an increase of sexual dimorphism during the early agricultural periods, followed by a decrease in the Iron Age. Sexual dimorphism again slightly declines after the Late Medieval. Our results indicate that changes in manipulative behavior were sex-specific with a probable higher impact of changes in hunting behavior on male asymmetry (e.g., shift from unimanual throwing to use of the bow-and-arrow) and food grain processing in females, specifically, use of two-handed saddle querns in the early agricultural periods and one-handed rotary querns in later agricultural periods.
- MeSH
- archeologie MeSH
- diafýzy anatomie a histologie MeSH
- humerus anatomie a histologie MeSH
- lidé MeSH
- pohlavní dimorfismus MeSH
- zkameněliny anatomie a histologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Evropa MeSH
Long-term trends in robusticity of lower limb bones in the genus Homo through the Pleistocene until the present have been proposed, which have been interpreted as a consequence of decreasing levels of mobility and activity patterns, changes in lifestyle, and environmental factors. There has also long been evidence that skeletal strength increases over an individual's lifespan. This increase is caused by continuous bone remodeling that optimizes the structure of a bone to resist mechanical loadings and creates a balance between endosteal resorption and subperiosteal apposition. However, none of the previous studies of temporal trends in robusticity has considered both processes and analyzed how individual age-related robusticity might influence higher-level temporal trends. This paper therefore explores temporal trends in robusticity of lower limb long bones within the genus Homo and considers how individual ages-at-death can confound published evolutionary trends, given the fact that some aspects of relative bone strength tend to increase over individual lifespans. Cross-sectional diaphyseal properties of the midshaft and proximal femur and midshaft tibia of Pleistocene and early Holocene individuals, together with data on age-at-death are used to analyze changes in relative bone strength relative to individuals' ages and evolutionary time. The results show increasing bone strength in adulthood until the fourth decade and then a slight decrease, an observation that conforms to previously published results on recent human populations. However, no significant impact of age-at-death on the trends along an evolutionary trajectory has been detected. The evolutionary trends in femoral and tibial relative strength can be described as fluctuating, probably as a consequence of changing mobility patterns, environmentally and technologically influenced behaviors, and demographic processes. The differences between evolutionary trends published in several studies are explained primarily as a result of different ways of standardizing cross-sectional parameters for size, and differences in sample composition.
- MeSH
- biologická evoluce MeSH
- biomechanika MeSH
- dospělí MeSH
- femur anatomie a histologie fyziologie MeSH
- Hominidae anatomie a histologie fyziologie MeSH
- kostní denzita * MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- tibie anatomie a histologie fyziologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Understanding how species responded to past climate change can provide information about how they may respond to the current global warming. Here we show how a European reptile species responded to the last natural global warming event at the Pleistocene-Holocene transition that led to the Holocene climatic optimum approximately 5000-8000 years ago. The Aesculapian snake, Zamenis longissimus, is a thermophilous species whose present-day distribution in the southern half of Europe is a remnant of much wider range during the Holocene climatic optimum when populations occurred as far north as Denmark. These northern populations went extinct as the climate cooled, and presently the species is extinct from all central Europe, except few relic populations in locally suitable microhabitats in Germany and the Czech Republic. Our phylogenetic and demographic analyses identified two major clades that expanded from their respective western and eastern refugia after the last glacial maximum (18,000-23,000 years ago) and contributed approximately equally to the present range. Snakes from the relic northern populations carried the Eastern clade, showing that it was primarily the snakes from the eastern, probably Balkan, refugium that occupied the central and northern Europe during the Holocene climatic optimum. Two small, deep-branching clades were identified in near the Black Sea and in Greece. These clades provide evidence for two additional refugia, which did not successfully contribute to the colonization of Europe. If, as our results suggest, some populations responded to the mid-Holocene global warming by shifting their ranges further north than other populations of the same species, knowing what populations were able to expand in different species may provide information about what populations will be important for the species' ability to cope with the current global warming.
- MeSH
- Colubridae klasifikace genetika MeSH
- fylogeneze MeSH
- fylogeografie MeSH
- haplotypy MeSH
- mitochondriální DNA genetika MeSH
- molekulární evoluce MeSH
- podnebí MeSH
- pravděpodobnostní funkce MeSH
- sekvenční analýza DNA MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
The presence of sub-Saharan L-type mtDNA sequences in North Africa has traditionally been explained by the recent slave trade. However, gene flow between sub-Saharan and northern African populations would also have been made possible earlier through the greening of the Sahara resulting from Early Holocene climatic improvement. In this article, we examine human dispersals across the Sahara through the analysis of the sub-Saharan mtDNA haplogroup L3e5, which is not only commonly found in the Lake Chad Basin (∼17%), but which also attains nonnegligible frequencies (∼10%) in some Northwestern African populations. Age estimates point to its origin ∼10 ka, probably directly in the Lake Chad Basin, where the clade occurs across linguistic boundaries. The virtual absence of this specific haplogroup in Daza from Northern Chad and all West African populations suggests that its migration took place elsewhere, perhaps through Northern Niger. Interestingly, independent confirmation of Early Holocene contacts between North Africa and the Lake Chad Basin have been provided by craniofacial data from Central Niger, supporting our suggestion that the Early Holocene offered a suitable climatic window for genetic exchanges between North and sub-Saharan Africa. In view of its younger founder age in North Africa, the discontinuous distribution of L3e5 was probably caused by the Middle Holocene re-expansion of the Sahara desert, disrupting the clade's original continuous spread.
- MeSH
- efekt zakladatele MeSH
- etnicita genetika MeSH
- fylogeneze MeSH
- genetická variace * MeSH
- haplotypy * MeSH
- lidé MeSH
- mitochondriální DNA * MeSH
- molekulární evoluce MeSH
- molekulární sekvence - údaje MeSH
- populační dynamika MeSH
- populační genetika * MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- severní Afrika MeSH
Most evidence of climate change impacts on food webs comes from modern studies and little is known about how ancient food webs have responded to climate changes in the past. Here, we integrate fossil evidence from 71 fossil sites, body-size relationships and actualism to reconstruct food webs for six large mammal communities that inhabited the Iberian Peninsula at different times during the Quaternary. We quantify the long-term dynamics of these food webs and study how their structure changed across the Quaternary, a period for which fossil data and climate changes are well known. Extinction, immigration and turnover rates were correlated with climate changes in the last 850 kyr. Yet, we find differences in the dynamics and structural properties of Pleistocene versus Holocene mammal communities that are not associated with glacial-interglacial cycles. Although all Quaternary mammal food webs were highly nested and robust to secondary extinctions, general food web properties changed in the Holocene. These results highlight the ability of communities to re-organize with the arrival of phylogenetically similar species without major structural changes, and the impact of climate change and super-generalist species (humans) on Iberian Holocene mammal communities.
- MeSH
- časové faktory MeSH
- klimatické změny * MeSH
- potravní řetězec * MeSH
- savci * MeSH
- zkameněliny MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Understanding how past climate changes affected biodiversity is a key issue in contemporary ecology and conservation biology. These diversity changes are, however, difficult to reconstruct from paleoecological sources alone, because macrofossil and pollen records do not provide complete information about species assemblages. Ecologists therefore use information from modern analogues of past communities in order to get a better understanding of past diversity changes. Here we compare plant diversity, species traits and environment between late-glacial Abies, early-Holocene Quercus, and mid-Holocene warm-temperate Carpinus forest refugia on Jeju Island, Korea in order to provide insights into postglacial changes associated with their replacement. Based on detailed study of relict communities, we propose that the late-glacial open-canopy conifer forests in southern part of Korean Peninsula were rich in vascular plants, in particular of heliophilous herbs, whose dramatic decline was caused by the early Holocene invasion of dwarf bamboo into the understory of Quercus forests, followed by mid-Holocene expansion of strongly shading trees such as maple and hornbeam. This diversity loss was partly compensated in the Carpinus forests by an increase in shade-tolerant evergreen trees, shrubs and lianas. However, the pool of these species is much smaller than that of light-demanding herbs, and hence the total species richness is lower, both locally and in the whole area of the Carpinus and Quercus forests. The strongly shading tree species dominating in the hornbeam forests have higher leaf tissue N and P concentrations and smaller leaf dry matter content, which enhances litter decomposition and nutrient cycling and in turn favored the selection of highly competitive species in the shrub layer. This further reduced available light and caused almost complete disappearance of understory herbs, including dwarf bamboo.
- MeSH
- biodiverzita MeSH
- ekosystém MeSH
- klimatické změny MeSH
- ledový příkrov MeSH
- sopečné erupce MeSH
- stromy anatomie a histologie klasifikace fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Korejská republika MeSH
We investigated the evolutionary history of the striped field mouse to identify factors that initiated its past demographic changes and to shed light on the causes of its current genetic structure and trans-Eurasian distribution. We sequenced mitochondrial cyt b from 184 individuals, obtained from 35 sites in central Europe and eastern Mongolia. We compared genetic analyses with previously published historical distribution models and data on environmental and climatic changes. The past demographic changes displayed similar population trends in the case of recently expanded clades C1 and C3, with the glacial (MIS 3-4) expansion and postglacial bottleneck preceding the recent expansion initiated in the late Holocene and were related to environmental changes during the upper Pleistocene and Holocene. The past demographic trends of the eastern Asian clade C3 were correlated with changes in sea level and the formation of new land bridges formed by the exposed sea shelf during the glaciations. These data were supported by reconstructed historical distribution models. The results of our genetic analyses, supported by the reconstruction of the historical spatial distributions of the distinct clades, confirm that over time the local populations mixed as a consequence of environmental and climatic changes resulting from cyclical glaciation and the interglacial period during the Pleistocene.
BACKGROUND: Chad Basin, lying within the bidirectional corridor of African Sahel, is one of the most populated places in Sub-Saharan Africa today. The origin of its settlement appears connected with Holocene climatic ameliorations (aquatic resources) that started ~10,000 years before present (YBP). Although both Nilo-Saharan and Niger-Congo language families are encountered here, the most diversified group is the Chadic branch belonging to the Afro-Asiatic language phylum. In this article, we investigate the proposed ancient migration of Chadic pastoralists from Eastern Africa based on linguistic data and test for genetic traces of this migration in extant Chadic speaking populations.
- MeSH
- emigrace a imigrace MeSH
- financování organizované MeSH
- fylogeneze MeSH
- genetická variace MeSH
- haplotypy genetika MeSH
- jazyk (prostředek komunikace) MeSH
- lidé MeSH
- mitochondriální DNA genetika MeSH
- populační genetika MeSH
- zeměpis MeSH
- Check Tag
- lidé MeSH
- Geografické názvy
- Afrika MeSH
- Čad MeSH