Patterns and drivers of recent disturbances across the temperate forest biome
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Y 895
Austrian Science Fund FWF - Austria
PubMed
30341309
PubMed Central
PMC6195561
DOI
10.1038/s41467-018-06788-9
PII: 10.1038/s41467-018-06788-9
Knihovny.cz E-zdroje
- MeSH
- ekosystém * MeSH
- klimatické změny * MeSH
- lesy * MeSH
- technologie dálkového snímání MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.
Bavarian Forest National Park Freyunger Str 2 94481 Grafenau Germany
Clark University Graduate School of Geography Worcester MA 01602 USA
Department of Forest and Wildlife Ecology University of Wisconsin Madison Madison WI 53706 USA
Department of Forest Resources University of Minnesota 1530 Cleveland Ave N St Paul MN 55108 USA
Department of Geography Portland State University Portland OR 97201 USA
Department of Geography University of Colorado Boulder CO 80309 USA
Department of Integrative Biology Birge Hall University of Wisconsin Madison Madison WI 53706 USA
Dept of Integrative Biology University of Colorado 1151 Arapahoe Denver CO 80204 USA
Geography Department Humboldt Universität zu Berlin Unter den Linden 6 10099 Berlin Germany
INIBIOMA CONICET Universidad Nacional del Comahue Quintral 1250 Bariloche 8400 Rio Negro Argentina
School of Environment University of Auckland Auckland 1142 New Zealand
School of Environmental and Forest Sciences University of Washington Seattle WA 98195 USA
School of Geographical Sciences Northeast Normal University Changchun 130024 China
University of Maine School of Forest Resources 5755 Nutting Hall Orono Maine 04469 USA
Zobrazit více v PubMed
Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–2849. doi: 10.1890/10-0097.1. PubMed DOI
Seidl R, et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC
Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015;349:823–826. doi: 10.1126/science.aaa9933. PubMed DOI
Raffa KF, et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience. 2008;58:501–517. doi: 10.1641/B580607. DOI
Stephens SL, et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 2014;12:115–122. doi: 10.1890/120332. DOI
Bright BC, Hicke JA, Meddens AJH. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products. J. Geophys. Res. Biogeosciences. 2013;118:974–982. doi: 10.1002/jgrg.20078. DOI
Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014;4:806–810. doi: 10.1038/nclimate2318. PubMed DOI PMC
Rajan S, Firdaus NNM, Appukutty M, Ramasamy K. Effects of climate changes on dissolved heavy metal concentrations among recreational park tributaries in Pahang, Malaysia. Biomed. Res. 2012;23:23–30.
Mikkelson KM, Dickenson ERV, Maxwell RM, Mccray JE, Sharp JO. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Chang. 2013;3:218–222. doi: 10.1038/nclimate1724. DOI
Wohlgemuth T, Schwitter R, Bebi P, Sutter F, Brang P. Post-windthrow management in protection forests of the Swiss Alps. Eur. J. For. Res. 2017;136:1029–1040. doi: 10.1007/s10342-017-1031-x. DOI
Beudert B, et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 2015;8:272–281. doi: 10.1111/conl.12153. DOI
Seidl R, et al. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 2016;53:530–540. doi: 10.1111/1365-2664.12540. PubMed DOI PMC
Lindenmayer DB, Hobbs RJ, Likens GE, Krebs CJ, Banks SC. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl. Acad. Sci. USA. 2011;108:15887–15891. doi: 10.1073/pnas.1110245108. PubMed DOI PMC
Allen CD, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010;259:660–684. doi: 10.1016/j.foreco.2009.09.001. DOI
Waring RH, Coops NC, Running SW. Predicting satellite-derived patterns of large-scale disturbances in forests of the Pacific Northwest Region in response to recent climatic variation. Remote Sens. Environ. 2011;115:3554–3566. doi: 10.1016/j.rse.2011.08.017. DOI
Senf C, Seidl R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob. Chang. Biol. 2018;24:1201–1211. doi: 10.1111/gcb.13897. PubMed DOI PMC
Spies, T. A. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 22, 25 (2017).
Kautz M, Anthoni P, Meddens AJH, Pugh TAM, Arneth A. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Glob. Chang. Biol. 2017 doi: 10.1111/gcb.13974. PubMed DOI
Bonan Gordon B., Doney Scott C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science. 2018;359(6375):eaam8328. doi: 10.1126/science.aam8328. PubMed DOI
Kurz WA, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–990. doi: 10.1038/nature06777. PubMed DOI
Thom D, Rammer W, Seidl R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 2017;87:665–684. doi: 10.1002/ecm.1272. PubMed DOI PMC
Wulder MA, Coops NC. Satellites: make Earth observations open access. Nature. 2014;513:30–31. doi: 10.1038/513030a. PubMed DOI
Kuemmerle T, et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013;5:484–493. doi: 10.1016/j.cosust.2013.06.002. PubMed DOI PMC
Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI
Senf C, Pflugmacher D, Hostert P, Seidl R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017;130:453–463. doi: 10.1016/j.isprsjprs.2017.07.004. PubMed DOI PMC
Mori AS, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 2018;0:1–16. PubMed PMC
Lindenmayer David, Thorn Simon, Banks Sam. Please do not disturb ecosystems further. Nature Ecology & Evolution. 2017;1(2):0031. doi: 10.1038/s41559-016-0031. PubMed DOI
Seidl R, Donato DC, Raffa KF, Turner MG. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proc. Natl Acad. Sci. USA. 2016;113:13075–13080. doi: 10.1073/pnas.1615263113. PubMed DOI PMC
Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R. Climate variability drives recent tree mortality in Europe. Glob. Chang. Biol. 2017;23:4788–4797. doi: 10.1111/gcb.13724. PubMed DOI PMC
Collins BM, Stephens SL. Stand-replacing patches within a ‘mixed severity’ fire regime: quantitative characterization using recent fires in a long-established natural fire area. Landsc. Ecol. 2010;25:927–939. doi: 10.1007/s10980-010-9470-5. DOI
Mitchell SJ. Wind as a natural disturbance agent in forests: a synthesis. Forestry. 2013;86:147–157. doi: 10.1093/forestry/cps058. DOI
Loehle C. Strategy space and the disturbance spectrum: a life‐history model for tree species coexistence. Am. Nat. 2000;156:14–33. PubMed
Perry, D. A. in Forest Ecosystems (eds Perry, D. A., Oren, R., Hart, S.C.) (Johns Hopkins University Press, Baltimore, 2008) .
Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 2016;91:760–781. doi: 10.1111/brv.12193. PubMed DOI PMC
Silva Pedro M, Rammer W, Seidl R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 2016;31:989–1004. doi: 10.1007/s10980-015-0317-y. DOI
Hansen WD, Braziunas KH, Rammer W, Seidl R, Turner MG. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology. 2018;99:966–977. doi: 10.1002/ecy.2181. PubMed DOI
Pan Y, et al. Age structure and disturbance legacy of North American forests. Biogeosciences. 2011;8:715–732. doi: 10.5194/bg-8-715-2011. DOI
Schurman JS, et al. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Chang. Biol. 2018 doi: 10.1111/gcb.14041. PubMed DOI
Gray CL, et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016;7:12306. doi: 10.1038/ncomms12306. PubMed DOI PMC
Buma B, Barrett TM. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales. Glob. Chang. Biol. 2015;21:3445–3454. doi: 10.1111/gcb.12915. PubMed DOI
Borrelli P, Panagos P, Langhammer J, Apostol B, Schütt B. Assessment of the cover changes and the soil loss potential in European forestland: first approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecol. Indic. 2016;60:1208–1220. doi: 10.1016/j.ecolind.2015.08.053. DOI
Westerling AL. Correction to ‘Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring’: Table 3. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20160373. doi: 10.1098/rstb.2016.0373. PubMed DOI PMC
Seidl R, et al. Modelling natural disturbances in forest ecosystems: a review. Ecol. Modell. 2011;222:903–924. doi: 10.1016/j.ecolmodel.2010.09.040. DOI
Anderegg WRL, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015;208:674–683. doi: 10.1111/nph.13477. PubMed DOI
Littell JS, Mckenzie D, Peterson DL, Westerling AL. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecol. Appl. 2009;19:1003–1021. doi: 10.1890/07-1183.1. PubMed DOI
Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA. 2011;108:13165–13170. doi: 10.1073/pnas.1110199108. PubMed DOI PMC
Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI
Fraley C, Raftery, Adrian E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 2007;18:1–13. doi: 10.18637/jss.v018.i06. DOI
Kattge J, et al. TRY—a global database of plant traits. Glob. Chang. Biol. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. DOI
Hothorn T, Hornik K, Wiel MAvande, Zeileis A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 2008;28:1–23. doi: 10.18637/jss.v028.i08. PubMed DOI
R Core Team. R: A Language and Environment for Statistical Computing. (RC Team, Vienna, Austria, 2018).
Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009;24:127–135. doi: 10.1016/j.tree.2008.10.008. PubMed DOI
Riley SJ, DeGloria SD, Elliot R. A Terrain ruggedness index that qauntifies topographic heterogeneity. Intermt. J. Sci. 1999;5:23–27.
Grechka DA, et al. Universal, easy access to geotemporal information: FetchClimate. Ecography. 2016;39:904–911. doi: 10.1111/ecog.02321. DOI
Akaike, H. in Proc. 2nd International Symposium on Information Theory (eds Petrov, B. N. & Caski, F.) 199–213 (Akadimiai Kiado, Budapest, 1998).
Marini L, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 2017;40:1426–1435. doi: 10.1111/ecog.02769. DOI
King, G. & Zeng, L. in Encyclopedia of Biopharmaceutical Statistics (ed Chow, S.-C.) (Marcel Dekker, New York, NY, 2004).
Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, Cambridge, MA, 2006)
Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2014;67:1–48.
The global distribution and drivers of wood density and their impact on forest carbon stocks
Significant increase in natural disturbance impacts on European forests since 1950
Fungal Community Development in Decomposing Fine Deadwood Is Largely Affected by Microclimate