Assessing the response of forest productivity to climate extremes in Switzerland using model-data fusion

. 2020 Apr ; 26 (4) : 2463-2476. [epub] 20200218

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid31968145

Grantová podpora
20FI20_173691 Swiss National Science Foundation - Switzerland

The response of forest productivity to climate extremes strongly depends on ambient environmental and site conditions. To better understand these relationships at a regional scale, we used nearly 800 observation years from 271 permanent long-term forest monitoring plots across Switzerland, obtained between 1980 and 2017. We assimilated these data into the 3-PG forest ecosystem model using Bayesian inference, reducing the bias of model predictions from 14% to 5% for forest stem carbon stocks and from 45% to 9% for stem carbon stock changes. We then estimated the productivity of forests dominated by Picea abies and Fagus sylvatica for the period of 1960-2018, and tested for productivity shifts in response to climate along elevational gradient and in extreme years. Simulated net primary productivity (NPP) decreased with elevation (2.86 ± 0.006 Mg C ha-1 year-1 km-1 for P. abies and 0.93 ± 0.010 Mg C ha-1 year-1 km-1 for F. sylvatica). During warm-dry extremes, simulated NPP for both species increased at higher and decreased at lower elevations, with reductions in NPP of more than 25% for up to 21% of the potential species distribution range in Switzerland. Reduced plant water availability had a stronger effect on NPP than temperature during warm-dry extremes. Importantly, cold-dry extremes had negative impacts on regional forest NPP comparable to warm-dry extremes. Overall, our calibrated model suggests that the response of forest productivity to climate extremes is more complex than simple shift toward higher elevation. Such robust estimates of NPP are key for increasing our understanding of forests ecosystems carbon dynamics under climate extremes.

Zobrazit více v PubMed

Allen, C. D. , Macalady, A. K. , Chenchouni, H. , Bachelet, D. , McDowell, N. , Vennetier, M. , … Cobb, N. (2010). A global overview of drought and heat‐induced tree mortality reveals emerging climate change risks for forests. Forest Ecology and Management, 259, 660–684. 10.1016/j.foreco.2009.09.001 DOI

Almeida, A. C. , Landsberg, J. J. , & Sands, P. J. (2004). Parameterisation of 3‐PG model for fast‐growing Eucalyptus grandis plantations. Forest Ecology and Management, 193, 179–195. 10.1016/j.foreco.2004.01.029 DOI

Amthor, J. S. (2000). The McCree–de Wit‐Penning de Vries‐Thornley respiration paradigms: 30 years later. Annals of Botany, 86, 1–20. 10.1006/anbo.2000.1175 DOI

Anderson, J. , Hoar, T. , Raeder, K. , Liu, H. , Collins, N. , Torn, R. , & Avellano, A. (2009). The data assimilation research testbed: A community facility. Bulletin of the American Meteorological Society, 90, 1283–1296. 10.1175/2009BAMS2618.1 DOI

Augustynczik, A. L. D. , Hartig, F. , Minunno, F. , Kahle, H.‐P. , Diaconu, D. , Hanewinkel, M. , & Yousefpour, R. (2017). Productivity of Fagus sylvatica under climate change – A Bayesian analysis of risk and uncertainty using the model 3‐PG. Forest Ecology and Management, 401, 192–206. 10.1016/j.foreco.2017.06.061 DOI

Babst, F. , Bouriaud, O. , Poulter, B. , Trouet, V. , Girardin, M. P. , & Frank, D. C. (2019). Twentieth century redistribution in climatic drivers of global tree growth. Science Advances, 5, eaat4313 10.1126/sciadv.aat4313 PubMed DOI PMC

Babst, F. , Poulter, B. , Trouet, V. , Tan, K. , Neuwirth, B. , Wilson, R. , … Frank, D. (2013). Site‐ and species‐specific responses of forest growth to climate across the European continent. Global Ecology and Biogeography, 22, 706–717. 10.1111/geb.12023 DOI

Beer, C. , Reichstein, M. , Tomelleri, E. , Ciais, P. , Jung, M. , Carvalhais, N. , … Papale, D. (2010). Terrestrial gross carbon dioxide uptake: Global distribution and covariation with climate. Science, 329, 834–838. 10.1126/science.1184984 PubMed DOI

Berzaghi, F. , Wright, I. J. , Kramer, K. , Oddou‐Muratorio, S. , Bohn, F. J. , Reyer, C. P. O. , … Hartig, F. (2019). Towards a new generation of trait‐flexible vegetation models. Trends in Ecology & Evolution. 10.1016/j.tree.2019.11.006 PubMed DOI

Bigler, C. , & Bugmann, H. (2018). Climate‐induced shifts in leaf unfolding and frost risk of European trees and shrubs. Scientific Reports, 8, 9865 10.1038/s41598-018-27893-1 PubMed DOI PMC

Brändli, U.‐B. (2010). Schweizerisches Landesforstinventar: Ergebnisse der dritten Erhebung: 2004–2006. Birmensdorf, Switzerland: Swiss Federal Research Institute WSL.

Brassel, P. , & Lischke, H. (2001). Swiss National Forest Inventory: Methods and models of the second assessment. Birmensdorf, Switzerland: Swiss Federal Research Institute WSL.

Brockerhoff, E. G. , Barbaro, L. , Castagneyrol, B. , Forrester, D. I. , Gardiner, B. , González‐Olabarria, J. R. , … Jactel, H. (2017). Forest biodiversity, ecosystem functioning and the provision of ecosystem services. Biodiversity and Conservation, 26, 3005–3035. 10.1007/s10531-017-1453-2 DOI

Cailleret, M. , Bircher, N. , Hartig, F. , Hülsmann, L. , & Bugmann, H. (2019). Bayesian calibration of a growth‐dependent tree mortality model to simulate the dynamics of European temperate forests. Ecological Applications. 10.1002/eap.2021 PubMed DOI

Charney, N. D. , Babst, F. , Poulter, B. , Record, S. , Trouet, V. M. , Frank, D. , … Evans, M. E. K. (2016). Observed forest sensitivity to climate implies large changes in 21st century North American forest growth. Ecology Letters, 19, 1119–1128. 10.1111/ele.12650 PubMed DOI

Chen, W. , Zhu, D. , Huang, C. , Ciais, P. , Yao, Y. , Friedlingstein, P. , … Zeng, N. (2019). Negative extreme events in gross primary productivity and their drivers in China during the past three decades. Agricultural and Forest Meteorology, 275, 47–58. 10.1016/j.agrformet.2019.05.002 DOI

Ciais, P. , Sabine, C. , Bala, G. , Bopp, L. , Brovkin, V. , Canadell, J. , … Heimann, M. (2014). Carbon and other biogeochemical cycles In Climate change 2013: The physical science basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change (pp. 465–570). Cambridge, UK: Cambridge University Press.

Clark, D. A. , Brown, S. , Kicklighter, D. W. , Chambers, J. Q. , Thomlinson, J. R. , & Ni, J. (2001). Measuring net primary production in forests: Concepts and field methods. Ecological Applications, 11, 356–370. 10.1890/1051-0761(2001)011[0356:MNPPIF]2.0.CO;2 DOI

Collalti, A. , & Prentice, I. C. (2019). Is NPP proportional to GPP? Waring's hypothesis twenty years on. Tree Physiology, 39(8), 1473–1483. 10.1093/treephys/tpz034 PubMed DOI

Cramer, W. , Bondeau, A. , Woodward, F. I. , Prentice, I. C. , Betts, R. A. , Brovkin, V. , … Young‐Molling, C. (2001). Global response of terrestrial ecosystem structure and function to CO2 and climate change: Results from six dynamic global vegetation models. Global Change Biology, 7, 357–373. 10.1046/j.1365-2486.2001.00383.x DOI

Crimmins, T. M. , Crimmins, M. A. , Gerst, K. L. , Rosemartin, A. H. , & Weltzin, J. F. (2017). USA National Phenology Network's volunteer‐contributed observations yield predictive models of phenological transitions. PLoS ONE, 12, e0182919 10.1371/journal.pone.0182919 PubMed DOI PMC

Cuny, H. E. , Fonti, P. , Rathgeber, C. B. K. , von Arx, G. , Peters, R. L. , & Frank, D. C. (2019). Couplings in cell differentiation kinetics mitigate air temperature influence on conifer wood anatomy. Plant, Cell & Environment, 42, 1222–1232. 10.1111/pce.13464 PubMed DOI

DeLucia, E. H. , Drake, J. E. , Thomas, R. B. , & Gonzalez‐Meler, M. (2007). Forest carbon use efficiency: Is respiration a constant fraction of gross primary production? Global Change Biology, 13, 1157–1167. 10.1111/j.1365-2486.2007.01365.x DOI

Dietze, M. C. , Lebauer, D. S. , & Kooper, R. (2013). On improving the communication between models and data. Plant, Cell & Environment, 36, 1575–1585. 10.1111/pce.12043 PubMed DOI

Dietze, M. C. , Serbin, S. P. , Davidson, C. , Desai, A. R. , Feng, X. , Kelly, R. , … Wang, D. (2014). A quantitative assessment of a terrestrial biosphere model's data needs across North American biomes. Journal of Geophysical Research: Biogeosciences, 119, 286–300. 10.1002/2013JG002392 DOI

D'Orangeville, L. , Houle, D. , Duchesne, L. , Phillips, R. P. , Bergeron, Y. , & Kneeshaw, D. (2018). Beneficial effects of climate warming on boreal tree growth may be transitory. Nature Communications, 9, 3213 10.1038/s41467-018-05705-4 PubMed DOI PMC

Etzold, S. , Ruehr, N. K. , Zweifel, R. , Dobbertin, M. , Zingg, A. , Pluess, P. , … Buchmann, N. (2011). The carbon balance of two contrasting mountain forest ecosystems in Switzerland: Similar annual trends, but seasonal differences. Ecosystems, 14, 1289–1309. 10.1007/s10021-011-9481-3 DOI

Etzold, S. , Waldner, P. , Thimonier, A. , Schmitt, M. , & Dobbertin, M. (2014). Tree growth in Swiss forests between 1995 and 2010 in relation to climate and stand conditions: Recent disturbances matter. Forest Ecology and Management, 311, 41–55. 10.1016/j.foreco.2013.05.040 DOI

Fer, I. , Kelly, R. , Moorcroft, P. R. , Richardson, A. D. , Cowdery, E. M. , & Dietze, M. C. (2018). Linking big models to big data: Efficient ecosystem model calibration through Bayesian model emulation. Biogeosciences, 15, 5801–5830. 10.5194/bg-15-5801-2018 DOI

Fischer C., & Traub B. (Eds.). (2019). Swiss National Forest Inventory – Methods and models of the fourth assessment, managing forest ecosystems. Dordrecht, the Netherlands: Springer International Publishing.

Forrester, D. I. , Ammer, C. H. , Annighöfer, P. J. , Avdagic, A. , Barbeito, I. , Bielak, K. , … Bravo‐Oviedo, A. (2017). Predicting the spatial and temporal dynamics of species interactions in Fagus sylvatica and Pinus sylvestris forests across Europe. Forest Ecology and Management, 405, 112–133. 10.1016/j.foreco.2017.09.029 DOI

Forrester, D. I. , Nitzsche, J. , & Schmid, H. (2019). The Experimental Forest Management project: An overview and methodology of the long‐term growth and yield plot network. Birmensdorf, Switzerland: Swiss Federal Institute of Forest, Snow and Landscape Research WSL.

Forrester, D. I. , Tachauer, I. H. H. , Annighoefer, P. , Barbeito, I. , Pretzsch, H. , Ruiz‐Peinado, R. , … Sileshi, G. W. (2017). Generalized biomass and leaf area allometric equations for European tree species incorporating stand structure, tree age and climate. Forest Ecology and Management, 396, 160–175. 10.1016/j.foreco.2017.04.011 DOI

Forrester, D. I. , & Tang, X. (2016). Analysing the spatial and temporal dynamics of species interactions in mixed‐species forests and the effects of stand density using the 3‐PG model. Ecological Modelling, 319, 233–254. 10.1016/j.ecolmodel.2015.07.010 DOI

Frei, E. , Voegt, U. , Flueckiger, R. , Brunner, H. , Schai, F. , & Haeberli, R. (1980). Bodeneignungskarte der Schweiz. Neuchâtel, Switzerland: Bundesamt für Statistik, Sektion Geoinformation.

Fréjaville, T. , Fady, B. , Kremer, A. , Ducousso, A. , & Garzón, M. B. (2019). Inferring phenotypic plasticity and population responses to climate across tree species ranges using forest inventory data. Global Ecology and Biogeography, 28, 1259–1271. 10.1111/geb.12930 DOI

Gelman, A. , & Rubin, D. B. (1992). Inference from iterative simulation using multiple sequences. Statistical Science, 7, 457–472. 10.1214/ss/1177011136 DOI

Gupta, R. , & Sharma, L. K. (2019). The process‐based forest growth model 3‐PG for use in forest management: A review. Ecological Modelling, 397, 55–73. 10.1016/j.ecolmodel.2019.01.007 DOI

Hacket‐Pain, A. J. , Ascoli, D. , Vacchiano, G. , Biondi, F. , Cavin, L. , Conedera, M. , … Zang, C. S. (2018). Climatically controlled reproduction drives interannual growth variability in a temperate tree species. Ecology Letters, 21, 1833–1844. 10.1111/ele.13158 PubMed DOI PMC

Halbritter, A. H. , Alexander, J. M. , Edwards, P. J. , & Billeter, R. (2013). How comparable are species distributions along elevational and latitudinal climate gradients? Global Ecology and Biogeography, 22, 1228–1237. 10.1111/geb.12066 DOI

Hartig, F. , Dislich, C. , Wiegand, T. , & Huth, A. (2014). Technical note: Approximate Bayesian parameterization of a process‐based tropical forest model. Biogeosciences, 11, 1261–1272. 10.5194/bg-11-1261-2014 DOI

Hartig, F. , Dyke, J. , Hickler, T. , Higgins, S. I. , O'Hara, R. B. , Scheiter, S. , & Huth, A. (2012). Connecting dynamic vegetation models to data – An inverse perspective. Journal of Biogeography, 39, 2240–2252. 10.1111/j.1365-2699.2012.02745.x DOI

Hartig, F. , Minunno, F. , & Paul, S. (2019). BayesianTools: General‐purpose MCMC and SMC samplers and tools for Bayesian statistics. Retrieved from https://cran.r-project.org/web/packages/BayesianTools/index.html

Hartl‐Meier, C. , Dittmar, C. , Zang, C. , & Rothe, A. (2014). Mountain forest growth response to climate change in the Northern Limestone Alps. Trees, 28, 819–829. 10.1007/s00468-014-0994-1 DOI

Houser, P. R. , De Lannoy, G. J. M. , & Walker, J. P. (2010). Land surface data assimilation In Lahoz W., Khattatov B., & Menard R. (Eds.), Data assimilation: Making sense of observations (pp. 549–597). Berlin, Heidelberg: Springer.

Huang, Y. , Gerber, S. , Huang, T. , & Lichstein, J. W. (2016). Evaluating the drought response of CMIP5 models using global gross primary productivity, leaf area, precipitation, and soil moisture data. Global Biogeochemical Cycles, 30, 1827–1846. 10.1002/2016GB005480 DOI

Huang, Y. , Stacy, M. , Jiang, J. , Sundi, N. , Ma, S. , Saruta, V. , … Luo, Y. (2019). Realized ecological forecast through an interactive Ecological Platform for Assimilating Data (EcoPAD, v1.0) into models. Geoscientific Model Development, 12, 1119–1137. 10.5194/gmd-12-1119-2019 DOI

Humphrey, V. , Zscheischler, J. , Ciais, P. , Gudmundsson, L. , Sitch, S. , & Seneviratne, S. I. (2018). Sensitivity of atmospheric CO2 growth rate to observed changes in terrestrial water storage. Nature, 560, 628–631. 10.1038/s41586-018-0424-4 PubMed DOI

Jolly, W. M. , Dobbertin, M. , Zimmermann, N. E. , & Reichstein, M. (2005). Divergent vegetation growth responses to the 2003 heat wave in the Swiss Alps. Geophysical Research Letters, 32 10.1029/2005GL023252 DOI

Jung, M. , Reichstein, M. , Schwalm, C. R. , Huntingford, C. , Sitch, S. , Ahlström, A. , … Zeng, N. (2017). Compensatory water effects link yearly global land CO2 sink changes to temperature. Nature, 541, 516–520. 10.1038/nature20780 PubMed DOI

Kannenberg, S. A. , Novick, K. A. , Alexander, M. R. , Maxwell, J. T. , Moore, D. J. P. , Phillips, R. P. , & Anderegg, W. R. L. (2019). Linking drought legacy effects across scales: From leaves to tree rings to ecosystems. Global Change Biology, 25, 2978–2992. 10.1111/gcb.14710 PubMed DOI

Keenan, T. F. , Carbone, M. S. , Reichstein, M. , & Richardson, A. D. (2011). The model–data fusion pitfall: Assuming certainty in an uncertain world. Oecologia, 167, 587 10.1007/s00442-011-2106-x PubMed DOI

Keenan, T. F. , Davidson, E. , Moffat, A. M. , Munger, W. , & Richardson, A. D. (2012). Using model‐data fusion to interpret past trends, and quantify uncertainties in future projections, of terrestrial ecosystem carbon cycling. Global Change Biology, 18, 2555–2569. 10.1111/j.1365-2486.2012.02684.x DOI

Klesse, S. , Babst, F. , Lienert, S. , Spahni, R. , Joos, F. , Bouriaud, O. , … Frank, D. C. (2018). A combined tree ring and vegetation model assessment of European forest growth sensitivity to interannual climate variability. Global Biogeochemical Cycles. 10.1029/2017GB005856 DOI

Körner, C. , & Paulsen, J. (2004). A world‐wide study of high altitude treeline temperatures. Journal of Biogeography, 31, 713–732. 10.1111/j.1365-2699.2003.01043.x DOI

Lahoz, W. , Khattatov, B. , & Menard, R. (2010). Data assimilation: Making sense of observations. Berlin, Heidelberg: Springer.

Landsberg, J. , Mäkelä, A. , Sievänen, R. , & Kukkola, M. (2005). Analysis of biomass accumulation and stem size distributions over long periods in managed stands of Pinus sylvestris in Finland using the 3‐PG model. Tree Physiology, 25, 781–792. 10.1093/treephys/25.7.781 PubMed DOI

Landsberg, J. , & Sands, P. (2011). Chapter 9—The 3‐PG process‐based model In Terrestrial ecology, physiological ecology of forest production (pp. 241–282). Elsevier; 10.1016/B978-0-12-374460-9.00009-3 DOI

Landsberg, J. J. , & Waring, R. H. (1997). A generalised model of forest productivity using simplified concepts of radiation‐use efficiency, carbon balance and partitioning. Forest Ecology and Management, 95, 209–228. 10.1016/S0378-1127(97)00026-1 DOI

Lange, K. L. , Little, R. J. A. , & Taylor, J. M. G. (1989). Robust statistical modeling using the distribution. Journal of the American Statistical Association, 84, 881–896. 10.1080/01621459.1989.10478852 DOI

LeBauer, D. S. , Wang, D. , Richter, K. T. , Davidson, C. C. , & Dietze, M. C. (2013). Facilitating feedbacks between field measurements and ecosystem models. Ecological Monographs, 83, 133–154. 10.1890/12-0137.1 DOI

Luo, Y. , Ogle, K. , Tucker, C. , Fei, S. , Gao, C. , Ladeau, S. L. , … Schimel, D. S. (2011). Ecological forecasting and data assimilation in a data‐rich era. Ecological Applications, 21, 1429–1442. 10.1890/09-1275.1 PubMed DOI

Luyssaert, S. , Inglima, I. , Jung, M. , Richardson, A. D. , Reichstein, M. , Papale, D. , … Janssens, I. A. (2007). CO2 balance of boreal, temperate, and tropical forests derived from a global database. Global Change Biology, 13, 2509–2537. 10.1111/j.1365-2486.2007.01439.x DOI

Ma, Q. , Huang, J.‐G. , Hänninen, H. , & Berninger, F. (2019). Divergent trends in the risk of spring frost damage to trees in Europe with recent warming. Global Change Biology, 25, 351–360. 10.1111/gcb.14479 PubMed DOI

MacBean, N. , Peylin, P. , Chevallier, F. , Scholze, M. , & Schürmann, G. (2016). Consistent assimilation of multiple data streams in a carbon cycle data assimilation system. Geoscientific Model Development, 9, 3569–3588. 10.5194/gmd-9-3569-2016 DOI

Minunno, F. , Hartig, F. , & Trotsiuk, V. (2019). threePGN – A Fortran implementation of the 3PGN model for R. Retrieved from https://github.com/checcomi/threePGN-package

Minunno, F. , Peltoniemi, M. , Härkönen, S. , Kalliokoski, T. , Makinen, H. , & Mäkelä, A. (2019). Bayesian calibration of a carbon balance model PREBAS using data from permanent growth experiments and national forest inventory. Forest Ecology and Management, 440, 208–257. 10.1016/j.foreco.2019.02.041 DOI

Moran, E. V. , Hartig, F. , & Bell, D. M. (2016). Intraspecific trait variation across scales: Implications for understanding global change responses. Global Change Biology, 22, 137–150. 10.1111/gcb.13000 PubMed DOI

Nemani, R. R. , Keeling, C. D. , Hashimoto, H. , Jolly, W. M. , Piper, S. C. , Tucker, C. J. , … Running, S. W. (2003). Climate‐driven increases in global terrestrial net primary production from 1982 to 1999. Science, 300, 1560–1563. 10.1126/science.1082750 PubMed DOI

Niu, S. , Luo, Y. , Dietze, M. C. , Keenan, T. F. , Shi, Z. , Li, J. , & Stuart Chapin III, F. (2014). The role of data assimilation in predictive ecology. Ecosphere, 5, art65 10.1890/ES13-00273.1 DOI

Nolè, A. , Law, B. E. , Magnani, F. , Matteucci, G. , Ferrara, A. , Ripullone, F. , & Borghetti, M. (2009). Application of the 3‐PGS model to assess carbon accumulation in forest ecosystems at a regional level. Canadian Journal of Forest Research, 39, 1647–1661. 10.1139/X09-077 DOI

Peng, C. , Guiot, J. , Wu, H. , Jiang, H. , & Luo, Y. (2011). Integrating models with data in ecology and palaeoecology: Advances towards a model–data fusion approach. Ecology Letters, 14, 522–536. 10.1111/j.1461-0248.2011.01603.x PubMed DOI

Peylin, P. , Bacour, C. , MacBean, N. , Leonard, S. , Rayner, P. , Kuppel, S. , … Prunet, P. (2016). A new stepwise carbon cycle data assimilation system using multiple data streams to constrain the simulated land surface carbon cycle. Geoscientific Model Development, 9, 3321–3346. 10.5194/gmd-9-3321-2016 DOI

Piao, S. , Nan, H. , Huntingford, C. , Ciais, P. , Friedlingstein, P. , Sitch, S. , … Chen, A. (2014). Evidence for a weakening relationship between interannual temperature variability and northern vegetation activity. Nature Communications, 5, 5018 10.1038/ncomms6018 PubMed DOI

Pretzsch, H. , Forrester, D. I. , & Rötzer, T. (2015). Representation of species mixing in forest growth models. A review and perspective. Ecological Modelling, 313, 276–292. 10.1016/j.ecolmodel.2015.06.044 DOI

Primicia, I. , Camarero, J. J. , Janda, P. , Čada, V. , Morrissey, R. C. , Trotsiuk, V. , … Svoboda, M. (2015). Age, competition, disturbance and elevation effects on tree and stand growth response of primary Picea abies forest to climate. Forest Ecology and Management, 354, 77–86. 10.1016/j.foreco.2015.06.034 DOI

R Core Team . (2018). R: A language and environment for statistical computing. Vienna, Austria: R Foundation for Statistical Computing.

Reichstein, M. , Bahn, M. , Ciais, P. , Frank, D. , Mahecha, M. D. , Seneviratne, S. I. , … Wattenbach, M. (2013). Climate extremes and the carbon cycle. Nature, 500, 287–295. 10.1038/nature12350 PubMed DOI

Rollinson, C. R. , Liu, Y. , Raiho, A. , Moore, D. J. P. , McLachlan, J. , Bishop, D. A. , … Dietze, M. C. (2017). Emergent climate and CO2 sensitivities of net primary productivity in ecosystem models do not agree with empirical data in temperate forests of eastern North America. Global Change Biology, 23, 2755–2767. 10.1111/gcb.13626 PubMed DOI

Running, S. , Mu, Q. , & Zhao, M. (2011). MOD17A3 MODIS/Terra Net Primary Production Yearly L4 Global 1 km SIN Grid V055. NASA EOSDIS Land Processes DAAC.

Sands, P. J. , & Landsberg, J. J. (2002). Parameterisation of 3‐PG for plantation grown Eucalyptus globulus . Forest Ecology and Management, 163, 273–292. 10.1016/S0378-1127(01)00586-2 DOI

Schaub, M. , Dobbertin, M. , Kräuchi, N. , & Dobbertin, M. K. (2011). Preface—long‐term ecosystem research: Understanding the present to shape the future. Environmental Monitoring and Assessment, 174, 1–2. 10.1007/s10661-010-1756-1 PubMed DOI

Scholze, M. , Buchwitz, M. , Dorigo, W. , Guanter, L. , & Quegan, S. (2017). Reviews and syntheses: Systematic Earth observations for use in terrestrial carbon cycle data assimilation systems. Biogeosciences, 14, 3401–3429. 10.5194/bg-14-3401-2017 DOI

Schulze, E.‐D. , Kelliher, F. M. , Korner, C. , Lloyd, J. , & Leuning, R. (1994). Relationships among maximum stomatal conductance, ecosystem surface conductance, carbon assimilation rate, and plant nitrogen nutrition: A global ecology scaling exercise. Annual Review of Ecology and Systematics, 25, 629–660. 10.1146/annurev.es.25.110194.003213 DOI

Schurman, J. S. , Babst, F. , Björklund, J. , Rydval, M. , Bače, R. , Čada, V. , … Svoboda, M. (2019). The climatic drivers of primary Picea forest growth along the Carpathian arc are changing under rising temperatures. Global Change Biology, 25(9), 3136–3150. 10.1111/gcb.14721 PubMed DOI

Seddon, A. W. R. , Macias‐Fauria, M. , Long, P. R. , Benz, D. , & Willis, K. J. (2016). Sensitivity of global terrestrial ecosystems to climate variability. Nature, 531, 229–232. 10.1038/nature16986 PubMed DOI

Senf, C. , Pflugmacher, D. , Zhiqiang, Y. , Sebald, J. , Knorn, J. , Neumann, M. , … Seidl, R. (2018). Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nature Communications, 9, 4978 10.1038/s41467-018-07539-6 PubMed DOI PMC

Shestakova, T. A. , Voltas, J. , Saurer, M. , Berninger, F. , Esper, J. , Andreu‐Hayles, L. , … Gutiérrez, E. (2019). Spatio‐temporal patterns of tree growth as related to carbon isotope fractionation in European forests under changing climate. Global Ecology and Biogeography, 28, 1295–1309. 10.1111/geb.12933 DOI

Sommerfeld, A. , Senf, C. , Buma, B. , D'Amato, A. W. , Després, T. , Díaz‐Hormazábal, I. , … Seidl, R. (2018). Patterns and drivers of recent disturbances across the temperate forest biome. Nature Communications, 9, 4355 10.1038/s41467-018-06788-9 PubMed DOI PMC

Swiss Federal Statistical Office . (2000). Swiss soil suitability map. BFS GEOSTAT. Retrieved from https://www.bfs.admin.ch/bfs/de/home/dienstleistungen/geostat/geodaten-bundesstatistik/boden-nutzung-bedeckung-eignung/abgeleitete-und-andere-daten/bodeneignungskarte-schweiz.html

ter Braak, C. J. F. , & Vrugt, J. A. (2008). Differential evolution markov chain with snooker updater and fewer chains. Statistics and Computing, 18, 435–446. 10.1007/s11222-008-9104-9 DOI

Thimonier, A. , Pannatier, E. G. , Schmitt, M. , Waldner, P. , Walthert, L. , Schleppi, P. , … Kräuchi, N. (2010). Does exceeding the critical loads for nitrogen alter nitrate leaching, the nutrient status of trees and their crown condition at Swiss Long‐term Forest Ecosystem Research (LWF) sites? European Journal of Forest Research, 129, 443–461. 10.1007/s10342-009-0328-9 DOI

Thomas, R. Q. , Brooks, E. B. , Jersild, A. L. , Ward, E. J. , Wynne, R. H. , Albaugh, T. J. , … Teskey, R. O. (2017). Leveraging 35 years of Pinus taeda research in the southeastern US to constrain forest carbon cycle predictions: Regional data assimilation using ecosystem experiments. Biogeosciences, 14, 3525–3547. 10.5194/bg-14-3525-2017 DOI

Thornton, P. E. , Running, S. W. , & White, M. A. (1997). Generating surfaces of daily meteorological variables over large regions of complex terrain. Journal of Hydrology, 190, 214–251. 10.1016/S0022-1694(96)03128-9 DOI

UNECE ICP FOrests Programme Co‐ordinating Centre (Ed.). (2016). Manual on methods and criteria for harmonized sampling, assessment, monitoring and analysis of the effects of air pollution on forests. Eberswalde, Germany: Thunen Institute of Forest Ecosystems.

van Oijen, M. (2017). Bayesian methods for quantifying and reducing uncertainty and error in forest models. Current Forestry Reports, 3, 269–280. 10.1007/s40725-017-0069-9 DOI

van Oijen, M. , Reyer, C. , Bohn, F. J. , Cameron, D. R. , Deckmyn, G. , Flechsig, M. , … Rammer, W. (2013). Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. Forest Ecology and Management, 289, 255–268. 10.1016/j.foreco.2012.09.043 DOI

Vanderwel, M. C. , Rozendaal, D. M. A. , & Evans, M. E. K. (2017). Predicting the abundance of forest types across the eastern United States through inverse modelling of tree demography. Ecological Applications, 27, 2128–2141. 10.1002/eap.1596 PubMed DOI

Vicente‐Serrano, S. M. , Gouveia, C. , Camarero, J. J. , Beguería, S. , Trigo, R. , López‐Moreno, J. I. , … Sanchez‐Lorenzo, A. (2013). Response of vegetation to drought time‐scales across global land biomes. Proceedings of the National Academy of Sciences of the United States of America, 110, 52–57. 10.1073/pnas.1207068110 PubMed DOI PMC

Vitali, V. , Büntgen, U. , & Bauhus, J. (2017). Silver fir and Douglas fir are more tolerant to extreme droughts than Norway spruce in south‐western Germany. Global Change Biology, 23, 5108–5119. 10.1111/gcb.13774 PubMed DOI

Vitasse, Y. , Bottero, A. , Cailleret, M. , Bigler, C. , Fonti, P. , Gessler, A. , … Wohlgemuth, T. (2019). Contrasting resistance and resilience to extreme drought and late spring frost in five major European tree species. Global Change Biology, 25, 3781–3792. 10.1111/gcb.14803 PubMed DOI

Waring, R. H. , Landsberg, J. J. , & Williams, M. (1998). Net primary production of forests: A constant fraction of gross primary production? Tree Physiology, 18, 129–134. 10.1093/treephys/18.2.129 PubMed DOI

Wüest, R. O. , Bergamini, A. , Bollmann, K. , & Baltensweiler, A. (2020). LiDAR data as a proxy for light availability improve distribution modelling of woody species. Forest Ecology and Management, 456, 117644 10.1016/j.foreco.2019.117644 DOI

Yoda, K. (1963). Self‐thinning in overcrowded pure stands under cultivated and natural conditions (Intraspecific competition among higher plants. XI). Journal of the Institute of Polytechnics, Osaka City University. Series D, 14, 107–129.

Zhang, Y. , Xu, M. , Chen, H. , & Adams, J. (2009). Global pattern of NPP to GPP ratio derived from MODIS data: Effects of ecosystem type, geographical location and climate. Global Ecology and Biogeography, 18, 280–290. 10.1111/j.1466-8238.2008.00442.x DOI

Zhang, Z. , Babst, F. , Bellassen, V. , Frank, D. , Launois, T. , Tan, K. , … Poulter, B. (2018). Converging climate sensitivities of european forests between observed radial tree growth and vegetation models. Ecosystems, 21, 410–425. 10.1007/s10021-017-0157-5 DOI

Zianis, D. , & Mencuccini, M. (2005). Aboveground net primary productivity of a beech (Fagus moesiaca) forest: A case study of Naousa forest, northern Greece. Tree Physiology, 25, 713–722. 10.1093/treephys/25.6.713 PubMed DOI

Zielis, S. , Etzold, S. , Zweifel, R. , Eugster, W. , Haeni, M. , & Buchmann, N. (2014). NEP of a Swiss subalpine forest is significantly driven not only by current but also by previous year's weather. Biogeosciences, 11, 1627–1635. 10.5194/bg-11-1627-2014 DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

    Možnosti archivace