Spatial configuration matters when removing windfelled trees to manage bark beetle disturbances in Central European forest landscapes
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články
Grantová podpora
Y 895
Austrian Science Fund FWF - Austria
PubMed
31731030
PubMed Central
PMC7612771
DOI
10.1016/j.jenvman.2019.109792
PII: S0301-4797(19)31510-5
Knihovny.cz E-zdroje
- Klíčová slova
- Climate change, Forest landscape, Process-based ecosystem modelling, Sanitation logging, Wind-bark beetle interactions,
- MeSH
- brouci * MeSH
- kůra rostlin MeSH
- lesy MeSH
- stromy * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Norsko MeSH
Windfelled Norway spruce (Picea abies) trees play a crucial role in triggering large-scale outbreaks of the European spruce bark beetle Ips typographus. Outbreak management therefore strives to remove windfelled trees to reduce the risk of outbreaks, a measure referred to as sanitation logging (SL). Although this practice has been traditionally applied, its efficiency in preventing outbreaks remains poorly understood. We used the landscape simulation model iLand to investigate the effects of different spatial configurations and intensities of SL of windfelled trees on the subsequent disturbance by bark beetles. We studied differences between SL applied evenly across the landscape, focused on the vicinity of roads (scenario of limited logging resources) and concentrated in a contiguous block (scenario of spatially diversified management objectives). We focused on a 16 050 ha forest landscape in Central Europe. The removal of >80% of all windfelled trees is required to substantially reduce bark beetle disturbances. Focusing SL on the vicinity of roads created a "fire break effect" on bark beetle spread, and was moderately efficient in reducing landscape-scale bark beetle disturbance. Block treatments substantially reduced outbreaks in treated areas. Leaving parts of the landscape untreated (e.g., conservation areas) had no significant amplifying effect on outbreaks in managed areas. Climate change increased bark beetle disturbances and reduced the effect of SL. Our results suggest that past outbreak management methods will not be sufficient to counteract climate-mediated increases in bark beetle disturbance.
Zobrazit více v PubMed
Abdullah H, Darvishzadeh R, Skidmore AK, Groen TA, Heurich M. European spruce bark beetle (Ips typographus, L.) green attack affects foliar reflectance and biochemical properties. Int J Appl Earth Obs Geoinf. 2018;64:199–209. doi: 10.1016/j.jag.2017.09.009. DOI
Abdullah H, Skidmore AK, Darvishzadeh R, Heurich M. Sentinel-2 accurately maps green-attack stage of European spruce bark beetle (Ips typographus, L.) compared with Landsat-8. Remote Sens Ecol Conserv. 2019;5:87–106. doi: 10.1002/rse2.93. DOI
Anderbrant O. Reemergence and second brood in the bark beetle Ips typographus. Ecography. 2006;12:494–500. doi: 10.1111/j.1600-0587.1989.tb00927.x. DOI
Baier P, Pennerstorfer J, Schopf A. PHENIPS-A comprehensive phenology model of Ips typographus (L.) (Col., Scolytinae) as a tool for hazard rating of bark beetle infestation. For Ecol Manage. 2007;249:171–186. doi: 10.1016/j.foreco.2007.05.020. DOI
Berec L, Doležal P, Hais M. Population dynamics of Ips typographus in the Bohemian Forest (Czech Republic): validation of the phenology model PHENIPS and impacts of climate change. For Ecol Manage. 2013;292:1–9. doi: 10.1016/j.foreco.2012.12.018. DOI
Blennow K, Sallnäs O. WINDA − a system of models for assessing the probability of wind damage to forest stands within a landscape. Ecol Model. 2004;175:87–99. doi: 10.1016/j.ecolmodel.2003.10.009. DOI
Braziunas KH, Hansen WD, Seidl R, Rammer W, Turner MG. Forest Ecology and Management Looking beyond the mean: drivers of variability in post fire stand development of conifers in Greater Yellowstone. For Ecol Manage. 2018;430:460–471. doi: 10.1016/j.foreco.2018.08.034. PubMed DOI PMC
Dobor L, Hlásny T, Rammer W, Barka I, Trombik J, Pavlenda P, Šebeň V, Štňpánek P, Seidl R. Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change. Agric For Meteorol. 2018;263:308–322. doi: 10.1016/j.agrformet.2018.08.028. PubMed DOI PMC
Dobor L, Hlásny T, Rammer W, Zimová S, Barka I, Seidl R. Is salvage logging effectively dampening bark beetle outbreaks and preserving forest carbon stocks? J Appl Ecol. 2019 doi: 10.1111/1365-2664.13518. accepted. DOI
Dobor L, Hlaasny T, Rammer W, Zimovaa S, Barka I, Seidl R. Data from: Spatial Configuration Matters when Removing Windfelled Trees to Manage Bark Beetle Disturbances in Central European Forest Landscapes. 2019. PubMed DOI PMC
Eriksson M, Neuvonen S, Roininen H. Retention of wind-felled trees and the risk of consequential tree mortality by the European spruce bark beetle Ips typographus in Finland. Scand J For Res. 2007;22:516–523. doi: 10.1080/02827580701800466. DOI
Fettig CJ, Klepzig KD, Billings RF, Munson AS, Nebeker TE, Negrón JF, Nowak JT. The effectiveness of vegetation management practices for prevention and control of bark beetle infestations in coniferous forests of the western and southern United States. For Ecol Manage. 2007;238:24–53. doi: 10.1016/j.foreco.2006.10.011. DOI
Fleischer P. Windfall research and monitoring in the High Tatra Mts., objectives, principles, methods, and current status. Contrib Geophys Geodes. 2008;38:233–248.
Fleischer P, Fleischer P, Ferenčíak J, Hlaváč P, Kozánek M. Elevated bark temperature in unremoved stumps after disturbances facilitates multi-voltinism in Ips typographus population in a mountainous forest. For J. 2016;62:15–22. doi: 10.1515/forj-2016-0002. DOI
Galko J, Nikolov C, Kunca A, Vakula J, Zûbrik M, Rell S, Konôpka B. Effectiveness of pheromone traps for the European spruce bark beetle: a comparative study of four commercial products and two new models. For J. 2016;62:207–215. doi: 10.1515/forj-2016-0027. DOI
Giorgi F, Jones C, Asrar GR. Addressing climate information needs at the regional level: the CORDEX framework World Meteorol. Organ Bull. 2009;58:175–183.
Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Wiegand T, DeAngelis DL. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science (80- ) 2005;310:987–991. doi: 10.1126/science.1116681. PubMed DOI
Grodzki W, Jakuš R, Lajzová E, Sitková Z, Maczka T, Škvarenina J. Effects of intensive versus no management strategies during an outbreak of the bark beetle Ips typographus (L.) (Col.: Curculionidae, Scolytinae) in the Tatra Mts in Poland and Slovakia. Ann For Sci. 2006;63:55–61. doi: 10.1051/forest:2005097. DOI
Hlásny T, Krokene P, Liebhold A, Montagné-Huck C, Müller J, Qin H, Raffa K, Schelhaas M-J, Seidl R, Svoboda M, Viiri H. Living with Bark Beetles: Impacts, Outlook and Management Options From Science to Policy. Vol. 8. European Forest Institute; 2019.
Hlásny T, Turčáani M. Persisting bark beetle outbreak indicates the unsustainability of secondary Norway spruce forests: case study from Central Europe. Ann For Sci. 2013;70:481–491. doi: 10.1007/s13595-013-0279-7. DOI
Holuša J, Hlášny T, Modlinger R, Lukášová K, Kula E. Felled trap trees as the traditional method for bark beetle control: can the trapping performance be increased? For Ecol Manage. 2017;404:165–173. doi: 10.1016/j.foreco.2017.08.019. DOI
IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change IPCC. Geneva, Switzerland: 2014.
Jönsson AM, Appelberg G, Harding S, Bärring L. Spatio-temporal impact of climate change on the activity and voltinism of the spruce bark beetle, Ips typographus. Glob Chang Biol. 2009;15:486–499. doi: 10.1111/j.1365-2486.2008.01742.x. DOI
Kausrud K, Økland B, Skarpaas O, Grégoire JC, Erbilgin N, Stenseth NC. Population dynamics in changing environments: the case of an eruptive forest pest species. Biol Rev. 2011 doi: 10.1111/j.1469-185X.2011.00183.x. PubMed DOI
Kautz M, Dworschak K, Gruppe A, Schopf R. Quantifying spatio-temporal dispersion of bark beetle infestations in epidemic and non-epidemic conditions. For Ecol Manage. 2011;262:598–608. doi: 10.1016/j.foreco.2011.04.023. DOI
Kautz M, Schopf R, Ohser J. The sun-effect: microclimatic alterations predispose forest edges to bark beetle infestations. Eur J For Res. 2013;132:453–465. doi: 10.1007/s10342-013-0685-2. DOI
King AD, Karoly DJ. Climate extremes in Europe at 1.5 and 2 degrees of global warming. Environ Res Lett. 2017;12
Kolström M, Lindner M, Vilén T, Maroschek M, Seidl R, Lexer MJ, Netherer S, Kremer A, Delzon S, Barbati A, Marchetti M, et al. Reviewing the science and implementation of climate change adaptation measures in european forestry. Forests. 2011;2:961–982. doi: 10.3390/f2040961. DOI
Komonen A, Schroeder LM, Weslien J. Ips typographus population development after a severe storm in a nature reserve in southern Sweden. J Appl Entomol. 2011;135:132–141. doi: 10.1111/j.1439-0418.2010.01520.x. DOI
Konôpka B, Zach P, Kulfan J. Wind − an important ecological factor and destructive agent in forests. For J. 2016;62:123–130. doi: 10.1515/forj-2016-0013. DOI
Lamers P, Junginger M, Dymond CC, Faaij A. Damaged forests provide an opportunity to mitigate climate change. GCB Bioenergy. 2014;6:44–60. doi: 10.1111/gcbb.12055. DOI
Leverkus AB, Benayas JMR, Castro J, Boucher D, Brewer S, Collins BM, Donato D, Fraver S, Kishchuk BE, Lee E, Lindenmayer DB, et al. Salvage logging effects on regulating and supporting ecosystem services — a systematic map. Can J For Res. 2018;48:983–1000. doi: 10.1139/cjfr-2018-0114. DOI
Lindenmayer DB, Noss RF. Salvage logging, ecosystem processes, and biodiversity conservation. Conserv Biol. 2006;20:949–958. doi: 10.1111/j.1523-1739.2006.00497.x. PubMed DOI
Lindner M, Maroschek M, Netherer S, Kremer A, Barbati A, Garcia-Gonzalo J, Seidl R, Delzon S, Corona P, Kolström M, Lexer MJ, et al. Climate change impacts, adaptive capacity, and vulnerability of European forest ecosystems. For Ecol Manage. 2010;259:698–709. doi: 10.1016/j.foreco.2009.09.023. DOI
Mäkelä A. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res. 2003;33:398–409. doi: 10.1139/x02-130. DOI
Marini L, Økland B, Jönsson AM, Bentz B, Carroll A, Forster B, Gregoire J, Hurling R, Nageleisen LM, Netherer S, Ravn HP, et al. Climate drivers of bark beetle outbreak dynamics in Norway spruce forests. Ecography. 2017;40:1426–1435. doi: 10.1111/ecog.02769. DOI
Matthews B, Netherer S, Katzensteiner K, Pennerstorfer J, Blackwell E, Henschke P, Hietz P, Rosner S, Jansson P, Schume H, Schopf A. Transpiration deficits increase host susceptibility to bark beetle attack: experimental observations and practical outcomes for Ips typographus hazard assessment. Agric For Meteorol. 2018;263:69–89. doi: 10.1016/j.agrformet.2018.08.004. DOI
Mezei P, Jakuš R, Pennerstorfer J, Havašová M, Škvarenina J, Ferenčík J, Slivinský J, Bičárova S, Bilčík D, Blazenec M, Netherer S. Storms, temperature maxima and the Eurasian spruce bark beetle Ips typographus—an infernal trio in Norway spruce forests of the Central European High Tatra Mountains Agric. For Meteorol. 2017;242:85–95. doi: 10.1016/j.agrformet.2017.04.004. DOI
Millar CI, Stephenson NL. Temperate forest health in an era of emerging megadisturbance. Science (80- ) 2015;349:823–826. PubMed
Molinas-Gonzáles CR, Leverkus AB, Marañón-Jimenéz S, Castro J. Fall rate of burnt pines across an elevational gradient in a Mediterranean mountain. Eur J For Res. 2017;136:401–409. doi: 10.1007/s10342-017-1040-9. DOI
Montano V, Bertheau C, Doležal P, Krumböck S, Okrouhík J, Stauffer C, Moodley Y. How differential management strategies affect Ips typographus L. dispersal. For Ecol Manage. 2016;360:195–204. doi: 10.1016/j.foreco.2015.10.037. DOI
Morris JL, Cottrell S, Fettig CJ, Hansen WD, Sherriff RL, Carter VA, Clear JL, Clement J, Derose RJ, Hicke JA, Higuera PE, et al. Managing bark beetle impacts on ecosystems and society: priority questions to motivate future research. J Appl Ecol. 2017;54:750–760. doi: 10.1111/1365-2664.12782. DOI
Morris JL, Cottrell S, Fettig CJ, Hansen WD, Sherriff RL, Carter VA, Clear J, Clement J, DeRose RJ, Hicke JA, Higuera PE, et al. Bark beetles as agents of change in social-ecological systems. Front Ecol Environ. 2018;16(S1):S34–S43. doi: 10.1002/fee.1754. DOI
Müller J, Noss RF, Thorn S, Bässler C, Leverkus AB, Lindenmayer D. Increasing disturbance demands new policies to conserve intact forest. Conserv Lett. 2018;e12449:1–7. doi: 10.1111/conl.12449. DOI
Netherer S, Matthews B, Katzensteiner K, Blackwell E, Henschke P, Hietz P, Pennerstorfer J, Rosner S, Kikuta S, Schume H, Schopf A. Do water-limiting conditions predispose Norway spruce to bark beetle attack? New Phytol. 2015;205:1128–1141. doi: 10.1111/nph.13166. PubMed DOI PMC
Økland B, Nikolov C, Krokene P, Vakula J. Transition from windfall-to patch-driven outbreak dynamics of the spruce bark beetle Ips typographus. For Ecol Manage. 2016;363:63–73. doi: 10.1016/j.foreco.2015.12.007. DOI
Potterf M, Bone C. Simulating bark beetle population dynamics in response to windthrow events. Ecol Complex. 2017;32:21–30. doi: 10.1016/j.ecocom.2017.08.003. DOI
Potterf M, Nikolov C, Kocicka E, Ferenčík J, Mezei P, Jakuš R. Landscape-level spread of beetle infestations from windthrown-and beetle-killed trees in the non-intervention zone of the Tatra National Park, Slovakia (Central Europe) For Ecol Manage. 2019;432:489–500. doi: 10.1016/j.foreco.2018.09.050. DOI
Raffa KF, Aukema BH, Bentz BJ, Carroll AL, Hicke JA, Turner MG, Romme WH. Cross-scale drivers of natural disturbances prone to anthropogenic amplification: the dynamics of bark beetle eruptions. Bioscience. 2008;58:501–517. doi: 10.1641/B580607. DOI
Russo L, Russo P, Siettos CI. A complex network theory approach for the spatial distribution of fire breaks in heterogeneous forest landscapes for the control of wildland fires. PLoS One. 2016;1:18. doi: 10.1371/journal.pone.0163226. PubMed DOI PMC
Seidl R, Fernandes PM, Fonseca TF, Gillet F, Jönsson AM, Merganičová K, Netherer S, Arpaci A, Bontemps J-D, Bugmann H, Gonzaalez-Olabarria JR, et al. Modelling natural disturbances in forest ecosystems: a review. Ecol Model. 2011;222:903–924. doi: 10.1016/J.ECOLMODEL.2010.09.040. DOI
Seidl R, Müller J, Hothorn T, Bässler C, Heurich M, Kautz M. Small beetle, large-scale drivers: how regional and landscape factors affect outbreaks of the European spruce bark beetle. J Appl Ecol. 2016;53:530–540. doi: 10.1111/1365-2664.12540. PubMed DOI PMC
Seidl R, Rammer W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc Ecol. 2017;32:1485–1498. doi: 10.1007/s10980-016-0396-4. PubMed DOI PMC
Seidl R, Rammer W, Blennow K. Simulating wind disturbance impacts on forest landscapes: tree-level heterogeneity matters. Environ Model Softw. 2014;51:1–11. doi: 10.1016/j.envsoft.2013.09.018. DOI
Seidl R, Rammer W, Scheller RM, Spies TA. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Model. 2012;231:87–100. doi: 10.1016/j.ecolmodel.2012.02.015. DOI
Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Chang. 2014;4:806. PubMed PMC
Seidl R, Schelhaas MJ, Lindner M, Lexer MJ. Modelling bark beetle disturbances in a large scale forest scenario model to assess climate change impacts and evaluate adaptive management strategies. Reg Environ Chang. 2009;9:101–119. doi: 10.1007/s10113-008-0068-2. DOI
Seidl R, Spies TA, Peterson DL, Stephens SL, Hicke JA. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol. 2016;53:120–129. doi: 10.1111/1365-2664.12511. PubMed DOI PMC
Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K. Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with lidar and an individual-based landscape model. Ecosystems. 2012;15:1321–1335. doi: 10.1007/s10021-012-9587-2. DOI
Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, et al. Forest disturbances under climate change. Nat Clim Chang. 2017;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC
Senf C, Pflugmacher D, Hostert P, Seidl R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J Photogrammetry Remote Sens. 2017;130:453–463. doi: 10.1016/j.isprsjprs.2017.07.004. PubMed DOI PMC
Senf C, Pflugmacher D, Zhiqiang Y, Sebald J, Knorn J, Neumann M, Hostert P, Seidl R. Canopy mortality has doubled in Europe's temperate forests over the last three decades. Nat Commun. 2018;9:1–8. doi: 10.1038/s41467-018-07539-6. PubMed DOI PMC
Senf C, Seidl R. Natural disturbances are spatially diverse but temporally synchronized across temperate forest landscapes in Europe. Glob Chang Biol. 2018;24:1201–1211. doi: 10.1111/gcb.13897. PubMed DOI PMC
Schroeder LM. Colonization of storm gaps by the spruce bark beetle: influence of gap and landscape characteristics. Agric For Entomol. 2010;12:29–39. doi: 10.1111/j.1461-9563.2009.00447.x. DOI
Schroeder LM. Escape in space from enemies: a comparison between stands with and without enhanced densities of the spruce bark beetle. Agric For Entomol. 2007;9:85–91. doi: 10.1111/j.1461-9563.2007.00323.x. DOI
Schroeder LM, Lindelöw Å. Attacks on living spruce trees by the bark beetle ips typographus (Col Scolytidae) following a storm-felling: a comparison between stands with and without removal of wind-felled trees. Agric For Entomol. 2002;4:47–56. doi: 10.1046/j.1461-9563.2002.00122.x. DOI
Silva Pedro M, Rammer W, Seidl R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. 2015;177:619–630. doi: 10.1007/s00442-014-3150-0. PubMed DOI
Sommerfeld A, Senf C, Buma B, Amato AWD, Després T, Díaz-Hormazábal I, Fraver S, Frelich LE, Gutiéarrez ÁG, Hart SJ, Harvey BJ, et al. Patterns and drivers of recent disturbances across the temperate forest biome. Nat Commun. 2018;9:1–9. doi: 10.1038/s41467-018-06788-9. PubMed DOI PMC
Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For Ecol Manage. 2013;305:273–281. doi: 10.1016/j.foreco.2013.06.003. DOI
Temperli C, Bugmann H, Elkin C. Cross-scale interactions among bark beetles, climate change, and wind disturbances: a landscape modeling approach. Ecol Monogr. 2013;83:383–402. doi: 10.1890/12-1503.1. DOI
Thom D, Rammer W, Dirnböck T, Müller J, Kobler J, Katzensteiner K, Helm N, Seidl R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol. 2017;54:28–38. doi: 10.1111/1365-2664.12644. PubMed DOI PMC
Thom D, Rammer W, Seidl R. Disturbances catalyze the adaptation of forest ecosystems to changing climate conditions. Glob Chang Biol. 2017;23:269–282. doi: 10.1111/gcb.13506. PubMed DOI PMC
Thom D, Rammer W, Seidl R. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol Monogr. 2017;87:665–684. doi: 10.1002/ecm.1272. PubMed DOI PMC
Thorn S, Bässler C, Brandl R, Burton PJ, Cahall R, Campbell JL, Castro J, Choi CY, Cobb T, Donato DC, Durska E, et al. Impacts of salvage logging on biodiversity: a meta-analysis. J Appl Ecol. 2017;55:279–289. doi: 10.1111/1365-2664.12945. PubMed DOI PMC
Wermelinger B. Ecology and management of the spruce bark beetle Ipstypographus − a review of recent research. For Ecol Manage. 2004;202:67–82. doi: 10.1016/j.foreco.2004.07.018. DOI
Wermelinger B, Epper C, Kenis M, Ghosh S, Holdenrieder O. Emergence patterns of univoltine and bivoltine Ips typographus (L.) populations and associated natural enemies. J Appl Entomol. 2012;136:212–224. doi: 10.1111/j.1439-0418.2011.01629.x. DOI
Wermelinger B, Obrist MK, Baur H, Jakoby O, Duelli P. Synchronous rise and fall of bark beetle and parasitoid populations in windthrow areas. Agric For Entomol. 2013;15:301–309. doi: 10.1111/afe.12018. DOI
Wermelinger B, Seifert M. Analysis of the temperature dependent development of the spruce bark beetle Ips typographus (L) (Col., Scolytidae) J Appl Entomol. 1998;122:185–191. doi: 10.1111/j.1439-0418.1998.tb01482.x. DOI
Wichmann L, Ravn HP. The spread of Ips typographus (L.) (Coleoptera, Scolytidae) attacks following heavy windthrow in Denmark, analysed using GIS. For Ecol Manage. 2001;148:31–39. doi: 10.1016/S0378-1127(00)00477-1. DOI