• This record comes from PubMed

Structure-activity study of new inhibitors of human betaine-homocysteine S-methyltransferase

. 2009 Jun 25 ; 52 (12) : 3652-65.

Language English Country United States Media print

Document type Journal Article, Research Support, N.I.H., Extramural, Research Support, Non-U.S. Gov't

Grant support
R01 DK052501 NIDDK NIH HHS - United States
R29 DK052501 NIDDK NIH HHS - United States
DK52501 NIDDK NIH HHS - United States
R01 TW005250 FIC NIH HHS - United States

Betaine-homocysteine S-methyltransferase (BHMT) catalyzes the transfer of a methyl group from betaine to l-homocysteine, yielding dimethylglycine and l-methionine. In this study, we prepared a new series of BHMT inhibitors. The inhibitors were designed to mimic the hypothetical transition state of BHMT substrates and consisted of analogues with NH, N(CH(3)), or N(CH(3))(2) groups separated from the homocysteine sulfur atom by a methylene, ethylene, or a propylene spacer. Only the inhibitor with the N(CH(3)) moiety and ethylene spacer gave moderate inhibition. This result led us to prepare two inhibitors lacking a nitrogen atom in the S-linked alkyl chain: (RS,RS)-5-(3-amino-3-carboxypropylthio)-3-methylpentanoic acid and (RS)-5-(3-amino-3-carboxypropylthio)-3,3-dimethylpentanoic acid. Both of these compounds were highly potent inhibitors of BHMT. The finding that BHMT does not tolerate a true betaine mimic within these inhibitors, especially the nitrogen atom, is surprising and evokes questions about putative conformational changes of BHMT upon the binding of the substrates/products and inhibitors.

See more in PubMed

Pajares MA, Perez-Salab D. Betaine homocysteine S-methyltransferase: just a regulator of homocysteine metabolism. Cell. Mol. Life Sci. 2006;63:2792–2803. PubMed PMC

Sunden SLF, Renduchintala MS, Park EI, Miklasz SD, Garrow TA. Betaine-homocysteine methyltransferase expression in porcine and human tissues and chromosomal localization of the human gene. Arch. Biochem. Biophys. 1997;345:171–174. PubMed

Finkelstein JD, Martin JJ. Methionine metabolism in mammals. Distribution of homocysteine between competing pathways. J. Biol. Chem. 1984;259:9508–9513. PubMed

Finkelstein JD, Harris BJ, Kyle WE. Methionine metabolism in mammals: kinetic study of betaine-homocysteine methyltransferase. Arch. Biochem. Biophys. 1972;153:320–324. PubMed

Millian NS, Garrow TA. Human betaine-homocysteine methyltransferase is a zinc metalloenzyme. Arch. Biochem. Biophys. 1998;356:93–98. PubMed

Breksa AP, III., Garrow TA. Recombinant human liver betainehomocysteine S-methyltransferase: identification of three cysteine residues critical for zinc binding. Biochemistry. 1999;38:13991–13998. PubMed

Evans JC, Huddler DP, Jiracek J, Castro C, Millian NS, Garrow TA, Ludwig ML. Betaine-homocysteine methyltransferase. Zinc in a distorted barrel. Structure. 2002;10:1159–1071. PubMed

Collinsova M, Castro C, Garrow TA, Yiotakis A, Dive V, Jiracek J. Combining combinatorial chemistry and affinity chromatography: highly selective inhibitors of human betaine:homocysteine S-methyltransferase. Chem. Biol. 2003;10:113–122. PubMed

Koval D, Kasicka V, Jiracek J, Collinsova M. Separation of diastereomers of phosphinic pseudopeptides by capillary zone electrophoresis and reverse-phase high-performance liquid chromatography. J. Sep. Sci. 2003;26:660.

Koval D, Kasicka V, Jiracek J, Collinsova M. Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acid background electrolytes. Electrophoresis. 2003;24:774–781. PubMed

Koval D, Kasicka V, Jiracek J, Collinsova M, Garrow TA. Determination of dissociation constant of phosphinate group in phosphinic pseudopeptides by capillary zone electrophoresis. J. Chromatogr., B: Anal. Technol. Biomed. Life Sci. 2002;770:145–154. PubMed

Koval D, Kasicka V, Jiracek J, Collinsova M, Garrow TA. Analysis and characterization of phosphinic pseudopeptides by capillary zone electrophoresis. Electrophoresis. 2002;23:215–222. PubMed

Koval D, Kasicka V, Jiracek J, Collinsova M. Determination of pKa values of diastereomers of phosphinic pseudopeptides by CZE. Electrophoresis. 2006;27:4648–4657. PubMed

Koval D, Busnel JM, Hlavacek J, Jiracek J, Kasicka V, Peltre G. Evaluation of carrier ampholyte-based capillary electrophoresis for separation of peptides and peptide mimetics. Electrophoresis. 2008;29:3759–3767. PubMed

Jiracek J, Collinsova M, Rosenberg I, Budesinsky M, Protivinska E, Netusilova H, Garrow TA. S-Alkylated homocysteine derivatives: new inhibitors of human betaine-homocysteine S-methyltransferase. J. Med. Chem. 2006;49:3982–3989. PubMed PMC

Awad WM, Jr., Whitney PL, Skiba WE, Mangum JH, Wells MS. Evidence for direct methyl transfer in betaine: homocysteine S-methyltransferase. J. Biol. Chem. 1983;258:12790–12792. PubMed

Castro C, Gratson AA, Evans JC, Jiracek J, Collinsova M, Ludwig ML, Garrow TA. Dissecting the catalytic mechanism of betaine-homocysteine S-methyltransferase by use of intrinsic tryptophan fluorescence and site-directed mutagenesis. Biochemistry. 2004;43:5341–5351. PubMed

Collinsova M, Strakova J, Jiracek J, Garrow TA. Inhibition of betaine-homocysteine S-methyltransferase causes hyperhomocysteinemia in mice. J. Nutr. 2006;136:1493–1497. PubMed

Wettstein M, Weik C, Holneicher C, Häussinger D. Betaine as an osmolyte in rat liver: metabolism and cell-to-cell interactions. Hepatology. 1998;27:787–793. PubMed

Craig SAS. Betaine in human nutrition. Am. J. Clin. Nutr. 2004;80:539–549. PubMed

Wijekoon EP, Brosnan ME, Brosnan JT. Homocysteine metabolism in diabetes. Biochem. Soc. Trans. 2007;35:1175–1179. PubMed

Devlin AM, Singh R, Wade RE, Innis SM, Bottiglieri T, Lentz SR. Hypermethylation of Fads2 and altered hepatic fatty acid and phospholipid metabolism in mice with hyperhomocysteinemia. J. Biol. Chem. 2007;282:37082–37090. PubMed

Zeisel SH. Betaine supplementation and blood lipids: Fact or artifact? Nutr. Rev. 2006;64:77–79. PubMed

Elmore CL, Matthews RG. The many flavors of hyperhomocyst(e)inemia: insights from transgenic and inhibitor-based mouse models of disrupted one-carbon metabolism. Antioxid. Redox Signaling. 2007;9:1911–1921. PubMed PMC

Leinhard GE. Enzymatic catalysis and transition-state theory. Science. 1973;180:149–154. PubMed

Schramm VL, Horenstein BA, Kline PC. Transition state analysis and inhibitor design for enzymatic reactions. J. Biol. Chem. 1994;269:18259–18262. PubMed

Wolfenden R, Radzicka A. Transition-state analogues. Curr. Opin. Struct. Biol. 1991;1:780–787.

Herriott AW, Picker D. Phase-transfer synthesis of sulfides and dithioacetals. Synthesis. 1975:447–448.

Semonsky M, Kotva R, Vachek J, Jelinek V. Substances with antineoplastic activity. 27. Some alpha-substitution derivatives of delta-(6-purinylthio)valeric and epsilon-(6-purinylthio)capronic acids. Collect. Czech. Chem. Commun. 1968;33:3823–3832.

Barraclough P, Caldwell AG, Glen RC, Harris CJ, Stepney R, Whittaker N, Whittle BJR. Synthesis and platelet aggregation inhibiting activity of acid side-chain modified hydantoin prostaglandin analogs. Arch. Pharm. 1993;326:85–95. PubMed

Keith DD, Yang R, Tortora JA, Weigele M. Synthesis of DL-2-Amino-4-(2-aminoethoxy)-trans-but-3-enoic Acid. J. Org. Chem. 1978;43:3713–3716.

Dupuy C, Petrier C, Sarandeses LA, Luche JL. Ultrasound in organic syntheses. 19. Further studies on the conjugate additions to electron deficient olefins in aqueous media. Synth. Commun. 1991;21:643–651.

Siebum AHG, Woo WS, Raap J, Lugtenburg J. Access to any site-directed isotopomer of methionine, selenomethionine, cysteine, and selenocysteine—use of simple, efficient modular synthetic reaction schemes for isotope incorporation. E. J. Org. Chem. 2004:2905–2913.

Zhu JG, Hu XB, Dizin E, Pei DH. Catalytic mechanism of S-ribosylhomocysteinase (LuxS): Direct observation of ketone intermediates by C-13 NMR spectroscopy. J. Am. Chem. Soc. 2003;125:13379–13381. PubMed

Hermkens PHH, Vonmaarseveen JH, Kruse CG, Scheeren HW. Intramolecular Pictet-Spengler reaction of N-alkoxy tryptamines. 1. Synthesis of (±)-deamino-debromo-eudistomin l. Tetrahedron Lett. 1989;30:5009–5012.

Frankel M, Gertner D. Syntheses of homologues of djenkolic acid. J. Chem. Soc. 1960:898–899.

Shinohara T, Takeda A, Toda J, Sano T. Determination of ring conformation in 1-benzyl-1,2,3,4-tetrahydroisoquinolines and a new synthesis of the chiral compounds. Chem. Pharm. Bull. 1998;46:430–433.

Toda J, Ichikawa T, Saitoh T, Horiguchi Y, Sano T. A synthesis of 2,3,4,5-tetrahydro-1H-3-benzazepines via Pummerer-type cyclization of N-(2-arylethyl)-N-(2-phenylsulfinylethyl)formamides. Hetero-cycles. 2000;53:2009–2018.

Reynolds NT, Rovis T. The effect of pre-existing stereocenters in the intramolecular asymmetric Stetter reaction. Tetrahedron. 2005;61:6368–6378.

Mcintosh JM, Pillon LZ, Acquaah SO, Green JR, White GS. Enamines and iminium salts from amido acids. Can. J. Chem. 1983;61:2016–2021.

Snider BB, Lu Q. Total synthesis of (±)-leporin A. J. Org. Chem. 1996;61:2839–2844. PubMed

Fukada H, Takahashi K. Enthalpy and heat capacity changes for the proton dissociation of various buffer components in 0.1 M potassium chloride. Proteins. 1998;33:159–166. PubMed

Beres L, Sturtevant JM. Calorimetric studies of activation of chymotrypsinogen-A. Biochemistry. 1971;10:2120–2126. PubMed

Szegedi SS, Garrow TA. Oligomerization is required for betainehomocysteine S-methyltransferase function. Arch. Biochem. Biophys. 2004;426:32–42. PubMed

Miller CM, Szegedi SS, Garrow TA. Conformation-dependent inactivation of human betaine-homocysteine S-methyltransferase by hydrogen peroxide in vitro. Biochem. J. 2005;392:443–448. PubMed PMC

Gonzalez B, Pajares MA, Martinez-Ripoll M, Blundell TL, Sanz-Aparicio J. Crystal structure of rat liver betaine homocysteine S-methyltransferase reveals new oligomerization features and conformational changes upon substrate binding. J. Mol. Biol. 2004;338:771–782. PubMed

Penner-Hahn J. Zinc-promoted alkyl transfer: a new role for zinc. Curr. Opin. Chem. Biol. 2007;11:166–171. PubMed

Skiba WE, Taylor MP, Wells MS, Mangum JH, Awad WM., Jr. Human hepatic methionine biosynthesis. Purification and characterization of betaine:homocysteine S-methyltransferase. J. Biol. Chem. 1982;257:14944–14948. PubMed

Garrow TA. Purification, kinetic properties, and cDNA cloning of mammalian betaine-homocysteine methyltransferase. J. Biol. Chem. 1996;271:22831–22838. PubMed

Korte F, Lohmer KH. Alpha-hydroxyalkyliden-lacton-umlagerung. 4. Die synthese von 4.5-dihydro-thiophen-carbonsaure-(3)-estern. Chem. Ber.-Recl. 1957;90:1290–1295.

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...