The global biogeography of tree leaf form and habit
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
PZ00P3_193612
Schweizerischer Nationalfonds zur Förderung der Wissenschaftlichen Forschung (Swiss National Science Foundation)
0452995
National Science Foundation (NSF)
7330
Wenner-Gren Foundation (Wenner-Gren Foundation for Anthropological Research, Inc.)
PELD/441244/2016-5
Ministry of Science, Technology and Innovation | Conselho Nacional de Desenvolvimento Científico e Tecnológico (National Council for Scientific and Technological Development)
1656'RAINFOR'
Gordon and Betty Moore Foundation (Gordon E. and Betty I. Moore Foundation)
NE/B503384/1
RCUK | Natural Environment Research Council (NERC)
NE/N012542/1
RCUK | Natural Environment Research Council (NERC)
ICA/R1/180100 - 'FORAMA'
Royal Society
DNRF173
Statens Naturvidenskabelige Forskningsrad (Danish National Science Foundation)
16549
Villum Fonden (Villum Foundation)
PubMed
37872262
PubMed Central
PMC10654052
DOI
10.1038/s41477-023-01543-5
PII: 10.1038/s41477-023-01543-5
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- lesy MeSH
- lidé MeSH
- listy rostlin metabolismus MeSH
- stromy * metabolismus MeSH
- uhlík metabolismus MeSH
- zvyky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- uhlík MeSH
Understanding what controls global leaf type variation in trees is crucial for comprehending their role in terrestrial ecosystems, including carbon, water and nutrient dynamics. Yet our understanding of the factors influencing forest leaf types remains incomplete, leaving us uncertain about the global proportions of needle-leaved, broadleaved, evergreen and deciduous trees. To address these gaps, we conducted a global, ground-sourced assessment of forest leaf-type variation by integrating forest inventory data with comprehensive leaf form (broadleaf vs needle-leaf) and habit (evergreen vs deciduous) records. We found that global variation in leaf habit is primarily driven by isothermality and soil characteristics, while leaf form is predominantly driven by temperature. Given these relationships, we estimate that 38% of global tree individuals are needle-leaved evergreen, 29% are broadleaved evergreen, 27% are broadleaved deciduous and 5% are needle-leaved deciduous. The aboveground biomass distribution among these tree types is approximately 21% (126.4 Gt), 54% (335.7 Gt), 22% (136.2 Gt) and 3% (18.7 Gt), respectively. We further project that, depending on future emissions pathways, 17-34% of forested areas will experience climate conditions by the end of the century that currently support a different forest type, highlighting the intensification of climatic stress on existing forests. By quantifying the distribution of tree leaf types and their corresponding biomass, and identifying regions where climate change will exert greatest pressure on current leaf types, our results can help improve predictions of future terrestrial ecosystem functioning and carbon cycling.
Agricultural High School ESAV Polytechnic Institute of Viseu IPV Viseu Portugal
AgroParisTech UMR AMAP Cirad CNRS INRA IRD Université de Montpellier Montpellier France
AMAP Univ Montpellier CIRAD CNRS INRAE IRD Montpellier France
AMAP Univ Montpellier Montpellier France
Andes to Amazon Biodiversity Program Madre de Dios Peru
Bavarian State Institute of Forestry Freising Germany
Center for Forest Ecology and Productivity Russian Academy of Sciences Moscow Russian Federation
Center for Natural Climate Solutions Conservation International Arlington VA USA
Center for Tropical Research Institute of the Environment and Sustainability UCLA Los Angeles CA USA
Centre for Agricultural Research in Suriname Paramaribo Suriname
Centre for Conservation Science The Royal Society for the Protection of Birds Sandy UK
Centre for Forest Research Université du Québec à Montréal Montréal Québec Canada
Centro Agricoltura Alimenti Ambiente University of Trento San Michele All'adige Italy
Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Rio Branco Acre Brazil
Centro de Modelación y Monitoreo de Ecosistemas Universidad Mayor Santiago Chile
Centro Multidisciplinar Universidade Federal do Acre Rio Branco Brazil
Chair of Crop Science and Plant Biology Estonian University of Life Sciences Tartu Estonia
CIRAD CNRS INRAE IRD Montpellier France
Cirad UMR EcoFoG Campus Agronomique Kourou French Guiana
Cirad UPR Forêts et Sociétés University of Montpellier Montpellier France
Climate Fire and Carbon Cycle Sciences USDA Forest Service Durham NC USA
Colegio de Profesionales Forestales de Cochabamba Cochabamba Bolivia
Compensation International S A Ci Progress GreenLife Bogotá D C Colombia
CTFS ForestGEO Smithsonian Tropical Research Institute Balboa Panama
Departamento de Biología Universidad de la Serena La Serena Chile
Departamento de Ciências Biológicas Universidade do Estado de Mato Grosso Nova Xavantina Brazil
Departamento de Silvicultura y Conservación de la Naturaleza Universidad de Chile Temuco Chile
Department of Agricultural and Forest Sciences and Engineering University of Lleida Lleida Spain
Department of Agricultural Food Environmental and Animal Sciences University of Udine Udine Italy
Department of Agriculture Food Environment and Forest University of Firenze Florence Italy
Department of Agriculture Forestry and Bioresources Seoul National University Seoul South Korea
Department of Biological Geological and Environmental Sciences University of Bologna Bologna Italy
Department of Biology Stanford University Stanford CA USA
Department of Biology University of Florence Florence Italy
Department of Biology University of Missouri St Louis St Louis MO USA
Department of Biology University of Oxford Oxford UK
Department of Biology Washington University Saint Louis MO USA
Department of Biology West Virginia University Morgantown WV USA
Department of Botany Dr Harisingh Gour Vishwavidyalaya Sagar India
Department of Botany Faculty of Science University of South Bohemia České Budějovice Czech Republic
Department of Ecology and Environmental Sciences Pondicherry University Puducherry India
Department of Ecology and Evolutionary Biology University of Arizona Tucson AZ USA
Department of Ecology and Evolutionary Biology University of Connecticut Storrs CT USA
Department of Environment and Development Studies United International University Dhaka Bangladesh
Department of Environment and Geography University of York York UK
Department of Environmental Sciences Central University of Jharkhand Ranchi Jharkhand India
Department of Evolutionary Anthropology Duke University Durham NC USA
Department of Evolutionary Biology and Environmental Studies University of Zürich Zurich Switzerland
Department of Forest and Wood Science University of Stellenbosch Stellenbosch South Africa
Department of Forest Engineering Universidade Regional de Blumenau Blumenau Brazil
Department of Forest Resource Management Swedish University of Agricultural Sciences SLU Umea Sweden
Department of Forest Resources University of Minnesota St Paul MN USA
Department of Forest Science Tokyo University of Agriculture Tokyo Japan
Department of Forestry and Environment National Polytechnic Institute Yamoussoukro Côte d'Ivoire
Department of Forestry and Natural Resources Purdue University West Lafayette IN USA
Department of Game Management and Forest Protection Poznań University of Life Sciences Poznań Poland
Department of Genetics Evolution and Environment University College London London United Kingdom
Department of Geography Environment and Geomatics University of Guelph Guelph Ontario Canada
Department of Geography Remote Sensing Laboratories University of Zürich Zurich Switzerland
Department of Geography University College London London UK
Department of Geomatics Forest Research Institute Raszyn Poland
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Physical and Biological Sciences The College of Saint Rose Albany NY USA
Department of Physical and Environmental Sciences Colorado Mesa University Grand Junction CO USA
Department of Plant Biology Institute of Biology University of Campinas UNICAMP Campinas Brazil
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Department of Spatial Regulation GIS and Forest Policy Institute of Forestry Belgrade Serbia
Department of Wildlife Management College of African Wildlife Management Mweka Tanzania
Department of Zoology University of Oxford Oxford UK
Division of Forest and Forest Resources Norwegian Institute of Bioeconomy Research Ås Norway
Division of Forest Resources Information Korea Forest Promotion Institute Seoul South Korea
Division of Forestry and Natural Resources West Virginia University Morgantown WV USA
Ecole de Foresterie et Ingénierie du Bois Université Nationale d'Agriculture Kétou Benin
Environmental Studies and Research Center University of Campinas UNICAMP Campinas Brazil
European Commission Joint Research Center Ispra Italy
Faculty of Biology Białowieża Geobotanical Station University of Warsaw Białowieża Poland
Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Czech Republic
Faculty of Forestry Qingdao Agricultural University Qingdao China
Faculty of Natural Resources Management Lakehead University Thunder Bay Ontario Canada
Field Museum of Natural History Chicago IL USA
Flamingo Land Ltd Kirby Misperton UK
Forest Research Institute Malaysia Kuala Lumpur Malaysia
Forest Research Institute University of the Sunshine Coast Sippy Downs Queensland Australia
Forestry Consultant Grosseto Italy
Forestry Division Food and Agriculture Organization of the United Nations Rome Italy
Forestry School Tecnológico de Costa Rica TEC Cartago Costa Rica
Fundacion ConVida Universidad Nacional Abierta y a Distancia UNAD Medellin Colombia
Geobotany Faculty of Biology University of Freiburg Freiburg im Breisgau Germany
Geography College of Life and Environmental Sciences University of Exeter Exeter UK
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Glick Designs LLC Hadley MA USA
Global Change Research Institute CAS Brno Czech Republic
Graduate School of Agriculture Kyoto University Kyoto Japan
Guyana Forestry Commission Georgetown French Guiana
Hawkesbury Institute for the Environment Western Sydney University Penrith New South Wales Australia
IFER Institute of Forest Ecosystem Research Jilove u Prahy Czech Republic
Independent Researcher Sommersbergseestrasse Bad Aussee Austria
Institut Agronomique néo Calédonien Nouméa New Caledonia
Institute for World Forestry University of Hamburg Hamburg Germany
Institute of Botany The Czech Academy of Sciences Třeboň Czech Republic
Institute of Dendrology Polish Academy of Sciences Kórnik Poland
Institute of Forestry and Engineering Estonian University of Life Sciences Tartu Estonia
Institute of Forestry Belgrade Serbia
Institute of Integrative Biology ETH Zurich Zurich Switzerland
Institute of Plant Sciences University of Bern Bern Switzerland
Instituto de Investigaciones de la Amazonía Peruana Iquitos Peru
Instituto Nacional de Pesquisas da Amazônia Manaus Brazil
Instituto Nacional de Tecnología Agropecuaria Río Gallegos Argentina
IRET Herbier National du Gabon Libreville Gabon
Isotope Bioscience Laboratory ISOFYS Ghent University Ghent Belgium
Iwokrama International Centre for Rainforest Conservation and Development Georgetown French Guiana
Jardín Botánico de Medellín Medellin Colombia
Jardín Botánico de Missouri Pasco Peru
Joint Research Unit CTFC AGROTECNIO CERCA Solsona Spain
LINCGlobal Museo Nacional de Ciencias Naturales CSIC Madrid Spain
Manaaki Whenua Landcare Research Lincoln New Zealand
Museo de Historia natural Noel kempff Mercado Santa Cruz Bolivia
Museu Paraense Emílio Goeldi Coordenação de Ciências da Terra e Ecologia Belém Pará Brasil
National Biodiversity Future Center Palermo Italy
National Center for Agro Meteorology Seoul South Korea
National Forest Centre Forest Research Institute Zvolen Zvolen Slovakia
National Institute of Amazonian Research Manaus Brazil
Natural Resources Institute Finland Joensuu Finland
Natural Science Department Universidade Regional de Blumenau Blumenau Brazil
Naturalis Biodiversity Center Leiden the Netherlands
Negaunee Integrative Research Center Field Museum of Natural History Chicago IL USA
Nicholas School of the Environment Duke University Durham NC USA
Peoples Friendship University of Russia Moscow Russian Federation
Plant Ecology and Nature Conservation Group Wageningen University Wageningen the Netherlands
Polish State Forests Coordination Center for Environmental Projects Warsaw Poland
Pontificia Universidad Católica del Ecuador Quito Ecuador
Proceedings of the National Academy of Sciences Washington DC USA
Quantitative Biodiversity Dynamics Department of Biology Utrecht University Utrecht the Netherlands
Research and Innovation Center Fondazione Edmund Mach San Michele All'adige Italy
Research Institute for Agriculture and Life Sciences Seoul National University Seoul South Korea
Rhino and Forest Fund e 5 Kehl Germany
Royal Botanic Garden Edinburgh Edinburgh UK
School of Biological and Behavioural Sciences Queen Mary University of London London UK
School of Biological Sciences University of Bristol Bristol UK
School of Forestry and Environmental Studies Yale University New Haven CT USA
School of Geography University of Leeds Leeds UK
School of Social Sciences Western Sydney University Penrith New South Wales Australia
Section for Ecoinformatics and Biodiversity Department of Biology Aarhus University Aarhus Denmark
Siberian Federal University Krasnoyarsk Russian Federation
Silviculture and Forest Ecology of the Temperate Zones University of Göttingen Göttingen Germany
Silviculture Research Institute Vietnamese Academy of Forest Sciences Hanoi Vietnam
Ștefan cel Mare University of Suceava Suceava Romania
Sustainable Forest Management Research Institute iuFOR University Valladolid Valladolid Spain
Swiss Federal Institute for Forest Snow and Landscape Research WSL Birmensdorf Switzerland
TERRA Teach and Research Centre Gembloux Agro Bio Tech University of Liege Liege Belgium
The Nature Conservancy Boulder CO USA
The Santa Fe Institute Santa Fe NM USA
Theoretical Ecology Unit African Institute for Mathematical Sciences Cape Town South Africa
Tropenbos International Wageningen the Netherlands
Tropical Biodiversity MUSE Museo delle Scienze Trento Italy
UFR Biosciences University Félix Houphouët Boigny Abidjan Côte d'Ivoire
UNELLEZ Guanare Programa de Ciencias del Agro y el Mar Herbario Universitario Portuguesa Venezuela
Universidad del Tolima Ibagué Colombia
Universidad Estatal Amazónica Puyo Pastaza Ecuador
Universidad Nacional de la Amazonía Peruana Iquitos Peru
Universidad Nacional de San Antonio Abad del Cusco Cusco Peru
Université de Lorraine AgroParisTech INRAE Silva Nancy France
Vicerrectoría de Investigación y Postgrado Universidad de La Frontera Temuco Chile
Wageningen University and Research Wageningen the Netherlands
Zobrazit více v PubMed
Pan Y, Birdsey RA, Phillips OL, Jackson RB. The structure, distribution, and biomass of the world’s forests. Annu. Rev. Ecol. Evol. Syst. 2013;44:593–622.
Pan Y, et al. A large and persistent carbon sink in the world’s forests. Science. 2011;333:988–993. PubMed
The State of the World’s Forests 2020. Forests, Biodiversity and People (FAO and UNEP, 2020).
Bonan GB. Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science. 2008;320:1444–1449. PubMed
Wright IJ, et al. The worldwide leaf economics spectrum. Nature. 2004;428:821–827. PubMed
Schulze ED. Biological control of the terrestrial carbon sink. Biogeosciences. 2006;3:147–166.
Sayer EJ. Using experimental manipulation to assess the roles of leaf litter in the functioning of forest ecosystems. Biol. Rev. Camb. Phil. Soc. 2006;81:1–31. PubMed
Ollinger SV, Aber JD, Reich PB, Freuder RJ. Interactive effects of nitrogen deposition, tropospheric ozone, elevated CO2 and land use history on the carbon dynamics of northern hardwood forests. Glob. Change Biol. 2002;8:545–562.
Nicotra AB, et al. The evolution and functional significance of leaf shape in the angiosperms. Funct. Plant Biol. 2011;38:535–552. PubMed
Díaz S, et al. The global spectrum of plant form and function. Nature. 2016;529:167–171. PubMed
Baldocchi DD, et al. On the differential advantages of evergreenness and deciduousness in mediterranean oak woodlands: a flux perspective. Ecol. Appl. 2010;20:1583–1597. PubMed
Arora VK, Boer GJ. A parameterization of leaf phenology for the terrestrial ecosystem component of climate models. Glob. Change Biol. 2005;11:39–59.
Schweitzer JA, et al. Genetically based trait in a dominant tree affects ecosystem processes. Ecol. Lett. 2004;7:127–134.
Tian F, et al. Coupling of ecosystem-scale plant water storage and leaf phenology observed by satellite. Nat. Ecol. Evol. 2018;2:1428–1435. PubMed
Méndez-Alonzo R, Pineda-García F, Paz H, Rosell JA, Olson ME. Leaf phenology is associated with soil water availability and xylem traits in a tropical dry forest. Trees. 2013;27:745–754.
Givnish TJ. Adaptive significance of evergreen vs. deciduous leaves: solving the triple paradox. Silva Fenn. 2002;36:703–743.
Axelrod DI. Origin of deciduous and evergreen habits in temperate forests. Evolution. 1966;20:1–15. PubMed
Reich PB, Walters MB, Ellsworth DS. From tropics to tundra: global convergence in plant functioning. Proc. Natl Acad. Sci. USA. 1997;94:13730–13734. PubMed PMC
Villar R, Merino J. Comparison of leaf construction costs in woody species with differing leaf life‐spans in contrasting ecosystems. New Phytol. 2001;151:213–226. PubMed
Chabot BF, Hicks DJ. The ecology of leaf life spans. Annu. Rev. Ecol. Syst. 2003;13:229–259.
Augusto L, et al. Influences of evergreen gymnosperm and deciduous angiosperm tree species on the functioning of temperate and boreal forests. Biol. Rev. 2015;90:444–466. PubMed
Flo V, et al. Climate and functional traits jointly mediate tree water-use strategies. New Phytol. 2021;231:617–630. PubMed
Lin YS, et al. Optimal stomatal behaviour around the world. Nat. Clim. Change. 2015;5:459–464.
Choat B, et al. Global convergence in the vulnerability of forests to drought. Nature. 2012;491:752–755. PubMed
Lusk CH, Wright I, Reich PB. Photosynthetic differences contribute to competitive advantage of evergreen angiosperm trees over evergreen conifers in productive habitats. New Phytol. 2003;160:329–336. PubMed
Mekonnen ZA, Riley WJ, Randerson JT, Grant RF, Rogers BM. Expansion of high-latitude deciduous forests driven by interactions between climate warming and fire. Nat. Plants. 2019;5:952–958. PubMed
Baltzer JL, et al. Increasing fire and the decline of fire adapted black spruce in the boreal forest. Proc. Natl Acad. Sci. USA. 2021;118:e2024872118. PubMed PMC
Mack MC, et al. Carbon loss from boreal forest wildfires offset by increased dominance of deciduous trees. Science. 2021;372:280–283. PubMed
Kikuzawa K. A cost-benefit analysis of leaf habit and leaf longevity of trees and their geographical pattern. Am. Nat. 1991;138:1250–1263.
Huechacona-Ruiz AH, et al. Mapping tree species deciduousness of tropical dry forests combining reflectance, spectral unmixing, and texture data from high-resolution imagery. Forests. 2020;11:1234.
Sitch S, et al. Evaluation of ecosystem dynamics, plant geography and terrestrial carbon cycling in the LPJ dynamic global vegetation model. Glob. Change Biol. 2003;9:161–185.
Woodward FI, Williams BG. Climate and plant distribution at global and local scales. Vegetatio. 1987;69:189–197.
Smith B, et al. Implications of incorporating N cycling and N limitations on primary production in an individual-based dynamic vegetation model. Biogeosciences. 2014;11:2027–2054.
Bondeau A, et al. Modelling the role of agriculture for the 20th century global terrestrial carbon balance. Glob. Change Biol. 2007;13:679–706.
Gerten D, Schaphoff S, Haberlandt U, Lucht W, Sitch S. Terrestrial vegetation and water balance - hydrological evaluation of a dynamic global vegetation model. J. Hydrol. 2004;286:249–270.
Krinner G, et al. A dynamic global vegetation model for studies of the coupled atmosphere-biosphere system. Glob. Biogeochem. Cycles. 2005;19:GB1015.
Sato H, Itoh A, Kohyama T. SEIB-DGVM: a new dynamic global vegetation model using a spatially explicit individual-based approach. Ecol. Modell. 2007;200:279–307.
Liang J, et al. Positive biodiversity-productivity relationship predominant in global forests. Science. 2016;354:aaf8957. PubMed
Kattge J, et al. TRY-a global database of plant traits. Glob. Change Biol. 2011;17:2905–2935.
Jucker T, et al. Tallo: a global tree allometry and crown architecture database. Glob. Change Biol. 2022 doi: 10.1111/gcb.16302. PubMed DOI PMC
Land Cover Classification Gridded Maps from 1992 to Present Derived From Satellite Observations (Copernicus Climate Change Service (C3S) Climate Data Store (CDS), accessed 24 March 2023); 10.24381/cds.006f2c9a
Goldberg DE. The distribution of evergreen and deciduous trees relative to soil type: an example from the Sierra Madre, Mexico, and a general model. Ecology. 1982;63:942–951.
Reichert JM, et al. Estimation of water retention and availability in soils of Rio Grande do Sul. Rev. Bras. Cienc. Solo. 2009;33:1547–1560.
Duong TTT, Penfold C, Marschner P. Amending soils of different texture with six compost types: impact on soil nutrient availability, plant growth and nutrient uptake. Plant Soil. 2012;354:197–209.
Yang J, et al. Leaf form-climate relationships on the global stage: an ensemble of characters. Glob. Ecol. Biogeogr. 2015;24:1113–1125.
Allen CD, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. Ecol. Manage. 2010;259:660–684.
Crowther TW, et al. Mapping tree density at a global scale. Nature. 2015;525:201–205. PubMed
Gatti, R. C. et al. The number of tree species on Earth. Proc. Natl Acad. Sci. USA119, (2022).
Santoro, M. & Cartus, O. ESA Biomass Climate Change Initiative (Biomass_cci): Global Datasets of Forest Above-ground Biomass for the Years 2010, 2017 and 2018 v.3 (NERC EDS Centre for Environmental Data Analysis, 2021).
Karger DN, et al. Climatologies at high resolution for the earth’s land surface areas. Sci. Data. 2017;4:170122. PubMed PMC
Reich PB, et al. Even modest climate change may lead to major transitions in boreal forests. Nature. 2022;608:540–545. PubMed
Elsen PR, et al. Accelerated shifts in terrestrial life zones under rapid climate change. Glob. Change Biol. 2022;28:918–935. PubMed
Graham RL, Turner MG, Dale VH. How increasing CO2 and climate change affect forests. Bioscience. 1990;40:575–587.
Keenan T, Maria Serra J, Lloret F, Ninyerola M, Sabate S. Predicting the future of forests in the Mediterranean under climate change, with niche- and process-based models: CO2 matters! Glob. Change Biol. 2011;17:565–579.
Liang J, et al. Co-limitation towards lower latitudes shapes global forest diversity gradients. Nat. Ecol. Evol. 2022;6:1423–1437. PubMed
Batjes NH, Ribeiro E, Van Oostrum A. Standardised soil profile data to support global mapping and modelling (WoSIS snapshot 2019) Earth Syst. Sci. Data. 2020;12:299–320.
Condit R, Engelbrecht BMJ, Pino D, Pérez R, Turnera BL. Species distributions in response to individual soil nutrients and seasonal drought across a community of tropical trees. Proc. Natl Acad. Sci. USA. 2013;110:5064–5068. PubMed PMC
Álvarez-Yépiz JC, et al. Resource partitioning by evergreen and deciduous species in a tropical dry forest. Oecologia. 2017;183:607–618. PubMed
Aerts R. The advantages of being evergreen. Trends Ecol. Evol. 1995;10:402–407. PubMed
Ouédraogo D-Y, et al. The determinants of tropical forest deciduousness: disentangling the effects of rainfall and geology in central Africa. J. Ecol. 2016;104:924–935.
Chave J, et al. Towards a worldwide wood economics spectrum. Ecol. Lett. 2009;12:351–366. PubMed
Simard M, Pinto N, Fisher JB, Baccini A. Mapping forest canopy height globally with spaceborne lidar. J. Geophys. Res. Biogeosci. 2011;116:G04021.
Sitch S, et al. Recent trends and drivers of regional sources and sinks of carbon dioxide. Biogeosciences. 2015;12:653–679.
Pugh TAM, et al. Understanding the uncertainty in global forest carbon turnover. Biogeosciences. 2020;17:3961–3989.
Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. PubMed
Cayuela L, Granzow-de la Cerda Í, Albuquerque FS, Golicher DJ. Taxonstand: an R package for species names standardisation in vegetation databases. Methods Ecol. Evol. 2012;3:1078–1083.
Hengl T, et al. SoilGrids250m: global gridded soil information based on machine learning. PLoS ONE. 2017;12:e0169748. PubMed PMC
Gorelick N, et al. Google Earth Engine: planetary-scale geospatial analysis for everyone. Remote Sens. Environ. 2017;202:18–27.
Strobl C, Boulesteix AL, Kneib T, Augustin T, Zeileis A. Conditional variable importance for random forests. BMC Bioinformatics. 2008;9:307. PubMed PMC
Simin C, Rongqun Z, Wenling C, Hui Y. Band selection of hyperspectral images based on Bhattacharyya distance. WSEAS Trans. Inf. Sci. Appl. 2009;6:1165–1175.
Ning J, Zhang L, Zhang D, Wu C. Interactive image segmentation by maximal similarity based region merging. Pattern Recognit. 2010;43:445–456.
Choi E, Lee C. Feature extraction based on the Bhattacharyya distance. Pattern Recognit. 2003;36:1703–1709.
El Merabet Y, et al. Maximal similarity based region classification method through local image region descriptors and Bhattacharyya coefficient-based distance: application to horizon line detection using wide-angle camera. Neurocomputing. 2017;265:28–41.
Li J. Assessing the accuracy of predictive models for numerical data: not r nor r2, why not? Then what? PLoS ONE. 2017;12:e0183250. PubMed PMC
Bhattacharyya A. On a measure of divergence between two multinomial populations. Sankhyā Indian J. Stat. 1946;7:401–406.
Ma H, et al. The global distribution and environmental drivers of aboveground versus belowground plant biomass. Nat. Ecol. Evol. 2021;5:1110–1122. PubMed
Breiman, L., Friedman, J., Stone, C. J. & Olshen, R. A. Classification Algorithms and Regression Trees (Chapman & Hall, 1984).
Hijmans, R. J. et al. Package geosphere (CRAN, 2019).
van den Hoogen J, et al. Soil nematode abundance and functional group composition at a global scale. Nature. 2019;572:194–198. PubMed
Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933–938.
Tuanmu MN, Jetz W. A global 1-km consensus land-cover product for biodiversity and ecosystem modelling. Glob. Ecol. Biogeogr. 2014;23:1031–1045.
Heiberger, R. M. HH: Statistical Analysis and Data Display: Heiberger and Holland (CRAN, 2020).
Erin, L. et al. h2o: R Interface for the ‘H2O’ Scalable Machine Learning Platform. R package v.3.32.0.2 (GitHub, 2020).