Structure-activity study of new inhibitors of human betaine-homocysteine S-methyltransferase
Language English Country United States Media print
Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't
Grant support
R01 DK052501
NIDDK NIH HHS - United States
R29 DK052501
NIDDK NIH HHS - United States
DK52501
NIDDK NIH HHS - United States
R01 TW005250
FIC NIH HHS - United States
PubMed
19534555
PubMed Central
PMC2744866
DOI
10.1021/jm8015798
Knihovny.cz E-resources
- MeSH
- Betaine-Homocysteine S-Methyltransferase antagonists & inhibitors MeSH
- Homocysteine analogs & derivatives chemical synthesis chemistry pharmacology MeSH
- Enzyme Inhibitors chemical synthesis chemistry pharmacology MeSH
- Pentanoic Acids chemical synthesis chemistry pharmacology MeSH
- Humans MeSH
- Molecular Structure MeSH
- Drug Design MeSH
- Stereoisomerism MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Research Support, N.I.H., Extramural MeSH
- Names of Substances
- 5-(3-amino-3-carboxypropylthio)-3-methylpentanoic acid MeSH Browser
- 5-(3-amino-3-carboxypropylthio)-3,3-dimethylpentanoic acid MeSH Browser
- Betaine-Homocysteine S-Methyltransferase MeSH
- Homocysteine MeSH
- Enzyme Inhibitors MeSH
- Pentanoic Acids MeSH
Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to l-homocysteine, yielding dimethylglycine and l-methionine. In this study, we prepared a new series of BHMT inhibitors. The inhibitors were designed to mimic the hypothetical transition state of BHMT substrates and consisted of analogues with NH, N(CH(3)), or N(CH(3))(2) groups separated from the homocysteine sulfur atom by a methylene, ethylene, or a propylene spacer. Only the inhibitor with the N(CH(3)) moiety and ethylene spacer gave moderate inhibition. This result led us to prepare two inhibitors lacking a nitrogen atom in the S-linked alkyl chain: (RS,RS)-5-(3-amino-3-carboxypropylthio)-3-methylpentanoic acid and (RS)-5-(3-amino-3-carboxypropylthio)-3,3-dimethylpentanoic acid. Both of these compounds were highly potent inhibitors of BHMT. The finding that BHMT does not tolerate a true betaine mimic within these inhibitors, especially the nitrogen atom, is surprising and evokes questions about putative conformational changes of BHMT upon the binding of the substrates/products and inhibitors.
See more in PubMed
Pajares MA, Perez-Salab D. Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism. Cell. Mol. Life Sci. 2006;63:2792–2803. PubMed PMC
Sunden SLF, Renduchintala MS, Park EI, Miklasz SD, Garrow TA. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys. 1997;345:171–174. PubMed
Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J. Biol. Chem. 1984;259:9508–9513. PubMed
Finkelstein JD, Harris BJ, Kyle WE. Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Arch. Biochem. Biophys. 1972;153:320–324. PubMed
Millian NS, Garrow TA. Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys. 1998;356:93–98. PubMed
Breksa AP, III., Garrow TA. Recombinant human liver betainehomocysteine S-methyltransferase: identification of three cysteine residues critical for zinc binding. Biochemistry. 1999;38:13991–13998. PubMed
Evans JC, Huddler DP, Jiracek J, Castro C, Millian NS, Garrow TA, Ludwig ML. Betaine-homocysteine methyltransferase. Zinc in a distorted barrel. Structure. 2002;10:1159–1071. PubMed
Collinsova M, Castro C, Garrow TA, Yiotakis A, Dive V, Jiracek J. Combining combinatorial chemistry and affinity chromatography: highly selective inhibitors of human betaine:homocysteine S-methyltransferase. Chem. Biol. 2003;10:113–122. PubMed
Koval D, Kasicka V, Jiracek J, Collinsova M. Separation of diastereomers of phosphinic pseudopeptides by capillary zone electrophoresis and reverse-phase high-performance liquid chromatography. J. Sep. Sci. 2003;26:660.
Koval D, Kasicka V, Jiracek J, Collinsova M. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acid background electrolytes. Electrophoresis. 2003;24:774–781. PubMed
Koval D, Kasicka V, Jiracek J, Collinsova M, Garrow TA. Determination of dissociation constant of phosphinate group in phosphinic pseudopeptides by capillary zone electrophoresis. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2002;770:145–154. PubMed
Koval D, Kasicka V, Jiracek J, Collinsova M, Garrow TA. Analysis and characterization of phosphinic pseudopeptides by capillary zone electrophoresis. Electrophoresis. 2002;23:215–222. PubMed
Koval D, Kasicka V, Jiracek J, Collinsova M. Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE. Electrophoresis. 2006;27:4648–4657. PubMed
Koval D, Busnel JM, Hlavacek J, Jiracek J, Kasicka V, Peltre G. Evaluation of carrier ampholyte-based capillary electrophoresis for separation of peptides and peptide mimetics. Electrophoresis. 2008;29:3759–3767. PubMed
Jiracek J, Collinsova M, Rosenberg I, Budesinsky M, Protivinska E, Netusilova H, Garrow TA. S-Alkylated homocysteine derivatives: new inhibitors of human betaine-homocysteine S-methyltransferase. J. Med. Chem. 2006;49:3982–3989. PubMed PMC
Awad WM, Jr., Whitney PL, Skiba WE, Mangum JH, Wells MS. Evidence for direct methyl transfer in betaine: homocysteine S-methyltransferase. J. Biol. Chem. 1983;258:12790–12792. PubMed
Castro C, Gratson AA, Evans JC, Jiracek J, Collinsova M, Ludwig ML, Garrow TA. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis. Biochemistry. 2004;43:5341–5351. PubMed
Collinsova M, Strakova J, Jiracek J, Garrow TA. Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice. J. Nutr. 2006;136:1493–1497. PubMed
Wettstein M, Weik C, Holneicher C, Häussinger D. Betaine as an osmolyte in rat liver: metabolism and cell-to-cell interactions. Hepatology. 1998;27:787–793. PubMed
Craig SAS. Betaine in human nutrition. Am. J. Clin. Nutr. 2004;80:539–549. PubMed
Wijekoon EP, Brosnan ME, Brosnan JT. Homocysteine metabolism in diabetes. Biochem. Soc. Trans. 2007;35:1175–1179. PubMed
Devlin AM, Singh R, Wade RE, Innis SM, Bottiglieri T, Lentz SR. Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia. J. Biol. Chem. 2007;282:37082–37090. PubMed
Zeisel SH. Betaine supplementation and blood lipids: Fact or artifact? Nutr. Rev. 2006;64:77–79. PubMed
Elmore CL, Matthews RG. The many flavors of hyperhomocyst(e)inemia: insights from transgenic and inhibitor-based mouse models of disrupted one-carbon metabolism. Antioxid. Redox Signaling. 2007;9:1911–1921. PubMed PMC
Leinhard GE. Enzymatic catalysis and transition-state theory. Science. 1973;180:149–154. PubMed
Schramm VL, Horenstein BA, Kline PC. Transition state analysis and inhibitor design for enzymatic reactions. J. Biol. Chem. 1994;269:18259–18262. PubMed
Wolfenden R, Radzicka A. Transition-state analogues. Curr. Opin. Struct. Biol. 1991;1:780–787.
Herriott AW, Picker D. Phase-transfer synthesis of sulfides and dithioacetals. Synthesis. 1975:447–448.
Semonsky M, Kotva R, Vachek J, Jelinek V. Substances with antineoplastic activity. 27. Some alpha-substitution derivatives of delta-(6-purinylthio)valeric and epsilon-(6-purinylthio)capronic acids. Collect. Czech. Chem. Commun. 1968;33:3823–3832.
Barraclough P, Caldwell AG, Glen RC, Harris CJ, Stepney R, Whittaker N, Whittle BJR. Synthesis and platelet aggregation inhibiting activity of acid side-chain modified hydantoin prostaglandin analogs. Arch. Pharm. 1993;326:85–95. PubMed
Keith DD, Yang R, Tortora JA, Weigele M. Synthesis of DL-2-Amino-4-(2-aminoethoxy)-trans-but-3-enoic Acid. J. Org. Chem. 1978;43:3713–3716.
Dupuy C, Petrier C, Sarandeses LA, Luche JL. Ultrasound in organic syntheses. 19. Further studies on the conjugate additions to electron deficient olefins in aqueous media. Synth. Commun. 1991;21:643–651.
Siebum AHG, Woo WS, Raap J, Lugtenburg J. Access to any site-directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine—use of simple, efficient modular synthetic reaction schemes for isotope incorporation. E. J. Org. Chem. 2004:2905–2913.
Zhu JG, Hu XB, Dizin E, Pei DH. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): Direct observation of ketone intermediates by C-13 NMR spectroscopy. J. Am. Chem. Soc. 2003;125:13379–13381. PubMed
Hermkens PHH, Vonmaarseveen JH, Kruse CG, Scheeren HW. Intramolecular Pictet-Spengler reaction of N-alkoxy tryptamines. 1. Synthesis of (±)-deamino-debromo-eudistomin l. Tetrahedron Lett. 1989;30:5009–5012.
Frankel M, Gertner D. Syntheses of homologues of djenkolic acid. J. Chem. Soc. 1960:898–899.
Shinohara T, Takeda A, Toda J, Sano T. Determination of ring conformation in 1-benzyl-1,2,3,4-tetrahydroisoquinolines and a new synthesis of the chiral compounds. Chem. Pharm. Bull. 1998;46:430–433.
Toda J, Ichikawa T, Saitoh T, Horiguchi Y, Sano T. A synthesis of 2,3,4,5-tetrahydro-1H-3-benzazepines via Pummerer-type cyclization of N-(2-arylethyl)-N-(2-phenylsulfinylethyl)formamides. Hetero-cycles. 2000;53:2009–2018.
Reynolds NT, Rovis T. The effect of pre-existing stereocenters in the intramolecular asymmetric Stetter reaction. Tetrahedron. 2005;61:6368–6378.
Mcintosh JM, Pillon LZ, Acquaah SO, Green JR, White GS. Enamines and iminium salts from amido acids. Can. J. Chem. 1983;61:2016–2021.
Snider BB, Lu Q. Total synthesis of (±)-leporin A. J. Org. Chem. 1996;61:2839–2844. PubMed
Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998;33:159–166. PubMed
Beres L, Sturtevant JM. Calorimetric studies of activation of chymotrypsinogen-A. Biochemistry. 1971;10:2120–2126. PubMed
Szegedi SS, Garrow TA. Oligomerization is required for betainehomocysteine S-methyltransferase function. Arch. Biochem. Biophys. 2004;426:32–42. PubMed
Miller CM, Szegedi SS, Garrow TA. Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro. Biochem. J. 2005;392:443–448. PubMed PMC
Gonzalez B, Pajares MA, Martinez-Ripoll M, Blundell TL, Sanz-Aparicio J. Crystal structure of rat liver betaine homocysteine S-methyltransferase reveals new oligomerization features and conformational changes upon substrate binding. J. Mol. Biol. 2004;338:771–782. PubMed
Penner-Hahn J. Zinc-promoted alkyl transfer: a new role for zinc. Curr. Opin. Chem. Biol. 2007;11:166–171. PubMed
Skiba WE, Taylor MP, Wells MS, Mangum JH, Awad WM., Jr. Human hepatic methionine biosynthesis. Purification and characterization of betaine:homocysteine S-methyltransferase. J. Biol. Chem. 1982;257:14944–14948. PubMed
Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J. Biol. Chem. 1996;271:22831–22838. PubMed
Korte F, Lohmer KH. Alpha-hydroxyalkyliden-lacton-umlagerung. 4. Die synthese von 4.5-dihydro-thiophen-carbonsaure-(3)-estern. Chem. Ber.-Recl. 1957;90:1290–1295.