Tallo: A global tree allometry and crown architecture database

. 2022 Sep ; 28 (17) : 5254-5268. [epub] 20220628

Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35703577

Grantová podpora
MR/T019832/1 Medical Research Council - United Kingdom

Data capturing multiple axes of tree size and shape, such as a tree's stem diameter, height and crown size, underpin a wide range of ecological research-from developing and testing theory on forest structure and dynamics, to estimating forest carbon stocks and their uncertainties, and integrating remote sensing imagery into forest monitoring programmes. However, these data can be surprisingly hard to come by, particularly for certain regions of the world and for specific taxonomic groups, posing a real barrier to progress in these fields. To overcome this challenge, we developed the Tallo database, a collection of 498,838 georeferenced and taxonomically standardized records of individual trees for which stem diameter, height and/or crown radius have been measured. These data were collected at 61,856 globally distributed sites, spanning all major forested and non-forested biomes. The majority of trees in the database are identified to species (88%), and collectively Tallo includes data for 5163 species distributed across 1453 genera and 187 plant families. The database is publicly archived under a CC-BY 4.0 licence and can be access from: https://doi.org/10.5281/zenodo.6637599. To demonstrate its value, here we present three case studies that highlight how the Tallo database can be used to address a range of theoretical and applied questions in ecology-from testing the predictions of metabolic scaling theory, to exploring the limits of tree allometric plasticity along environmental gradients and modelling global variation in maximum attainable tree height. In doing so, we provide a key resource for field ecologists, remote sensing researchers and the modelling community working together to better understand the role that trees play in regulating the terrestrial carbon cycle.

AMAP Lab Montpellier University IRD CIRAD CNRS INRAE Montpellier France

Bordeaux Sciences Agro UMR ISPA INRAE Bordeaux France

Center for Crop Systems Analysis Wageningen University Wageningen The Netherlands

Center for Tropical Research Institute of the Environment and Sustainability University of California Los Angeles Los Angeles California USA

Center of Conservation Biology Core Botanical Gardens Chinese Academy of Sciences Wuhan China

Centre for Statistics in Ecology Environment and Conservation Department of Statistical Sciences University of Cape Town Rondebosch South Africa

Centro de Ciências Biológicas e da Natureza Universidade Federal do Acre Campus Universitário Rio Branco Brazil

Centro de Investigación Científica de Yucatán A C Unidad de Recursos Naturales Mérida Yucatán Mexico

CIRAD UPR Forêts et Sociétés Montpellier France

College of Life and Environmental Sciences University of Exeter Exeter UK

College of Urban and Environmental Sciences and MOE Laboratory for Earth Surface Processes Peking University Beijing China

Conservation Research Institute University of Cambridge Cambridge UK

CSIRO Land and Water Canberra Australian Capital Territory Australia

Departamento de Ecología y Recursos Naturales Facultad de Ciencias Universidad Nacional Autónoma de México Coyoacán Ciudad de México Mexico

Department of Biology University of Regina Regina Saskatchewan Canada

Department of Biology Washington University in St Louis St Louis Missouri USA

Department of Botany University of Otago Dunedin New Zealand

Department of Crop Science Faculty of Agriculture University of Peradeniya Peradeniya Sri Lanka

Department of Ecology French Institute of Pondicherry Puducherry India

Department of Forest and Wildlife Ecology University of Wisconsin Madison Madison Wisconsin USA

Department of Forest Botany Dendrology and Geobiocoenology Faculty of Forestry and Wood Technology Mendel University in Brno Brno Czech Republic

Department of Forest Dynamics Botanical Garden of the Ural Branch of Russian Academy of Sciences Yekaterinburg Russia

Department of Forest Resources Management College of Forestry Nanjing Forestry University Nanjing Jiangsu China

Department of Forestry and The Center for Research and Development of Northern Zagros Forestry University of Kurdistan Erbil Iran

Department of Forestry Faculty of Natural Resources University of Guilan Somehsara Iran

Department of Forestry Ural State Forest Engineering University Yekaterinburg Russia

Department of Geography and Planning Queen's University Kingston Ontario Canada

Department of Geography National University of Singapore Singapore

Department of Geography University of California Santa Barbara Santa Barbara California USA

Department of Geography University of Cambridge Cambridge UK

Department of Geosciences and Natural Resources Western Carolina University Cullowhee North Carolina USA

Department of Natural Resources Faculty of Geo information Science and Earth Observation University of Twente Enschede The Netherlands

Department of Natural Sciences Manchester Metropolitan University Manchester UK

Department of Plant Systematics University of Bayreuth Bayreuth Germany

Division Forest Office Ministry of Forest Dhangadhi Sudurpashchim Province Nepal

Earth Systems Research Center University of New Hampshire Durham New Hampshire USA

Environmental Change Institute School of Geography and the Environment University of Oxford Oxford UK

Evolution and Ecology Research Centre University of New South Wales Sydney Sydney New South Wales Australia

Faculty of Agriculture and Marine Science Kochi University Nankoku Kochi Japan

Faculty of Desert Studies Semnan University Semnan Iran

Faculty of Environmental Earth Science Hokkaido University Sapporo Japan

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Prague 6 Suchdol Czech Republic

Faculty of Forestry University of British Columbia Vancouver British Columbia Canada

Faculty of Life Science and Technology Central South University of Forestry and Technology Changsha Hunan China

Field Science Center for Northern Biosphere Hokkaido University Horonobe Japan

Forest Ecology and Forest Management Group Wageningen University Wageningen The Netherlands

Forest Ecology and Restoration Group Departamento de Ciencias de la Vida Universidad de Alcalá Madrid Spain

Forest Ecology Research Group College of Life Sciences Hebei University Baoding Hebei China

Forest Science New South Wales Department of Primary Industries Parramatta New South Wales Australia

ForestGEO Smithsonian Tropical Research Institute Apartado Panama Republic of Panama

Forestry and Forest Products Research Institute Tsukuba Ibaraki Japan

Forestry Research Institute of Ghana Council for Scientific and Industrial Research University Kumasi Ghana

Fynbos Node South African Environmental Observation Network Claremont South Africa

German Centre for Integrative Biodiversity Research Halle Jena Leipzig Leipzig Germany

Gilgit Baltistan Forest Wildlife and Environment Department Gilgit Pakistan

Gothenburg Global Biodiversity Centre Gothenburg Sweden

Graduate School and Research Western Carolina Unversity Cullowhee North Carolina USA

Graduate School of Integrated Sciences of Life Hiroshima University Hiroshima Japan

Guangdong Provincial Key Laboratory of High Technology for Plant Protection Plant Protection Research Institute Guangdong Academy of Agricultural Sciences Guangzhou Guangdong China

Institut des Sciences de l'Environnement et du Développement Rural Université de Dédougou Dédougou Burkina Faso

Institut National pour l'Etude et la Recherche Agronimiques Democratic Republic of the Congo

Institute of Forestry and Conservation University of Toronto Toronto Ontario Canada

Institute of Forestry Tribhuvan University Hetauda Nepal

Institute of Space Technology Islamabad Highway Islamabad Pakistan

Instituto de Investigaciones en Ecosistemas y Sustentabilidad Universidad Nacional Autónoma de México Morelia Michoacán Mexico

IVL Swedish Environmental Research Institute Göteborg Sweden

Japan International Research Center for Agricultural Sciences Tsukuba Ibaraki Japan

Jomo Kenyatta University of Agriculture and Technology Nairobi Kenya

Laboratoire de Biodiversité de Gestion des Ecosystèmes et de l'Environnement Faculté des Sciences et Techniques Université Marien Ngouabi Brazzaville Republic of Congo

Laboratoire de Biomathématiques et d'Estimations Forestières Faculté des Sciences Agronomiques Université d'Abomey Calavi Cotonou Benin

Laboratoire de Botanique systématique et d'Ecologie Département des Sciences Biologiques Ecole Normale Supérieure Université de Yaoundé 1 Yaoundé Cameroon

Laboratoire Évolution et Diversité Biologique Toulouse Cedex 9 France

Landcare Research Lincoln New Zealand

Natural Recourses and Watershed Management Office West Azerbaijan Province Urmia Iran

Natural Resources Faculty University of Tehran Karaj Iran

Nicholas School of the Environment Duke University Durham NC USA

Ontario Ministry of Natural Resources North Bay Ontario Canada

Pacific Northwest National Laboratory Joint Global Change Research Institute College Park Maryland USA

Research and Innovation Centre Fondazione Edmund Mach San Michele all'Adige Italy

Research Division of Natural Resources Kohgiluyeh and Boyerahmad Agriculture and Natural Resources Research and Education Center AREEO Yasouj Iran

Research Institute for the Environment and Livelihoods Charles Darwin University Casuarina Northern Territory Australia

School of Biological Sciences University of Bristol Bristol UK

School of Geographical and Earth Sciences University of Glasgow East Quadrangle Glasgow UK

School of GeoSciences University of Edinburgh Edinburgh UK

Service of Wood Biology Royal Museum for Central Africa Tervuren Belgium

Shinto Labs Eindhoven The Netherlands

Spatial Ecology Lab School of Life Sciences South China Normal University Guangzhou Guangdong China

State Key Laboratory of Aquatic Botany and Watershed Ecology Wuhan Botanical Garden Chinese Academy of Sciences Wuhan China

State Key Laboratory of Vegetation and Environmental Change Institute of Botany Chinese Academy of Sciences Beijing China

Swiss Federal Research Institute WSL Birmensdorf Switzerland

Systematic Botany and Functional Biodiversity Institute of Biology Leipzig University Leipzig Germany

Systematic Botany and Functional Biodiversity Institute of Biology University of Leipzig Leipzig Germany

The Tree Projects Hobart Tasmania Australia

UK Centre for Ecology and Hydrology Edinburgh UK

UMR EcoFoG CNRS Kourou French Guiana

Universidad Nacional de la Patagonia Austral CONICET Río Gallegos Santa Cruz Argentina

Université de Liège Gembloux Agro Bio Tech Gembloux Belgium

Université Toulouse Toulouse Cedex 9 France

University of California Berkeley Berkeley California USA

Yale NUS College Singapore

Zobrazit více v PubMed

Aguirre‐Gutiérrez, J. , Rifai, S. , Shenkin, A. , Oliveras, I. , Bentley, L. P. , Svátek, M. , Girardin, C. A. J. , Both, S. , Riutta, T. , Berenguer, E. , Kissling, W. D. , Bauman, D. , Raab, N. , Moore, S. , Farfan‐Rios, W. , Figueiredo, A. E. S. , Reis, S. M. , Ndong, J. E. , Ondo, F. E. , … Malhi, Y. (2021). Pantropical modelling of canopy functional traits using Sentinel‐2 remote sensing data. Remote Sensing of Environment, 252, 112122. 10.1016/J.RSE.2020.112122 DOI

Anderson‐Teixeira, K. J. , McGarvey, J. C. , Muller‐Landau, H. C. , Park, J. Y. , Gonzalez‐Akre, E. B. , Herrmann, V. , Bennett, A. C. , So, C. V. , Bourg, N. A. , Thompson, J. R. , McMahon, S. M. , & McShea, W. J. (2015). Size‐related scaling of tree form and function in a mixed‐age forest. Functional Ecology, 29(12), 1587–1602. 10.1111/1365-2435.12470 DOI

Atkins, J. W. , Walter, J. A. , Stovall, A. E. L. , Fahey, R. T. , & Gough, C. M. (2022). Power law scaling relationships link canopy structural complexity and height across forest types. Functional Ecology, 36(3), 713–726. 10.1111/1365-2435.13983 DOI

Banin, L. , Feldpausch, T. R. , Phillips, O. L. , Baker, T. R. , Lloyd, J. , Affum‐Baffoe, K. , Arets, E. J. M. M. , Berry, N. J. , Bradford, M. , Brienen, R. J. W. , Davies, S. , Drescher, M. , Higuchi, N. , Hilbert, D. W. , Hladik, A. , Iida, Y. , Salim, K. A. , Kassim, A. R. , King, D. A. , … Lewis, S. L. (2012). What controls tropical forest architecture? Testing environmental, structural and floristic drivers. Global Ecology and Biogeography, 21, 1179–1190. 10.1111/j.1466-8238.2012.00778.x DOI

Bastin, J. F. , Rutishauser, E. , Kellner, J. R. , Saatchi, S. , Pélissier, R. , Hérault, B. , Slik, F. , Bogaert, J. , De Cannière, C. , Marshall, A. R. , Poulsen, J. , Alvarez‐Loyayza, P. , Andrade, A. , Angbonga‐Basia, A. , Araujo‐Murakami, A. , Arroyo, L. , Ayyappan, N. , de Azevedo, C. P. , Banki, O. , … Zebaze, D. (2018). Pan‐tropical prediction of forest structure from the largest trees. Global Ecology and Biogeography, 27(11), 1366–1383. 10.1111/geb.12803 DOI

Bennett, A. C. , McDowell, N. G. , Allen, C. D. , Anderson‐Teixeira, K. J. , Trenberth, K. E. , Nepstad, D. C. , Tohver, I. M. , Ray, D. , Moutinho, P. , Cardinot, G. , Phillips, O. L. , Lindenmayer, D. B. , Laurance, W. F. , Franklin, J. F. , Lutz, J. A. , Larson, A. J. , Swanson, M. E. , Freund, J. A. , Wullschleger, S. D. , … Haack, R. A. (2015). Larger trees suffer most during drought in forests worldwide. Nature Plants, 1(10), 15139. 10.1038/nplants.2015.139 PubMed DOI

Boyle, B. , Hopkins, N. , Lu, Z. , Raygoza Garay, J. A. , Mozzherin, D. , Rees, T. , Matasci, N. , Narro, M. L. , Piel, W. H. , McKay, S. J. , Lowry, S. , Freeland, C. , Peet, R. K. , & Enquist, B. J. (2013). The taxonomic name resolution service: An online tool for automated standardization of plant names. BMC Bioinformatics, 14(1), 16. 10.1186/1471-2105-14-16 PubMed DOI PMC

Cano, I. M. , Muller‐Landau, H. C. , Joseph Wright, S. , Bohlman, S. A. , & Pacala, S. W. (2019). Tropical tree height and crown allometries for the Barro Colorado nature monument, Panama: A comparison of alternative hierarchical models incorporating interspecific variation in relation to life history traits. Biogeosciences, 16(4), 847–862. 10.5194/bg-16-847-2019 DOI

Cayuela, L. , Granzow‐de la Cerda, Í. , Albuquerque, F. S. , & Golicher, D. J. (2012). Taxonstand: An r package for species names standardisation in vegetation databases. Methods in Ecology and Evolution, 3(6), 1078–1083. 10.1111/j.2041-210X.2012.00232.x DOI

Chave, J. , Réjou‐Méchain, M. , Búrquez, A. , Chidumayo, E. , Colgan, M. S. , Delitti, W. B. C. , Duque, A. , Eid, T. , Fearnside, P. M. , Goodman, R. C. , Henry, M. , Martínez‐Yrízar, A. , Mugasha, W. A. , Muller‐Landau, H. C. , Mencuccini, M. , Nelson, B. W. , Ngomanda, A. , Nogueira, E. M. , Ortiz‐Malavassi, E. , … Vieilledent, G. (2014). Improved allometric models to estimate the aboveground biomass of tropical trees. Global Change Biology, 20, 3177–3190. 10.1111/gcb.12629 PubMed DOI

Coomes, D. A. , Holdaway, R. J. , Kobe, R. K. , Lines, E. R. , & Allen, R. B. (2012). A general integrative framework for modelling woody biomass production and carbon sequestration rates in forests. Journal of Ecology, 100(1), 42–64. 10.1111/j.1365-2745.2011.01920.x DOI

de Frenne, P. , Lenoir, J. , Luoto, M. , Scheffers, B. R. , Zellweger, F. , Aalto, J. , Ashcroft, M. B. , Christiansen, D. M. , Decocq, G. , de Pauw, K. , Govaert, S. , Greiser, C. , Gril, E. , Hampe, A. , Jucker, T. , Klinges, D. H. , Koelemeijer, I. A. , Lembrechts, J. J. , Marrec, R. , … Hylander, K. (2021). Forest microclimates and climate change: Importance, drivers and future research agenda. Global Change Biology, 27(11), 2279–2297. 10.1111/GCB.15569 PubMed DOI

de Souza, C. R. , Coelho de Souza, F. , Maia, V. A. , de Aguiar‐Campos, N. , Coelho, P. A. , Farrapo, C. L. , Santos, A. B. M. , Araújo, F. C. , Gianasi, F. M. , Paula, G. G. P. , Morel, J. D. , Fagundes, N. C. A. , Garcia, P. O. , Santos, P. F. , Silva, W. B. , Fontes, M. A. L. , & Santos, R. M. (2021). Tropical forests structure and diversity: A comparison of methodological choices. Methods in Ecology and Evolution, 12(10), 2017–2027. 10.1111/2041-210X.13670 DOI

Disney, M. (2019). Terrestrial LiDAR: A three‐dimensional revolution in how we look at trees. New Phytologist, 222(4), 1736–1741. 10.1111/nph.15517 PubMed DOI

Domec, J. C. , Lachenbruch, B. , Meinzer, F. C. , Woodruff, D. R. , Warren, J. M. , & McCulloh, K. A. (2008). Maximum height in a conifer is associated with conflicting requirements for xylem design. Proceedings of the National Academy of Sciences of the United States of America, 105(33), 12069–12074. 10.1073/PNAS.0710418105 PubMed DOI PMC

Enquist, B. J. , West, G. B. , & Brown, J. H. (2009). Extensions and evaluations of a general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7046–7051. 10.1073/pnas.0812303106 PubMed DOI PMC

Falster, D. S. , Duursma, R. A. , Ishihara, M. I. , Barneche, D. R. , Fitzjohn, R. G. , Vårhammar, A. , Aiba, M. , Ando, M. , Anten, N. , Aspinwall, M. J. , Jennifer, L. , Baraloto, C. , Battaglia, M. , Battles, J. J. , Bond‐lamberty, B. , Van, M. , Camac, J. , Claveau, Y. , Coll, L. , … York, R. A. (2015). BAAD: A biomass and allometry database for woody plants. Ecology, 96, 1445.

Feldpausch, T. R. , Banin, L. , Phillips, O. L. , Baker, T. R. , Lewis, S. L. , Quesada, C. A. , Affum‐Baffoe, K. , Arets, E. J. M. M. M. M. , Berry, N. J. , Bird, M. , Brondizio, E. S. , De Camargo, P. , Chave, J. , Djagbletey, G. , Domingues, T. F. , Drescher, M. , Fearnside, P. M. , França, M. B. , Fyllas, N. M. , … Lloyd, J. (2011). Height‐diameter allometry of tropical forest trees. Biogeosciences, 8(5), 1081–1106. 10.5194/bg-8-1081-2011 DOI

Fick, S. E. , & Hijmans, R. J. (2017). WorldClim 2: New 1‐km spatial resolution climate surfaces for global land areas. International Journal of Climatology, 37(12), 4302–4315. 10.1002/joc.5086 DOI

Fischer, F. J. , Labrière, N. , Vincent, G. , Hérault, B. , Alonso, A. , Memiaghe, H. , Bissiengou, P. , Kenfack, D. , Saatchi, S. , & Chave, J. (2020). A simulation method to infer tree allometry and forest structure from airborne laser scanning and forest inventories. Remote Sensing of Environment, 251, 112056. 10.1016/j.rse.2020.112056 DOI

Fischer, F. J. , Maréchaux, I. , & Chave, J. (2019). Improving plant allometry by fusing forest models and remote sensing. New Phytologist, 223(3), 1159–1165. 10.1111/nph.15810 PubMed DOI

Goodman, R. C. , Phillips, O. L. , & Baker, T. R. (2014). The importance of crown dimensions to improve tropical tree biomass estimates. Ecological Applications, 24(4), 680–689. PubMed

Gorgens, E. B. , Nunes, M. H. , Jackson, T. , Coomes, D. , Keller, M. , Reis, C. R. , Valbuena, R. , Rosette, J. , Almeida, D. R. A. d. , Gimenez, B. , Cantinho, R. , Motta, A. Z. , Assis, M. , Pereira, F. R. d. S. , Spanner, G. , Higuchi, N. , & Ometto, J. P. (2021). Resource availability and disturbance shape maximum tree height across the Amazon. Global Change Biology, 27(1), 177–189. 10.1111/GCB.15423 PubMed DOI

Hulshof, C. M. , Swenson, N. G. , & Weiser, M. D. (2015). Tree height–diameter allometry across the United States. Ecology and Evolution, 5(6), 1193–1204. 10.1002/ece3.1328 PubMed DOI PMC

Jin, Y. , & Qian, H. (2019). V.PhyloMaker: An R package that can generate very large phylogenies for vascular plants. Ecography, 42(8), 1353–1359. 10.1111/ecog.04434 PubMed DOI PMC

Jucker, T. , Bongalov, B. , Burslem, D. F. R. P. , Nilus, R. , Dalponte, M. , Lewis, S. L. , Phillips, O. L. , Qie, L. , & Coomes, D. A. (2018). Topography shapes the structure, composition and function of tropical forest landscapes. Ecology Letters, 21, 989–1000. 10.1111/ele.12964 PubMed DOI PMC

Jucker, T. , Bouriaud, O. , & Coomes, D. A. (2015). Crown plasticity enables trees to optimize canopy packing in mixed‐species forests. Functional Ecology, 29(8), 1078–1086. 10.1111/1365-2435.12428 DOI

Jucker, T. , Caspersen, J. , Chave, J. , Antin, C. , Barbier, N. , Bongers, F. , Dalponte, M. , van Ewijk, K. Y. , Forrester, D. I. , Haeni, M. , Higgins, S. I. , Holdaway, R. J. , Iida, Y. , Lorimer, C. , Marshall, P. L. , Momo, S. , Moncrieff, G. R. , Ploton, P. , Poorter, L. , … Coomes, D. A. (2017). Allometric equations for integrating remote sensing imagery into forest monitoring programs. Global Change Biology, 23(1), 177–190. 10.1111/gcb.13388 PubMed DOI PMC

Jucker, T. , Hardwick, S. R. , Both, S. , Elias, D. M. O. , Ewers, R. M. , Milodowski, D. T. , Swinfield, T. , & Coomes, D. A. (2018). Canopy structure and topography jointly constrain the microclimate of human‐modified tropical landscapes. Global Change Biology, 24(11), 5243–5258. 10.1111/gcb.14415 PubMed DOI

Kafuti, C. , van den Bulcke, J. , Beeckman, H. , van Acker, J. , Hubau, W. , de Mil, T. , Hatakiwe, H. , Djiofack, B. , Fayolle, A. , Loubota Panzou, G. J. , & Bourland, N. (2022). Height‐diameter allometric equations of an emergent tree species from The Congo Basin. Forest Ecology and Management, 504, 119822. 10.1016/J.FORECO.2021.119822 DOI

Larjavaara, M. , & Muller‐Landau, H. C. (2013). Measuring tree height: A quantitative comparison of two common field methods in a moist tropical forest. Methods in Ecology and Evolution, 4(9), 793–801. 10.1111/2041-210X.12071 DOI

Lines, E. R. , Zavala, M. A. , Purves, D. W. , & Coomes, D. A. (2012). Predictable changes in aboveground allometry of trees along gradients of temperature, aridity and competition. Global Ecology and Biogeography, 21(10), 1017–1028. 10.1111/j.1466-8238.2011.00746.x DOI

Loubota Panzou, G. J. , Fayolle, A. , Jucker, T. , Phillips, O. L. , Bohlman, S. , Banin, L. F. , Lewis, S. L. , Affum‐Baffoe, K. , Alves, L. F. , Antin, C. , Arets, E. , Arroyo, L. , Baker, T. R. , Barbier, N. , Beeckman, H. , Berger, U. , Bocko, Y. E. , Bongers, F. , Bowers, S. , … Feldpausch, T. R. (2021). Pantropical variability in tree crown allometry. Global Ecology and Biogeography, 30(2), 459–475. 10.1111/geb.13231 DOI

Lutz, J. A. , Furniss, T. J. , Johnson, D. J. , Davies, S. J. , Allen, D. , Alonso, A. , Anderson‐Teixeira, K. J. , Becker, K. M. L. , Andrade, A. , Baltzer, J. , Blomdahl, E. M. , Bourg, N. A. , Bunyavejchewin, S. , Burslem, D. F. R. P. , Cansler, C. A. , Fischer, G. A. , Fletcher, C. , Freund, J. A. , Giardina, C. , & Germain, S. J. (2018). Global importance of large‐diameter trees. Global Ecology and Biogeography, 27, 849–864. 10.1111/geb.12747 DOI

Marconi, S. , Graves, S. J. , Weinstein, Ben, G. , Bohlman, S. , & White, E. P. (2021). Estimating individual level plant traits at scale. Ecological Applications, 31(4), e02300. 10.1002/eap.2300 PubMed DOI

McDowell, N. G. , & Allen, C. D. (2015). Darcy's law predicts widespread forest mortality under climate warming. Nature Climate Change, 5(7), 669–672. 10.1038/nclimate2641 DOI

McDowell, N. G. , Allen, C. D. , Anderson‐Teixeira, K. , Aukema, B. H. , Bond‐Lamberty, B. , Chini, L. , Clark, J. S. , Dietze, M. , Grossiord, C. , Hanbury‐Brown, A. , Hurtt, G. C. , Jackson, R. B. , Johnson, D. J. , Kueppers, L. , Lichstein, J. W. , Ogle, K. , Poulter, B. , Pugh, T. A. M. , Seidl, R. , … Xu, C. (2020). Pervasive shifts in forest dynamics in a changing world. Science, 368(6494), eaaz9463. https://www.science.org/doi/10.1126/science.aaz9463 PubMed DOI

Moncrieff, G. R. , Chamaillé‐Jammes, S. , Higgins, S. I. , O'Hara, R. B. , & Bond, W. J. (2011). Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology, 92(12), 2310–2315. 10.1890/11-0230.1 PubMed DOI

Muller‐Landau, H. C. , Condit, R. S. , Chave, J. , Thomas, S. C. , Bohlman, S. A. , Bunyavejchewin, S. , Davies, S. , Foster, R. , Gunatilleke, S. , Gunatilleke, N. , Harms, K. E. , Hart, T. , Hubbell, S. P. , Itoh, A. , Kassim, A. R. , LaFrankie, J. V. , Lee, H. S. , Losos, E. , Makana, J.‐R. , … Ashton, P. (2006). Testing metabolic ecology theory for allometric scaling of tree size, growth and mortality in tropical forests. Ecology Letters, 9(5), 575–588. 10.1111/j.1461-0248.2006.00904.x PubMed DOI

Olson, D. M. , Dinerstein, E. , Wikramanayake, E. D. , Burgess, N. D. , Powell, G. V. , Underwood, E. C. , D'Amico, J. A. , Itoua, I. , Strand, H. E. , Morrison, J. C. , Loucks, C. J. , Allnutt, T. F. , Ricketts, T. H. , Kura, Y. , Lamoreux, J. F. , Wettengel, W. W. , Hedao, P. , & Kassem, K. R. (2001). Terrestrial ecoregions of the world: A new map of life on earth. Bioscience, 51(11), 933–938. 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2 DOI

Olson, M. E. , Soriano, D. , Rosell, J. A. , Anfodillo, T. , Donoghue, M. J. , Edwards, E. J. , León‐Gómez, C. , Dawson, T. , Martínez, J. J. C. , Castorena, M. , Echeverría, A. , Espinosa, C. I. , Fajardo, A. , Gazol, A. , Isnard, S. , Lima, R. S. , Marcati, C. R. , & Méndez‐Alonzo, R. (2018). Plant height and hydraulic vulnerability to drought and cold. Proceedings of the National Academy of Sciences of the United States of America, 115(29), 7551–7556. 10.1073/PNAS.1721728115 PubMed DOI PMC

Paul, K. I. , Roxburgh, S. H. , Chave, J. , England, J. R. , Zerihun, A. , Specht, A. , Lewis, T. , Bennett, L. T. , Baker, T. G. , Adams, M. A. , Huxtable, D. , Montagu, K. D. , Falster, D. S. , Feller, M. , Sochacki, S. , Ritson, P. , Bastin, G. , Bartle, J. , Wildy, D. , … Sinclair, J. (2016). Testing the generality of above‐ground biomass allometry across plant functional types at the continent scale. Global Change Biology, 22, 2106–2124. 10.1111/gcb.13201 PubMed DOI

Ploton, P. , Barbier, N. , Momo, S. T. , Réjou‐Méchain, M. , Boyemba Bosela, F. , Chuyong, G. , Dauby, G. , Droissart, V. , Fayolle, A. , Goodman, R. C. , Henry, M. , Kamdem, N. G. , Katembo Mukirania, J. , Kenfack, D. , Libalah, M. , Ngomanda, A. , Rossi, V. , Sonké, B. , Texier, N. , … Pélissier, R. (2016). Closing a gap in tropical forest biomass estimation: Accounting for crown mass variation in pantropical allometries. Biogeosciences, 13, 1571–1585. 10.5194/bgd-12-19711-2015 DOI

Purves, D. W. , Lichstein, J. W. , & Pacala, S. W. (2007). Crown plasticity and competition for canopy space: A new spatially implicit model parameterized for 250 north American tree species. PLoS One, 2(9), e870. 10.1371/journal.pone.0000870 PubMed DOI PMC

R Core Development Team . (2021). R: A language and environment for statistical computing. R Foundation for Statistical Computing.

Rifai, S. W. , de Kauwe, M. G. , Ukkola, A. M. , Cernusak, L. A. , Meir, P. , Medlyn, B. E. , & Pitman, A. J. (2022). Thirty‐eight years of CO2 fertilization has outpaced growing aridity to drive greening of Australian woody ecosystems. Biogeosciences, 19(2), 491–515. 10.5194/BG-19-491-2022 DOI

Scheffer, M. , Xu, C. , Hantson, S. , Holmgren, M. , Los, S. O. , & van Nes, E. H. (2018). A global climate niche for giant trees. Global Change Biology, 24(March), 2875–2883. 10.1111/gcb.14167 PubMed DOI PMC

Shenkin, A. , Bentley, L. P. , Oliveras, I. , Salinas, N. , Adu‐Bredu, S. , Marimon‐Junior, B. H. , Marimon, B. S. , Peprah, T. , Choque, E. L. , Trujillo Rodriguez, L. , Clemente Arenas, E. R. , Adonteng, C. , Seidu, J. , Passos, F. B. , Reis, S. M. , Blonder, B. , Silman, M. , Enquist, B. J. , Asner, G. P. , & Malhi, Y. (2020). The influence of ecosystem and phylogeny on tropical tree crown size and shape. Frontiers in Forests and Global Change, 3, 109. 10.3389/ffgc.2020.501757 DOI

Slik, J. W. F. , Paoli, G. , Mcguire, K. , Amaral, I. , Barroso, J. , Bastian, M. , Blanc, L. , Bongers, F. , Boundja, P. , Clark, C. , Collins, M. , Dauby, G. , Ding, Y. , Doucet, J. L. , Eler, E. , Ferreira, L. , Forshed, O. , Fredriksson, G. , Gillet, J. F. , … Zweifel, N. (2013). Large trees drive forest aboveground biomass variation in moist lowland forests across the tropics. Global Ecology and Biogeography, 22(12), 1261–1271. 10.1111/geb.12092 DOI

Smith, S. A. , & Brown, J. W. (2018). Constructing a broadly inclusive seed plant phylogeny. American Journal of Botany, 105(3), 302–314. 10.1002/ajb2.1019 PubMed DOI

Stovall, A. E. L. , Shugart, H. , & Yang, X. (2019). Tree height explains mortality risk during an intense drought. Nature Communications, 10(1), 1–6 10.1038/s41467-019-12380-6 PubMed DOI PMC

Taubert, F. , Jahn, M. W. , Dobner, H.‐J. , Wiegand, T. , & Huth, A. (2015). The structure of tropical forests and sphere packings. Proceedings of the National Academy of Sciences of the United States of America, 112(49), 15125–15129. 10.1073/pnas.1513417112 PubMed DOI PMC

Trabucco, A. , & Zomer, R. (2019). Global Aridity Index and potential Evapotranspiration (ET0) climate database. Figshare. 10.6084/m9.figshare.7504448.v3 PubMed DOI PMC

Verbeeck, H. , Bauters, M. , Jackson, T. , Shenkin, A. , Disney, M. , & Calders, K. (2019). Time for a plant structural economics spectrum. Frontiers in Forests and Global Change, 2, 43. 10.3389/ffgc.2019.00043 DOI

Vermeulen, P. J. (2014). Crown depth as a result of evolutionary games: Decreasing solar angle should lead to shallower, not deeper crowns. New Phytologist, 202(4), 1249–1256. 10.1111/nph.12729 PubMed DOI

Vieilledent, G. , Vaudry, R. , Andriamanohisoa, S. F. D. , Rakotonarivo, O. S. , Randrianasolo, H. Z. , Razafindrabe, H. N. , Bidaud Rakotoarivony, C. , Ebeling, J. , & Rasamoelina, M. (2012). A universal approach to estimate biomass and carbon stock in tropical forests using generic allometric models. Ecological Applications, 22(2), 572–583. 10.1890/11-0039.1 PubMed DOI

West, G. B. , Enquist, B. J. , & Brown, J. H. (2009). A general quantitative theory of forest structure and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 106(17), 7040–7045. 10.1073/PNAS.0812294106 PubMed DOI PMC

Zhang, J. , Nielsen, S. E. , Mao, L. , Chen, S. , & Svenning, J.‐C. (2016). Regional and historical factors supplement current climate in shaping global forest canopy height. Journal of Ecology, 104, 469–478. 10.1111/1365-2745.12510 DOI

Zizka, A. , Silvestro, D. , Andermann, T. , Azevedo, J. , Duarte Ritter, C. , Edler, D. , Farooq, H. , Herdean, A. , Ariza, M. , Scharn, R. , Svantesson, S. , Wengström, N. , Zizka, V. , & Antonelli, A. (2019). CoordinateCleaner: Standardized cleaning of occurrence records from biological collection databases. Methods in Ecology and Evolution, 10(5), 744–751. 10.1111/2041-210X.13152 DOI

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

The global biogeography of tree leaf form and habit

. 2023 Nov ; 9 (11) : 1795-1809. [epub] 20231023

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...