Patterns and drivers of recent disturbances across the temperate forest biome

. 2018 Oct 19 ; 9 (1) : 4355. [epub] 20181019

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid30341309

Grantová podpora
Y 895 Austrian Science Fund FWF - Austria

Odkazy

PubMed 30341309
PubMed Central PMC6195561
DOI 10.1038/s41467-018-06788-9
PII: 10.1038/s41467-018-06788-9
Knihovny.cz E-zdroje

Increasing evidence indicates that forest disturbances are changing in response to global change, yet local variability in disturbance remains high. We quantified this considerable variability and analyzed whether recent disturbance episodes around the globe were consistently driven by climate, and if human influence modulates patterns of forest disturbance. We combined remote sensing data on recent (2001-2014) disturbances with in-depth local information for 50 protected landscapes and their surroundings across the temperate biome. Disturbance patterns are highly variable, and shaped by variation in disturbance agents and traits of prevailing tree species. However, high disturbance activity is consistently linked to warmer and drier than average conditions across the globe. Disturbances in protected areas are smaller and more complex in shape compared to their surroundings affected by human land use. This signal disappears in areas with high recent natural disturbance activity, underlining the potential of climate-mediated disturbance to transform forest landscapes.

Bavarian Forest National Park Freyunger Str 2 94481 Grafenau Germany

Clark University Graduate School of Geography Worcester MA 01602 USA

Department of Environmental Science Policy and Management University of California Berkeley CA 94720 USA

Department of Forest and Wildlife Ecology University of Wisconsin Madison Madison WI 53706 USA

Department of Forest Resources University of Minnesota 1530 Cleveland Ave N St Paul MN 55108 USA

Department of Geography Portland State University Portland OR 97201 USA

Department of Geography University of Colorado Boulder CO 80309 USA

Department of Integrative Biology Birge Hall University of Wisconsin Madison Madison WI 53706 USA

Dept of Integrative Biology University of Colorado 1151 Arapahoe Denver CO 80204 USA

Facultad de Ciencias Agronómicas Departamento de Ciencias Ambientales y Recursos Naturales Renovables Universidad de Chile Av Santa Rosa 11315 La Pintana 8820808 Santiago Chile

Faculty of Forestry and Wood Sciences Czech University of Life Sciences Prague Kamýcká 129 165 21 Prague 6 Czech Republic

Fenner School of Environment and Society The Australian National University Canberra ACT 2601 Australia

Field Station Fabrikschleichach Department of Animal Ecology and Tropical Biology Biocenter University of Würzburg Glashüttenstraße 5 96181 Rauhenebrach Germany

Geography Department Humboldt Universität zu Berlin Unter den Linden 6 10099 Berlin Germany

Graduate School of Environment and Information Sciences Yokohama National University Yokohama 240 8501 Japan

INIBIOMA CONICET Universidad Nacional del Comahue Quintral 1250 Bariloche 8400 Rio Negro Argentina

Institut de Recherche sur les Forêts Université du Québec en Abitibi Témiscamingue 445 boulevard de l'Université Rouyn Noranda QC J9X 5E4 Canada

School of Environment University of Auckland Auckland 1142 New Zealand

School of Environmental and Forest Sciences University of Washington Seattle WA 98195 USA

School of Geographical Sciences Northeast Normal University Changchun 130024 China

University of Maine School of Forest Resources 5755 Nutting Hall Orono Maine 04469 USA

University of Natural Resources and Life Sciences Vienna Institute of Silviculture Peter Jordan Straße 82 1190 Wien Austria

University of Vermont Rubenstein School of Environment and Natural Resources Aiken Center Room 204E Burlington VT 05495 USA

Zobrazit více v PubMed

Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–2849. doi: 10.1890/10-0097.1. PubMed DOI

Seidl R, et al. Forest disturbances under climate change. Nat. Clim. Chang. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC

Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science. 2015;349:823–826. doi: 10.1126/science.aaa9933. PubMed DOI

Raffa KF, et al. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience. 2008;58:501–517. doi: 10.1641/B580607. DOI

Stephens SL, et al. Temperate and boreal forest mega-fires: characteristics and challenges. Front. Ecol. Environ. 2014;12:115–122. doi: 10.1890/120332. DOI

Bright BC, Hicke JA, Meddens AJH. Effects of bark beetle-caused tree mortality on biogeochemical and biogeophysical MODIS products. J. Geophys. Res. Biogeosciences. 2013;118:974–982. doi: 10.1002/jgrg.20078. DOI

Seidl R, Schelhaas MJ, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat. Clim. Chang. 2014;4:806–810. doi: 10.1038/nclimate2318. PubMed DOI PMC

Rajan S, Firdaus NNM, Appukutty M, Ramasamy K. Effects of climate changes on dissolved heavy metal concentrations among recreational park tributaries in Pahang, Malaysia. Biomed. Res. 2012;23:23–30.

Mikkelson KM, Dickenson ERV, Maxwell RM, Mccray JE, Sharp JO. Water-quality impacts from climate-induced forest die-off. Nat. Clim. Chang. 2013;3:218–222. doi: 10.1038/nclimate1724. DOI

Wohlgemuth T, Schwitter R, Bebi P, Sutter F, Brang P. Post-windthrow management in protection forests of the Swiss Alps. Eur. J. For. Res. 2017;136:1029–1040. doi: 10.1007/s10342-017-1031-x. DOI

Beudert B, et al. Bark beetles increase biodiversity while maintaining drinking water quality. Conserv. Lett. 2015;8:272–281. doi: 10.1111/conl.12153. DOI

Seidl R, et al. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J. Appl. Ecol. 2016;53:530–540. doi: 10.1111/1365-2664.12540. PubMed DOI PMC

Lindenmayer DB, Hobbs RJ, Likens GE, Krebs CJ, Banks SC. Newly discovered landscape traps produce regime shifts in wet forests. Proc. Natl. Acad. Sci. USA. 2011;108:15887–15891. doi: 10.1073/pnas.1110245108. PubMed DOI PMC

Allen CD, et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010;259:660–684. doi: 10.1016/j.foreco.2009.09.001. DOI

Waring RH, Coops NC, Running SW. Predicting satellite-derived patterns of large-scale disturbances in forests of the Pacific Northwest Region in response to recent climatic variation. Remote Sens. Environ. 2011;115:3554–3566. doi: 10.1016/j.rse.2011.08.017. DOI

Senf C, Seidl R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob. Chang. Biol. 2018;24:1201–1211. doi: 10.1111/gcb.13897. PubMed DOI PMC

Spies, T. A. et al. Using an agent-based model to examine forest management outcomes in a fire-prone landscape in Oregon, USA. Ecol. Soc. 22, 25 (2017).

Kautz M, Anthoni P, Meddens AJH, Pugh TAM, Arneth A. Simulating the recent impacts of multiple biotic disturbances on forest carbon cycling across the United States. Glob. Chang. Biol. 2017 doi: 10.1111/gcb.13974. PubMed DOI

Bonan Gordon B., Doney Scott C. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models. Science. 2018;359(6375):eaam8328. doi: 10.1126/science.aam8328. PubMed DOI

Kurz WA, et al. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008;452:987–990. doi: 10.1038/nature06777. PubMed DOI

Thom D, Rammer W, Seidl R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol. Monogr. 2017;87:665–684. doi: 10.1002/ecm.1272. PubMed DOI PMC

Wulder MA, Coops NC. Satellites: make Earth observations open access. Nature. 2014;513:30–31. doi: 10.1038/513030a. PubMed DOI

Kuemmerle T, et al. Challenges and opportunities in mapping land use intensity globally. Curr. Opin. Environ. Sustain. 2013;5:484–493. doi: 10.1016/j.cosust.2013.06.002. PubMed DOI PMC

Hansen MC, et al. High-resolution global maps of 21st-century forest cover change. Science. 2013;342:850–853. doi: 10.1126/science.1244693. PubMed DOI

Senf C, Pflugmacher D, Hostert P, Seidl R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J. Photogramm. Remote Sens. 2017;130:453–463. doi: 10.1016/j.isprsjprs.2017.07.004. PubMed DOI PMC

Mori AS, Isbell F, Seidl R. β-diversity, community assembly, and ecosystem functioning. Trends Ecol. Evol. 2018;0:1–16. PubMed PMC

Lindenmayer David, Thorn Simon, Banks Sam. Please do not disturb ecosystems further. Nature Ecology & Evolution. 2017;1(2):0031. doi: 10.1038/s41559-016-0031. PubMed DOI

Seidl R, Donato DC, Raffa KF, Turner MG. Spatial variability in tree regeneration after wildfire delays and dampens future bark beetle outbreaks. Proc. Natl Acad. Sci. USA. 2016;113:13075–13080. doi: 10.1073/pnas.1615263113. PubMed DOI PMC

Neumann M, Mues V, Moreno A, Hasenauer H, Seidl R. Climate variability drives recent tree mortality in Europe. Glob. Chang. Biol. 2017;23:4788–4797. doi: 10.1111/gcb.13724. PubMed DOI PMC

Collins BM, Stephens SL. Stand-replacing patches within a ‘mixed severity’ fire regime: quantitative characterization using recent fires in a long-established natural fire area. Landsc. Ecol. 2010;25:927–939. doi: 10.1007/s10980-010-9470-5. DOI

Mitchell SJ. Wind as a natural disturbance agent in forests: a synthesis. Forestry. 2013;86:147–157. doi: 10.1093/forestry/cps058. DOI

Loehle C. Strategy space and the disturbance spectrum: a life‐history model for tree species coexistence. Am. Nat. 2000;156:14–33. PubMed

Perry, D. A. in Forest Ecosystems (eds Perry, D. A., Oren, R., Hart, S.C.) (Johns Hopkins University Press, Baltimore, 2008) .

Thom D, Seidl R. Natural disturbance impacts on ecosystem services and biodiversity in temperate and boreal forests. Biol. Rev. Camb. Philos. Soc. 2016;91:760–781. doi: 10.1111/brv.12193. PubMed DOI PMC

Silva Pedro M, Rammer W, Seidl R. A disturbance-induced increase in tree species diversity facilitates forest productivity. Landsc. Ecol. 2016;31:989–1004. doi: 10.1007/s10980-015-0317-y. DOI

Hansen WD, Braziunas KH, Rammer W, Seidl R, Turner MG. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology. 2018;99:966–977. doi: 10.1002/ecy.2181. PubMed DOI

Pan Y, et al. Age structure and disturbance legacy of North American forests. Biogeosciences. 2011;8:715–732. doi: 10.5194/bg-8-715-2011. DOI

Schurman JS, et al. Large-scale disturbance legacies and the climate sensitivity of primary Picea abies forests. Glob. Chang. Biol. 2018 doi: 10.1111/gcb.14041. PubMed DOI

Gray CL, et al. Local biodiversity is higher inside than outside terrestrial protected areas worldwide. Nat. Commun. 2016;7:12306. doi: 10.1038/ncomms12306. PubMed DOI PMC

Buma B, Barrett TM. Spatial and topographic trends in forest expansion and biomass change, from regional to local scales. Glob. Chang. Biol. 2015;21:3445–3454. doi: 10.1111/gcb.12915. PubMed DOI

Borrelli P, Panagos P, Langhammer J, Apostol B, Schütt B. Assessment of the cover changes and the soil loss potential in European forestland: first approach to derive indicators to capture the ecological impacts on soil-related forest ecosystems. Ecol. Indic. 2016;60:1208–1220. doi: 10.1016/j.ecolind.2015.08.053. DOI

Westerling AL. Correction to ‘Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring’: Table 3. Philos. Trans. R. Soc. B Biol. Sci. 2016;371:20160373. doi: 10.1098/rstb.2016.0373. PubMed DOI PMC

Seidl R, et al. Modelling natural disturbances in forest ecosystems: a review. Ecol. Modell. 2011;222:903–924. doi: 10.1016/j.ecolmodel.2010.09.040. DOI

Anderegg WRL, et al. Tree mortality from drought, insects, and their interactions in a changing climate. New Phytol. 2015;208:674–683. doi: 10.1111/nph.13477. PubMed DOI

Littell JS, Mckenzie D, Peterson DL, Westerling AL. Climate and wildfire area burned in western U.S. ecoprovinces, 1916-2003. Ecol. Appl. 2009;19:1003–1021. doi: 10.1890/07-1183.1. PubMed DOI

Westerling AL, Turner MG, Smithwick EAH, Romme WH, Ryan MG. Continued warming could transform Greater Yellowstone fire regimes by mid-21st century. Proc. Natl. Acad. Sci. USA. 2011;108:13165–13170. doi: 10.1073/pnas.1110199108. PubMed DOI PMC

Olson DM, et al. Terrestrial ecoregions of the world: a new map of life on Earth. Bioscience. 2001;51:933. doi: 10.1641/0006-3568(2001)051[0933:TEOTWA]2.0.CO;2. DOI

Fraley C, Raftery, Adrian E. Model-based methods of classification: using the mclust software in chemometrics. J. Stat. Softw. 2007;18:1–13. doi: 10.18637/jss.v018.i06. DOI

Kattge J, et al. TRY—a global database of plant traits. Glob. Chang. Biol. 2011;17:2905–2935. doi: 10.1111/j.1365-2486.2011.02451.x. DOI

Hothorn T, Hornik K, Wiel MAvande, Zeileis A. Implementing a class of permutation tests: the coin package. J. Stat. Softw. 2008;28:1–23. doi: 10.18637/jss.v028.i08. PubMed DOI

R Core Team. R: A Language and Environment for Statistical Computing. (RC Team, Vienna, Austria, 2018).

Bolker BM, et al. Generalized linear mixed models: a practical guide for ecology and evolution. Trends Ecol. Evol. 2009;24:127–135. doi: 10.1016/j.tree.2008.10.008. PubMed DOI

Riley SJ, DeGloria SD, Elliot R. A Terrain ruggedness index that qauntifies topographic heterogeneity. Intermt. J. Sci. 1999;5:23–27.

Grechka DA, et al. Universal, easy access to geotemporal information: FetchClimate. Ecography. 2016;39:904–911. doi: 10.1111/ecog.02321. DOI

Akaike, H. in Proc. 2nd International Symposium on Information Theory (eds Petrov, B. N. & Caski, F.) 199–213 (Akadimiai Kiado, Budapest, 1998).

Marini L, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 2017;40:1426–1435. doi: 10.1111/ecog.02769. DOI

King, G. & Zeng, L. in Encyclopedia of Biopharmaceutical Statistics (ed Chow, S.-C.) (Marcel Dekker, New York, NY, 2004).

Gelman, A. & Hill, J. Data Analysis Using Regression and Multilevel/Hierarchical Models (Cambridge University Press, Cambridge, MA, 2006)

Bates D, Mächler M, Bolker B, Walker S. Fitting linear mixed-effects models using lme4. J. Stat. Softw. 2014;67:1–48.

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace