Tallo: A global tree allometry and crown architecture database
Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
MR/T019832/1
Medical Research Council - United Kingdom
PubMed
35703577
PubMed Central
PMC9542605
DOI
10.1111/gcb.16302
Knihovny.cz E-zdroje
- Klíčová slova
- allometric scaling, crown radius, forest biomass stocks, forest ecology, remote sensing, stem diameter, tree height,
- MeSH
- biomasa MeSH
- ekosystém MeSH
- koloběh uhlíku MeSH
- lesy * MeSH
- stromy * fyziologie MeSH
- uhlík metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- uhlík MeSH
Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.
AMAP Lab Montpellier University IRD CIRAD CNRS INRAE Montpellier France
Bordeaux Sciences Agro UMR ISPA INRAE Bordeaux France
Center for Crop Systems Analysis Wageningen University Wageningen The Netherlands
Center of Conservation Biology Core Botanical Gardens Chinese Academy of Sciences Wuhan China
Centro de Investigación Científica de Yucatán A C Unidad de Recursos Naturales Mérida Yucatán Mexico
CIRAD UPR Forêts et Sociétés Montpellier France
College of Life and Environmental Sciences University of Exeter Exeter UK
Conservation Research Institute University of Cambridge Cambridge UK
CSIRO Land and Water Canberra Australian Capital Territory Australia
Department of Biology University of Regina Regina Saskatchewan Canada
Department of Biology Washington University in St Louis St Louis Missouri USA
Department of Botany University of Otago Dunedin New Zealand
Department of Crop Science Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka
Department of Ecology French Institute of Pondicherry Puducherry India
Department of Forest and Wildlife Ecology University of Wisconsin Madison Madison Wisconsin USA
Department of Forestry Faculty of Natural Resources University of Guilan Somehsara Iran
Department of Forestry Ural State Forest Engineering University Yekaterinburg Russia
Department of Geography and Planning Queen's University Kingston Ontario Canada
Department of Geography National University of Singapore Singapore
Department of Geography University of California Santa Barbara Santa Barbara California USA
Department of Geography University of Cambridge Cambridge UK
Department of Natural Sciences Manchester Metropolitan University Manchester UK
Department of Plant Systematics University of Bayreuth Bayreuth Germany
Division Forest Office Ministry of Forest Dhangadhi Sudurpashchim Province Nepal
Earth Systems Research Center University of New Hampshire Durham New Hampshire USA
Faculty of Agriculture and Marine Science Kochi University Nankoku Kochi Japan
Faculty of Desert Studies Semnan University Semnan Iran
Faculty of Environmental Earth Science Hokkaido University Sapporo Japan
Faculty of Forestry University of British Columbia Vancouver British Columbia Canada
Field Science Center for Northern Biosphere Hokkaido University Horonobe Japan
Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands
Forest Ecology Research Group College of Life Sciences Hebei University Baoding Hebei China
Forest Science New South Wales Department of Primary Industries Parramatta New South Wales Australia
ForestGEO Smithsonian Tropical Research Institute Apartado Panama Republic of Panama
Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan
Fynbos Node South African Environmental Observation Network Claremont South Africa
German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany
Gilgit Baltistan Forest Wildlife and Environment Department Gilgit Pakistan
Gothenburg Global Biodiversity Centre Gothenburg Sweden
Graduate School and Research Western Carolina Unversity Cullowhee North Carolina USA
Graduate School of Integrated Sciences of Life Hiroshima University Hiroshima Japan
Institut National pour l'Etude et la Recherche Agronimiques Democratic Republic of the Congo
Institute of Forestry and Conservation University of Toronto Toronto Ontario Canada
Institute of Forestry Tribhuvan University Hetauda Nepal
Institute of Space Technology Islamabad Highway Islamabad Pakistan
IVL Swedish Environmental Research Institute Göteborg Sweden
Japan International Research Center for Agricultural Sciences Tsukuba Ibaraki Japan
Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya
Laboratoire Évolution et Diversité Biologique Toulouse Cedex 9 France
Landcare Research Lincoln New Zealand
Natural Recourses and Watershed Management Office West Azerbaijan Province Urmia Iran
Natural Resources Faculty University of Tehran Karaj Iran
Nicholas School of the Environment Duke University Durham NC USA
Ontario Ministry of Natural Resources North Bay Ontario Canada
Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy
School of Biological Sciences University of Bristol Bristol UK
School of Geographical and Earth Sciences University of Glasgow East Quadrangle Glasgow UK
School of GeoSciences University of Edinburgh Edinburgh UK
Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium
Shinto Labs Eindhoven The Netherlands
Spatial Ecology Lab School of Life Sciences South China Normal University Guangzhou Guangdong China
Swiss Federal Research Institute WSL Birmensdorf Switzerland
The Tree Projects Hobart Tasmania Australia
UK Centre for Ecology and Hydrology Edinburgh UK
UMR EcoFoG CNRS Kourou French Guiana
Universidad Nacional de la Patagonia Austral CONICET Río Gallegos Santa Cruz Argentina
Université de Liège Gembloux Agro Bio Tech Gembloux Belgium
Université Toulouse Toulouse Cedex 9 France
Zobrazit více v PubMed
Aguirre‐Gutiérrez, J. , Rifai, S. , Shenkin, A. , Oliveras, I. , Bentley, L. P. , Svátek, M. , Girardin, C. A. J. , Both, S. , Riutta, T. , Berenguer, E. , Kissling, W. D. , Bauman, D. , Raab, N. , Moore, S. , Farfan‐Rios, W. , Figueiredo, A. E. S. , Reis, S. M. , Ndong, J. E. , Ondo, F. E. , … Malhi, Y. (2021). Pantropical modelling of canopy functional traits using Sentinel‐2 remote sensing data. Remote Sensing of Environment, 252, 112122. 10.1016/J.RSE.2020.112122 DOI
Anderson‐Teixeira, K. J. , McGarvey, J. C. , Muller‐Landau, H. C. , Park, J. Y. , Gonzalez‐Akre, E. B. , Herrmann, V. , Bennett, A. C. , So, C. V. , Bourg, N. A. , Thompson, J. R. , McMahon, S. M. , & McShea, W. J. (2015). Size‐related scaling of tree form and function in a mixed‐age forest. Functional Ecology, 29(12), 1587–1602. 10.1111/1365-2435.12470 DOI
Atkins, J. W. , Walter, J. A. , Stovall, A. E. L. , Fahey, R. T. , & Gough, C. M. (2022). Power law scaling relationships link canopy structural complexity and height across forest types. Functional Ecology, 36(3), 713–726. 10.1111/1365-2435.13983 DOI
Banin, L. , Feldpausch, T. R. , Phillips, O. L. , Baker, T. R. , Lloyd, J. , Affum‐Baffoe, K. , Arets, E. J. M. M. , Berry, N. J. , Bradford, M. , Brienen, R. J. W. , Davies, S. , Drescher, M. , Higuchi, N. , Hilbert, D. W. , Hladik, A. , Iida, Y. , Salim, K. A. , Kassim, A. R. , King, D. A. , … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21, 1179–1190. 10.1111/j.1466-8238.2012.00778.x DOI
Bastin, J. F. , Rutishauser, E. , Kellner, J. R. , Saatchi, S. , Pélissier, R. , Hérault, B. , Slik, F. , Bogaert, J. , De Cannière, C. , Marshall, A. R. , Poulsen, J. , Alvarez‐Loyayza, P. , Andrade, A. , Angbonga‐Basia, A. , Araujo‐Murakami, A. , Arroyo, L. , Ayyappan, N. , de Azevedo, C. P. , Banki, O. , … Zebaze, D. (2018). Pan‐tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27(11), 1366–1383. 10.1111/geb.12803 DOI
Bennett, A. C. , McDowell, N. G. , Allen, C. D. , Anderson‐Teixeira, K. J. , Trenberth, K. E. , Nepstad, D. C. , Tohver, I. M. , Ray, D. , Moutinho, P. , Cardinot, G. , Phillips, O. L. , Lindenmayer, D. B. , Laurance, W. F. , Franklin, J. F. , Lutz, J. A. , Larson, A. J. , Swanson, M. E. , Freund, J. A. , Wullschleger, S. D. , … Haack, R. A. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1(10), 15139. 10.1038/nplants.2015.139 PubMed DOI
Boyle, B. , Hopkins, N. , Lu, Z. , Raygoza Garay, J. A. , Mozzherin, D. , Rees, T. , Matasci, N. , Narro, M. L. , Piel, W. H. , McKay, S. J. , Lowry, S. , Freeland, C. , Peet, R. K. , & Enquist, B. J. (2013). The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14(1), 16. 10.1186/1471-2105-14-16 PubMed DOI PMC
Cano, I. M. , Muller‐Landau, H. C. , Joseph Wright, S. , Bohlman, S. A. , & Pacala, S. W. (2019). Tropical tree height and crown allometries for the Barro Colorado nature monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences, 16(4), 847–862. 10.5194/bg-16-847-2019 DOI
Cayuela, L. , Granzow‐de la Cerda, Í. , Albuquerque, F. S. , & Golicher, D. J. (2012). Taxonstand: An r package for species names standardisation in vegetation databases. Methods in Ecology and Evolution, 3(6), 1078–1083. 10.1111/j.2041-210X.2012.00232.x DOI
Chave, J. , Réjou‐Méchain, M. , Búrquez, A. , Chidumayo, E. , Colgan, M. S. , Delitti, W. B. C. , Duque, A. , Eid, T. , Fearnside, P. M. , Goodman, R. C. , Henry, M. , Martínez‐Yrízar, A. , Mugasha, W. A. , Muller‐Landau, H. C. , Mencuccini, M. , Nelson, B. W. , Ngomanda, A. , Nogueira, E. M. , Ortiz‐Malavassi, E. , … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. 10.1111/gcb.12629 PubMed DOI
Coomes, D. A. , Holdaway, R. J. , Kobe, R. K. , Lines, E. R. , & Allen, R. B. (2012). A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1), 42–64. 10.1111/j.1365-2745.2011.01920.x DOI
de Frenne, P. , Lenoir, J. , Luoto, M. , Scheffers, B. R. , Zellweger, F. , Aalto, J. , Ashcroft, M. B. , Christiansen, D. M. , Decocq, G. , de Pauw, K. , Govaert, S. , Greiser, C. , Gril, E. , Hampe, A. , Jucker, T. , Klinges, D. H. , Koelemeijer, I. A. , Lembrechts, J. J. , Marrec, R. , … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297. 10.1111/GCB.15569 PubMed DOI
de Souza, C. R. , Coelho de Souza, F. , Maia, V. A. , de Aguiar‐Campos, N. , Coelho, P. A. , Farrapo, C. L. , Santos, A. B. M. , Araújo, F. C. , Gianasi, F. M. , Paula, G. G. P. , Morel, J. D. , Fagundes, N. C. A. , Garcia, P. O. , Santos, P. F. , Silva, W. B. , Fontes, M. A. L. , & Santos, R. M. (2021). Tropical forests structure and diversity: A comparison of methodological choices. Methods in Ecology and Evolution, 12(10), 2017–2027. 10.1111/2041-210X.13670 DOI
Disney, M. (2019). Terrestrial LiDAR: A three‐dimensional revolution in how we look at trees. New Phytologist, 222(4), 1736–1741. 10.1111/nph.15517 PubMed DOI
Domec, J. C. , Lachenbruch, B. , Meinzer, F. C. , Woodruff, D. R. , Warren, J. M. , & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12069–12074. 10.1073/PNAS.0710418105 PubMed DOI PMC
Enquist, B. J. , West, G. B. , & Brown, J. H. (2009). Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7046–7051. 10.1073/pnas.0812303106 PubMed DOI PMC
Falster, D. S. , Duursma, R. A. , Ishihara, M. I. , Barneche, D. R. , Fitzjohn, R. G. , Vårhammar, A. , Aiba, M. , Ando, M. , Anten, N. , Aspinwall, M. J. , Jennifer, L. , Baraloto, C. , Battaglia, M. , Battles, J. J. , Bond‐lamberty, B. , Van, M. , Camac, J. , Claveau, Y. , Coll, L. , … York, R. A. (2015). BAAD: A biomass and allometry database for woody plants. Ecology, 96, 1445.
Feldpausch, T. R. , Banin, L. , Phillips, O. L. , Baker, T. R. , Lewis, S. L. , Quesada, C. A. , Affum‐Baffoe, K. , Arets, E. J. M. M. M. M. , Berry, N. J. , Bird, M. , Brondizio, E. S. , De Camargo, P. , Chave, J. , Djagbletey, G. , Domingues, T. F. , Drescher, M. , Fearnside, P. M. , França, M. B. , Fyllas, N. M. , … Lloyd, J. (2011). Height‐diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081–1106. 10.5194/bg-8-1081-2011 DOI
Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. 10.1002/joc.5086 DOI
Fischer, F. J. , Labrière, N. , Vincent, G. , Hérault, B. , Alonso, A. , Memiaghe, H. , Bissiengou, P. , Kenfack, D. , Saatchi, S. , & Chave, J. (2020). A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, 251, 112056. 10.1016/j.rse.2020.112056 DOI
Fischer, F. J. , Maréchaux, I. , & Chave, J. (2019). Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 223(3), 1159–1165. 10.1111/nph.15810 PubMed DOI
Goodman, R. C. , Phillips, O. L. , & Baker, T. R. (2014). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24(4), 680–689. PubMed
Gorgens, E. B. , Nunes, M. H. , Jackson, T. , Coomes, D. , Keller, M. , Reis, C. R. , Valbuena, R. , Rosette, J. , Almeida, D. R. A. d. , Gimenez, B. , Cantinho, R. , Motta, A. Z. , Assis, M. , Pereira, F. R. d. S. , Spanner, G. , Higuchi, N. , & Ometto, J. P. (2021). Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 27(1), 177–189. 10.1111/GCB.15423 PubMed DOI
Hulshof, C. M. , Swenson, N. G. , & Weiser, M. D. (2015). Tree height–diameter allometry across the United States. Ecology and Evolution, 5(6), 1193–1204. 10.1002/ece3.1328 PubMed DOI PMC
Jin, Y. , & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. 10.1111/ecog.04434 PubMed DOI PMC
Jucker, T. , Bongalov, B. , Burslem, D. F. R. P. , Nilus, R. , Dalponte, M. , Lewis, S. L. , Phillips, O. L. , Qie, L. , & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989–1000. 10.1111/ele.12964 PubMed DOI PMC
Jucker, T. , Bouriaud, O. , & Coomes, D. A. (2015). Crown plasticity enables trees to optimize canopy packing in mixed‐species forests. Functional Ecology, 29(8), 1078–1086. 10.1111/1365-2435.12428 DOI
Jucker, T. , Caspersen, J. , Chave, J. , Antin, C. , Barbier, N. , Bongers, F. , Dalponte, M. , van Ewijk, K. Y. , Forrester, D. I. , Haeni, M. , Higgins, S. I. , Holdaway, R. J. , Iida, Y. , Lorimer, C. , Marshall, P. L. , Momo, S. , Moncrieff, G. R. , Ploton, P. , Poorter, L. , … Coomes, D. A. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programs. Global Change Biology, 23(1), 177–190. 10.1111/gcb.13388 PubMed DOI PMC
Jucker, T. , Hardwick, S. R. , Both, S. , Elias, D. M. O. , Ewers, R. M. , Milodowski, D. T. , Swinfield, T. , & Coomes, D. A. (2018). Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Global Change Biology, 24(11), 5243–5258. 10.1111/gcb.14415 PubMed DOI
Kafuti, C. , van den Bulcke, J. , Beeckman, H. , van Acker, J. , Hubau, W. , de Mil, T. , Hatakiwe, H. , Djiofack, B. , Fayolle, A. , Loubota Panzou, G. J. , & Bourland, N. (2022). Height‐diameter allometric equations of an emergent tree species from The Congo Basin. Forest Ecology and Management, 504, 119822. 10.1016/J.FORECO.2021.119822 DOI
Larjavaara, M. , & Muller‐Landau, H. C. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793–801. 10.1111/2041-210X.12071 DOI
Lines, E. R. , Zavala, M. A. , Purves, D. W. , & Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21(10), 1017–1028. 10.1111/j.1466-8238.2011.00746.x DOI
Loubota Panzou, G. J. , Fayolle, A. , Jucker, T. , Phillips, O. L. , Bohlman, S. , Banin, L. F. , Lewis, S. L. , Affum‐Baffoe, K. , Alves, L. F. , Antin, C. , Arets, E. , Arroyo, L. , Baker, T. R. , Barbier, N. , Beeckman, H. , Berger, U. , Bocko, Y. E. , Bongers, F. , Bowers, S. , … Feldpausch, T. R. (2021). Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 30(2), 459–475. 10.1111/geb.13231 DOI
Lutz, J. A. , Furniss, T. J. , Johnson, D. J. , Davies, S. J. , Allen, D. , Alonso, A. , Anderson‐Teixeira, K. J. , Becker, K. M. L. , Andrade, A. , Baltzer, J. , Blomdahl, E. M. , Bourg, N. A. , Bunyavejchewin, S. , Burslem, D. F. R. P. , Cansler, C. A. , Fischer, G. A. , Fletcher, C. , Freund, J. A. , Giardina, C. , & Germain, S. J. (2018). Global importance of large‐diameter trees. Global Ecology and Biogeography, 27, 849–864. 10.1111/geb.12747 DOI
Marconi, S. , Graves, S. J. , Weinstein, Ben, G. , Bohlman, S. , & White, E. P. (2021). Estimating individual level plant traits at scale. Ecological Applications, 31(4), e02300. 10.1002/eap.2300 PubMed DOI
McDowell, N. G. , & Allen, C. D. (2015). Darcy's law predicts widespread forest mortality under climate warming. Nature Climate Change, 5(7), 669–672. 10.1038/nclimate2641 DOI
McDowell, N. G. , Allen, C. D. , Anderson‐Teixeira, K. , Aukema, B. H. , Bond‐Lamberty, B. , Chini, L. , Clark, J. S. , Dietze, M. , Grossiord, C. , Hanbury‐Brown, A. , Hurtt, G. C. , Jackson, R. B. , Johnson, D. J. , Kueppers, L. , Lichstein, J. W. , Ogle, K. , Poulter, B. , Pugh, T. A. M. , Seidl, R. , … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), eaaz9463. https://www.science.org/doi/10.1126/science.aaz9463 PubMed DOI
Moncrieff, G. R. , Chamaillé‐Jammes, S. , Higgins, S. I. , O'Hara, R. B. , & Bond, W. J. (2011). Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology, 92(12), 2310–2315. 10.1890/11-0230.1 PubMed DOI
Muller‐Landau, H. C. , Condit, R. S. , Chave, J. , Thomas, S. C. , Bohlman, S. A. , Bunyavejchewin, S. , Davies, S. , Foster, R. , Gunatilleke, S. , Gunatilleke, N. , Harms, K. E. , Hart, T. , Hubbell, S. P. , Itoh, A. , Kassim, A. R. , LaFrankie, J. V. , Lee, H. S. , Losos, E. , Makana, J.‐R. , … Ashton, P. (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 9(5), 575–588. 10.1111/j.1461-0248.2006.00904.x PubMed DOI
Olson, D. M. , Dinerstein, E. , Wikramanayake, E. D. , Burgess, N. D. , Powell, G. V. , Underwood, E. C. , D'Amico, J. A. , Itoua, I. , Strand, H. E. , Morrison, J. C. , Loucks, C. J. , Allnutt, T. F. , Ricketts, T. H. , Kura, Y. , Lamoreux, J. F. , Wettengel, W. W. , Hedao, P. , & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51(11), 933–938. 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI
Olson, M. E. , Soriano, D. , Rosell, J. A. , Anfodillo, T. , Donoghue, M. J. , Edwards, E. J. , León‐Gómez, C. , Dawson, T. , Martínez, J. J. C. , Castorena, M. , Echeverría, A. , Espinosa, C. I. , Fajardo, A. , Gazol, A. , Isnard, S. , Lima, R. S. , Marcati, C. R. , & Méndez‐Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115(29), 7551–7556. 10.1073/PNAS.1721728115 PubMed DOI PMC
Paul, K. I. , Roxburgh, S. H. , Chave, J. , England, J. R. , Zerihun, A. , Specht, A. , Lewis, T. , Bennett, L. T. , Baker, T. G. , Adams, M. A. , Huxtable, D. , Montagu, K. D. , Falster, D. S. , Feller, M. , Sochacki, S. , Ritson, P. , Bastin, G. , Bartle, J. , Wildy, D. , … Sinclair, J. (2016). Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22, 2106–2124. 10.1111/gcb.13201 PubMed DOI
Ploton, P. , Barbier, N. , Momo, S. T. , Réjou‐Méchain, M. , Boyemba Bosela, F. , Chuyong, G. , Dauby, G. , Droissart, V. , Fayolle, A. , Goodman, R. C. , Henry, M. , Kamdem, N. G. , Katembo Mukirania, J. , Kenfack, D. , Libalah, M. , Ngomanda, A. , Rossi, V. , Sonké, B. , Texier, N. , … Pélissier, R. (2016). Closing a gap in tropical forest biomass estimation: Accounting for crown mass variation in pantropical allometries. Biogeosciences, 13, 1571–1585. 10.5194/bgd-12-19711-2015 DOI
Purves, D. W. , Lichstein, J. W. , & Pacala, S. W. (2007). Crown plasticity and competition for canopy space: A new spatially implicit model parameterized for 250 north American tree species. PLoS One, 2(9), e870. 10.1371/journal.pone.0000870 PubMed DOI PMC
R Core Development Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.
Rifai, S. W. , de Kauwe, M. G. , Ukkola, A. M. , Cernusak, L. A. , Meir, P. , Medlyn, B. E. , & Pitman, A. J. (2022). Thirty‐eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 19(2), 491–515. 10.5194/BG-19-491-2022 DOI
Scheffer, M. , Xu, C. , Hantson, S. , Holmgren, M. , Los, S. O. , & van Nes, E. H. (2018). A global climate niche for giant trees. Global Change Biology, 24(March), 2875–2883. 10.1111/gcb.14167 PubMed DOI PMC
Shenkin, A. , Bentley, L. P. , Oliveras, I. , Salinas, N. , Adu‐Bredu, S. , Marimon‐Junior, B. H. , Marimon, B. S. , Peprah, T. , Choque, E. L. , Trujillo Rodriguez, L. , Clemente Arenas, E. R. , Adonteng, C. , Seidu, J. , Passos, F. B. , Reis, S. M. , Blonder, B. , Silman, M. , Enquist, B. J. , Asner, G. P. , & Malhi, Y. (2020). The influence of ecosystem and phylogeny on tropical tree crown size and shape. Frontiers in Forests and Global Change, 3, 109. 10.3389/ffgc.2020.501757 DOI
Slik, J. W. F. , Paoli, G. , Mcguire, K. , Amaral, I. , Barroso, J. , Bastian, M. , Blanc, L. , Bongers, F. , Boundja, P. , Clark, C. , Collins, M. , Dauby, G. , Ding, Y. , Doucet, J. L. , Eler, E. , Ferreira, L. , Forshed, O. , Fredriksson, G. , Gillet, J. F. , … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. 10.1111/geb.12092 DOI
Smith, S. A. , & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. 10.1002/ajb2.1019 PubMed DOI
Stovall, A. E. L. , Shugart, H. , & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10(1), 1–6 10.1038/s41467-019-12380-6 PubMed DOI PMC
Taubert, F. , Jahn, M. W. , Dobner, H.‐J. , Wiegand, T. , & Huth, A. (2015). The structure of tropical forests and sphere packings. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15125–15129. 10.1073/pnas.1513417112 PubMed DOI PMC
Trabucco, A. , & Zomer, R. (2019). Global Aridity Index and potential Evapotranspiration (ET0) climate database. Figshare. 10.6084/m9.figshare.7504448.v3 PubMed DOI PMC
Verbeeck, H. , Bauters, M. , Jackson, T. , Shenkin, A. , Disney, M. , & Calders, K. (2019). Time for a plant structural economics spectrum. Frontiers in Forests and Global Change, 2, 43. 10.3389/ffgc.2019.00043 DOI
Vermeulen, P. J. (2014). Crown depth as a result of evolutionary games: Decreasing solar angle should lead to shallower, not deeper crowns. New Phytologist, 202(4), 1249–1256. 10.1111/nph.12729 PubMed DOI
Vieilledent, G. , Vaudry, R. , Andriamanohisoa, S. F. D. , Rakotonarivo, O. S. , Randrianasolo, H. Z. , Razafindrabe, H. N. , Bidaud Rakotoarivony, C. , Ebeling, J. , & Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572–583. 10.1890/11-0039.1 PubMed DOI
West, G. B. , Enquist, B. J. , & Brown, J. H. (2009). A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7040–7045. 10.1073/PNAS.0812294106 PubMed DOI PMC
Zhang, J. , Nielsen, S. E. , Mao, L. , Chen, S. , & Svenning, J.‐C. (2016). Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 104, 469–478. 10.1111/1365-2745.12510 DOI
Zizka, A. , Silvestro, D. , Andermann, T. , Azevedo, J. , Duarte Ritter, C. , Edler, D. , Farooq, H. , Herdean, A. , Ariza, M. , Scharn, R. , Svantesson, S. , Wengström, N. , Zizka, V. , & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. 10.1111/2041-210X.13152 DOI