Post-disturbance recovery of forest carbon in a temperate forest landscape under climate change

. 2018 Dec 15 ; 263 () : 308-322. [epub] 20180913

Status PubMed-not-MEDLINE Jazyk angličtina Země Nizozemsko Médium print-electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid35633776

Grantová podpora
Y 895 Austrian Science Fund FWF - Austria

Disturbances alter composition, structure, and functioning of forest ecosystems, and their legacies persist for decades to centuries. We investigated how temperate forest landscapes may recover their carbon (C) after severe wind and bark beetle disturbance, while being exposed to climate change. We used the forest landscape and disturbance model iLand to quantify (i) the recovery times of the total ecosystem C, (ii) the effect of climate change on C recovery, and (iii) the differential factors contributing to C recovery. We reconstructed a recent disturbance episode (2008-2016) based on Landsat satellite imagery, which affected 39% of the forest area in the 16,000 ha study landscape. We subsequently simulated forest recovery under a continuation of business-asusual management until 2100. Our results indicated that the recovery of the pre-disturbance C stocks (C payback time) was reached 17 years after the end of the disturbance episode. The C stocks of a theoretical undisturbed development trajectory were reached 30 years after the disturbance episode (C sequestration parity). Drier and warmer climates delayed simulated C recovery. Without the fertilizing effect of CO2, C payback times were delayed by 5-9 years, while C parity was not reached within the 21st century. Recovery was accelerated by an enhanced C uptake compared to undisturbed conditions (disturbance legacy sink effect) that persisted for 35 years after the disturbance episode. Future climate could have negative impacts on forest recovery and thus further amplify climate change through C loss from ecosystems, but the effect is strongly contingent on the magnitude and persistence of alleviating CO2 effects. Our modelling study highlights the need to consider both negative and positive effects of disturbance (i.e., C loss immediately after an event vs. enhanced C uptake of the recovering forest) in order to obtain a comprehensive understanding of disturbance effects on the forest C cycle.

Zobrazit více v PubMed

Aguilos M, Takagi K, Liang N, Ueyama M, Fukuzawa K, Nomura M, Kishida O, Fukazawa T, Takahashi H, Kotsuka C, Sakai R, et al. Dynamics of ecosystem carbon balance recovering from a clear-cutting in a cool-temperate forest. Agric For Meteorol. 2014;197:26–39. doi: 10.1016/j.agrformet.2014.06.002. DOI

Albrecht AT, Kohnle U, Hanewinkel M, Bauhus J. Storm damage of Douglas-fir unexpectedly high compared to Norway spruce. Ann For Sci. 2013;70:195–207. doi: 10.1007/s13595-012-0244-x. DOI

Amiro BD, Orchansky AL, Barr AG, Black TA, Chambers SD, Chapin FS, Goulden ML, Litvak M, Liu HP, McCaughey JH, McMillan A, et al. The effect of post-fire stand age on the boreal forest energy balance. Agric For Meteorol. 2006;140:41–50. doi: 10.1016/j.agrformet.2006.02.014. DOI

Amiro BD, Barr AG, Barr JG, Black TA, Bracho R, Brown M, Chen J, Clark KL, Davis KJ, Desai AR, Dore S, et al. Ecosystem carbon dioxide fluxes after disturbance in forests of North America. J Geophys Res. 2010;115:G00K02. doi: 10.1029/2010JG001390. DOI

Anderegg WRL, Schwalm C, Biondi F, Camarero JJ, Koch G, Litvak M, Ogle K, Shaw JD, Shevliakova E, Williams AP, Wolf A, et al. Pervasive drought legacies in forest ecosystems and their implications for carbon cycle models. Science (80-.) 2015;349:528–532. doi: 10.1126/science.aab1833. PubMed DOI

Bače R, Schurman JS, Brabec M, Cada V, Després T, Janda P, Lábusová J, Mikoláš M, Morrissey RC, Mrhalová H, Nagel TA, et al. Long-term responses of canopy–understorey interactions to disturbance severity in primary Picea abies forests. J Veg Sci. 2017;28:1128–1139. doi: 10.1111/jvs.12581. DOI

Bellassen V, Luyssaert S. Carbon sequestration: managing forests in uncertain times. Nature. 2014;506:153–155. doi: 10.1038/506153a. PubMed DOI

Bonazzi A, Cusack S, Mitas C, Jewson S. Spatial structure of European storms model validation based on the univariate distribution of wind speeds. Nat Hazards Earth Syst Sci Discuss. 2012;12:1769–1782. doi: 10.5194/nhess-12-1769-2012. DOI

Bradford JB, Fraver S, Milo AM, D’Amato AW, Palik B, Shinneman DJ. Effects of multiple interacting disturbances and salvage logging on forest carbon stocks. For Ecol Manag. 2012;267:209–214. doi: 10.1016/j.foreco.2011.12.010. DOI

Buckley TN. The role of stomatal acclimation in modelling tree adaptation to high CO2. J Exp Bot. 2008;59:1951–1961. doi: 10.1093/jxb/erm234. PubMed DOI

Buma B. Disturbance interactions: characterization, prediction, and the potential for cascading effects. Ecosphere. 2015;6:1–15. doi: 10.1890/ES15-00058.1. DOI

Buma B, Brown CD, Donato DC, Fontaine JB, Johnstone JF. The impacts of changing disturbance regimes on serotinous plant populations and communities. Bioscience. 2013;63:866–876. doi: 10.1525/bio.2013.63.11.5. DOI

Chapin FS, Matson PA, Mooney HA. Principles of Terrestrial Ecosystem Ecology. Springer-Verlag; New York: 2002.

Chapin FS, Woodwell GM, Randerson JT, Rastetter EB, Lovett GM, Baldocchi DD, Clark DA, Harmon ME, Schimel DS, Valentini R, Wirth C, et al. Reconciling carbon-cycle concepts, terminology, and methods. Ecosystems. 2006;9:1041–1050. doi: 10.1007/s10021-005-0105-7. DOI

Christensen OB, Drews M, Christensen JH, Dethloff K, Ketelsen K, Hebestadt I, Rinke A. The HIRHAM Regional Climate Model Version 5 (β), DMI Techical Report. Copenhagen: 2007.

Conner MM, Saunders WC, Bouwes N, Jordan C. Evaluating impacts using a BACI design, ratios, and a Bayesian approach with a focus on restoration. Environ Monit Assess. 2016;188(555) doi: 10.1007/s10661-016-5526-6. PubMed DOI PMC

Dymond CC, Neilson ET, Stinson G, Porter K, MacLean DA, Gray DR, Campagna M, Kurz WA. Future spruce budworm outbreak may create a carbon source in eastern Canadian forests. Ecosystems. 2010;13:917–931. doi: 10.1007/s10021-010-9364-z. DOI

Fargione J, Hill J, Tilman D, Polasky S, Hawthorne P. Land clearing and the biofuel carbon debt. Science (80-.) 2008;319:1235–1238. doi: 10.1126/science.1152747. PubMed DOI

Fernández-Martínez M, Vicca S, Janssens IA, Sardans J, Luyssaert S, Campioli M, Chapin FS, III, Ciais P, Malhi Y, Obersteiner M, Papale D, et al. Nutrient availability as the key regulator of global forest carbon balance. Nat Clim Change. 2014;4:471.

Fink AH, Brücher T, Ermert V, Krüger A, Pinto JG. The European storm Kyrill in January 2007: synoptic evolution, meteorological impacts and some considerations with respect to climate change. Nat Hazards Earth Syst Sci Discuss. 2009;9:405–423. doi: 10.5194/nhess-9-405-2009. DOI

Fleischer P, Pichler V, Fleischer P, Jr, Holko L, Máliš F, Gömöryová E, Cudlín P, Holeksa J, Homolová Z, Škvarenina J, St K, et al. Forest ecosystem services affected by natural disturbances, climate and land-use changes in the Tatra Mountains. Clim Chang Res Lett. 2017;73:57–71. doi: 10.3354/cr01461. DOI

Foster DR, Knight DH, Franklin JF. Landscape patterns and legacies resulting from large, infrequent forest disturbances. Ecosystems. 1998;1:497–510. doi: 10.1007/s100219900046. DOI

Friedlingstein P, Fung I, Holland EA, John J, Brasseur GP, Erickson D, Schimel D. On the contribution of CO2 fertilization to the missing biospheric sink. Glob Biogeochem Cycles. 1995;19:541–556. doi: 10.1029/95GB02381. DOI

Friedlingstein P, Joel G, Field CB, Fung IY. Toward an allocation scheme for global terrestrial carbon models. Glob Chang Biol. 1999;5:755–770. doi: 10.1046/j.1365-2486.1999.00269.x. DOI

Fu Z, Li D, Hararuk O, Schwalm C, Luo Y, Yan L. Recovery time and state change of terrestrial carbon cycle after disturbance. Environ Res Lett. 2017;12:104004. doi: 10.1088/1748-9326/aa8a5c. DOI

Gibbs HK, Johnston M, Foley JA, Holloway T, Monfreda C, Ramankutty N, Zaks D. Carbon payback times for crop-based biofuel expansion in the tropics: the effects of changing yield and technology. Environ Res Lett. 2008;3 doi: 10.1088/1748-9326/3/3/034001. DOI

Giorgi F, Jones C, Asrar GR. Addressing climate information needs at the regional level: the CORDEX framework. World Meteorol Organ Bull. 2009;58:175–183.

González-García M, Almeida AC, Hevia A, Majada J, Beadle C. Application of a process-based model for predicting the productivity of Eucalyptus nitens bioenergy plantations in Spain. Glob Change Biol Bioenergy. 2016;8:194–210. doi: 10.1111/gcbb.12256. DOI

Goodale CL, Apps MJ, Birdsey RA, Field CB, Heath LS, Houghton RA, Jenkins JC, Kohlmaier GH, Kurz W, Liu S, Nabuurs GJ, et al. Forest carbon sinks in the Northern Hemisphere. Ecol Appl. 2002;12:891–899. doi: 10.2307/3060997. DOI

Goulden ML, McMillan AMS, Winston GC, Rocha AV, Manies KL, Harden JW, Bond-Lamberty BP. Patterns of NPP, GPP, respiration, and NEP during boreal forest succession. Glob Change Biol. 2010;17:855–871. doi: 10.1111/j.1365-2486.2010.02274.x. DOI

Grimm V, Revilla E, Berger U, Jeltsch F, Mooij WM, Railsback SF, Thulke H-H, Weiner J, Wiegand T, DeAngelis DL. Pattern-oriented modeling of agent-based complex systems: lessons from ecology. Science (80-.) 2005;310:987–991. doi: 10.1126/science.111668. PubMed DOI

Gustafson EJ. When relationships estimated in the past cannot be used to predict the future: using mechanistic models to predict landscape ecological dynamics in a changing world. Landsc Ecol. 2013;28:1429–1437. doi: 10.1007/s10980-013-9927-4. DOI

Halaj J, Petráš R. Rastové tabul ky hlavných drevín. Slovak Academic Press; Bratislava: 1998.

Hansen WD, Braziunas KH, Rammer W, Seidl R, Turner MG. It takes a few to tango: changing climate and fire regimes can cause regeneration failure of two subalpine conifers. Ecology. 2018;99:966–977. doi: 10.1002/ecy.2181. PubMed DOI

Hanson PJ, Wullschleger SD, Norby RJ, Tschaplinski TJ, Gunderson CA. Importance of changing CO2, temperature, precipitation, and ozone on carbon and water cycles of an upland-oak forest: incorporating experimental results into model simulations. Glob Chang Biol. 2005;11:1402–1423. doi: 10.1111/j.1365-2486.2005.00991.x. DOI

Harvey BJ, Donato DC, Turner MG. High and dry: post-fire tree seedling establishment in subalpine forests decreases with post-fire drought and large stand-replacing burn patches. Glob Ecol Biogeogr. 2016;25:655–669. doi: 10.1111/geb.12443. DOI

Hlásny T, Barka I, Roessiger J, Kulla L, Trombik J, Sarvašová Z, Bucha T, Kovalcík M, Cihák T. Conversion of Norway spruce forests in the face of climate change: a case study in Central Europe. Eur J For Res. 2017 doi: 10.1007/s10342-017-1028-5. DOI

Hungerford RD, Nemani RR, Running SW, Coughlan JC. MTCLIM: A Mountain Microclimate Simulation Model. Odgen, UT: 1989.

Hyvönen R, Ågren GI, Linder S, Persson T, Cotrufo MF, Ekblad A, Freeman M, Grelle A, Janssens IA, Jarvis PG, Kellomäki S, et al. The likely impact of elevated [CO2], nitrogen deposition, increased temperature and management on carbon sequestration in temperate and boreal forest ecosystems: a literature review. New Phytol. 2007;173:463–480. doi: 10.1111/j.1469-8137.2007.01967.x. PubMed DOI

Janda P, Trotsiuk V, Mikoláš M, Bace R, Nagel TA, Seidl R, Seedre M, Morrissey RC, Kucbel S, Jaloviar P, Jasík M, et al. The historical disturbance regime of mountain Norway spruce forests in the Western Carpathians and its influence on current forest structure and composition. For Ecol Manage. 2017;388:67–78. doi: 10.1016/j.foreco.2016.08.014. PubMed DOI PMC

Johnstone JF, Allen CD, Franklin JF, Frelich LE, Harvey BJ, Higuera PE, Mack Michelle C, Meentemeyer RK, Metz MR, Perry GL, et al. Changing disturbance regimes, ecological memory, and forest resilience. Front Ecol Environ. 2016;14:369–378. doi: 10.1002/fee.1311. DOI

Jones HP, Schmitz OJ. Rapid recovery of damaged ecosystems. PLoS One. 2009;4 doi: 10.1371/journal.pone.0005653. PubMed DOI PMC

Jonker JGG, Junginger M, Faaij A. Carbon payback period and carbon offset parity point of wood pellet production in the South-eastern United. Glob Change Biol Bioenergy. 2014;6:371–389. doi: 10.1111/gcbb.12056. DOI

Kashian DM, Romme WH, Tinker DB, Turner MG, Ryan MG. Postfire changes in forest carbon storage over a 300-year chronosequence of Pinus contortadominated forests. Ecol Monogr. 2013;83:49–66. doi: 10.1890/11-1454.1. DOI

Keane RE, Loehman RA, Holsinger LM. Gen Tech Rep. Fort Collins, CO; U.S.: 2011. The FireBGCv2 landscape fire and succession model: a research simulation platform for exploring fire and vegetation dynamics. RMRS-GTR-255.

Keenan TF, Gray J, Friedl MA, Toomey M, Bohrer G, Hollinger DY, Munger JW, O’Keefe J, Schmid HP, Wing IS, Yang B, et al. Net carbon uptake has increased through warming-induced changes in temperate forest phenology. Nat Clim Change. 2014;4:598–604. doi: 10.1038/nclimate2253. DOI

Kulakowski D, Seidl R, Holeksa J, Kuuluvainen T, Nagel TA, Panayotov M, Svoboda M, Thorn S, Vacchiano G, Whitlock C, Wohlgemuth T, et al. Forest ecology and management a walk on the wild sid: disturbance dynamics and the conservation and management of European mountain forest ecosystems. For Ecol Manag. 2017;388:120–131. doi: 10.1016/j.foreco.2016.07.037. PubMed DOI PMC

Kunca A, Zúbrik M, Galko J, Vakula J, Leontovyč R, Konôpka B, Nikolov C, Gubka A, Longauerová V, Malová M, Kaštier P, et al. Salvage felling in the Slovak forests in the period 2004-2013. For J. 2015;61:188–195. doi: 10.1515/forj-2015-0027. DOI

Kurz WA, Dymond CC, Stinson G, Rampley GJ, Neilson ET, Carroll AL, Ebada T, Safranyik L. Mountain pine beetle and forest carbon feedback to climate change. Nature. 2008a;452:987–990. doi: 10.1038/nature06777. PubMed DOI

Kurz WA, Stinson G, Rampley G. Could increased boreal forest ecosystem productivity offset carbon losses from increased disturbances? Philos Trans Biol Sci. 2008b doi: 10.1098/rstb.2007.2198. PubMed DOI PMC

Lamers P, Junginger M. The “debt” is in the detail: a synthesis of recent temporal forest carbon analyses on woody biomass forenergy. Biofuels Bioprod Biorefining. 2013;7:373–385. doi: 10.1002/bbb.1407. DOI

Lamers P, Junginger M, Dymond CC, Faaij A. Damaged forests provide an opportunity to mitigate climate change. Gcb Bioenergy. 2014;6:44–60. doi: 10.1111/gcbb.12055. DOI

Landsberg JJ, Waring RH. A generalised model of forest productivity using simplified concepts of radiation-use efficiency, carbon balance and partitioning. For Ecol Manag. 1997;95:209–228. doi: 10.1016/S0378-1127(97)00026-1. DOI

Lindner M, Fitzgerald JB, Zilmmermann NE, Reyer C, Delzon S, van der Maaten E, Schelhaas M-J, Lasch P, Eggers J, van der Maaten-Theunissen M, Suckow F, et al. Climate change and European forests: what do we know, what are the uncertainties, and what are the implications for forest management? J Environ Manan. 2014;146:69–83. doi: 10.1016/j.jenvman.2014.07.030. PubMed DOI

Lindroth A, Lagergren F, Grelle A, Klemedtsson L, Langvall O, Weslien P, Tuulik J. Storms can cause Europe-wide reduction in forest carbon sink. Glob Change Biol. 2009;15:346–355. doi: 10.1111/j.1365-2486.2008.01719.x. DOI

Liu S, Bond-Lamberty B, Hicke JA, Vargas R, Zhao S, Chen J, Edburg SL, Hu Y, Liu J, McGuire AD, Xiao J, et al. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges. J Geophys Res Biogeosci. 2011a;116:1–22. doi: 10.1029/2010JG001585. DOI

Liu S, Bond-Lamberty B, Hicke JA, Vargas R, Zhao S, Chen J, Edburg SL, Hu Y, Liu J, McGuire AD, Xiao J, et al. Simulating the impacts of disturbances on forest carbon cycling in North America: processes, data, models, and challenges. J Geophys Res Biogeosci. 2011b;116:G00K08. doi: 10.1029/2010JG001585. DOI

Lloret F, Keeling EG, Sala A. Components of tree resilience: effects of successive low-growth episodes in old ponderosa pine forests. Oikos. 2011;120:1909–1920. doi: 10.1111/j.1600-0706.2011.19372.x. DOI

Luyssaert S, Inglima I, Jung M, Richardson AD, Reichstein M, Papape D, Piao SL, Schulze E-D, Wingate L, Matteucci G, Aragao L, et al. CO2 balance of boreal, temperate, and tropical forests derived from a global database. Glob Change Biol. 2007;13:2509–2537. doi: 10.1111/j.1365-2486.2007.01439.x. DOI

Mäkelä A. Process-based modelling of tree and stand growth: towards a hierarchical treatment of multiscale processes. Can J For Res. 2003;33:398–409. doi: 10.1139/x02-130. DOI

Mayer M, Sandén H, Rewald B, Godbold DL, Katzensteiner K. Increase in heterotrophic soil respiration by temperature drives decline in soil organic carbon stocks after forest windthrow in a mountainous ecosystem. Funct Ecol. 2017;31:1163–1172. doi: 10.1111/1365-2435.12805. DOI

Medlyn BE, Barton CVM, Broadmeadow MSJ, Ceulemans R, De Angelis P, Forstreuter M, Freeman M, Jackson SB, Kellomäki S, Laitat E, Rey A, et al. Stomatal conductance of forest species after long-term exposure to elevated CO2 concentration: a synthesis. New Phytol. 2001;149:247–264. doi: 10.1046/j.1469-8137.2001.00028.x. PubMed DOI

Metsaranta JM, Dymond CC, Kurz WA, Spittlehouse DL. Uncertainty of 21st century growing stocks and GHG balance of forests in British Columbia, canada resulting from potential climate change impacts on ecosystem processes. For Ecol Manag. 2011;262:827–837. doi: 10.1016/j.foreco.2011.05.016. DOI

Mina M, Martin-Benito D, Bugmann H, Cailleret M. Forward modeling of tree-ring width improves simulation of forest growth responses to drought. Agric For Meteorol. 2016;221:13–33. doi: 10.1016/j.agrformet.2016.02.005. DOI

Minunno F, Xenakis G, Perks MP, Mencuccini M. Calibration and validation of a simplified process-based model for the prediction of the carbon balance of Scottish Sitka spruce (Picea sitchensis) plantations. Can J For Res. 2010;40:2411–2426. doi: 10.1139/X10-181. DOI

Moore DJP, Trahan NA, Wilkes P, Quaife T, Stephens BB, Elder K, Desai AR, Negron J, Monson RK. Persistent reduced ecosystem respiration after insect disturbance in high elevation forests. Ecol Lett. 2013;16:731–737. doi: 10.1111/ele.12097. PubMed DOI PMC

Moss RH, Edmonds JA, Hibbard KA, Manning MR, Rose SK, van Vuuren DP, Carter TR, Emori S, Kainuma M, Kram T, Meehl GA, et al. The next generation of scenarios for climate change research and assessment. Nature. 2010;463:747–756. doi: 10.1038/nature08823. PubMed DOI

Murray FW. On the computation of saturation vapor pressure. J Appl Meteorol Climatol. 1967;6:203–204. doi: 10.1175/1520-0450(1967)006<0203:OTCOSV>2.0.CO;2. DOI

Pan Y, Birdsey RA, Fang J, Houghton R, Kauppi PE, Kurz WA, Phillips OL, Shvidenko A, Lewis SL, Canadell JG, Ciais P, et al. A large and persistent carbon sink in the world’s forests. Science (80-.) 2011;333:988–993. doi: 10.1126/science.1201609. PubMed DOI

Peters EB, Wythers RK, Bradford JB, Reich PB. Influence of disturbance on temperate forest productivity. Ecosystems. 2013;16:95–110. doi: 10.1007/s10021-012-9599-y. DOI

R Core Team. R: a Language and Environment for Statistical Computing. 2016.

Rammer W, Seidl R. Coupling human and natural systems: simulating adaptive management agents in dynamically changing forest landscapes. Glob Environ Change. 2015;35:475–485. doi: 10.1016/j.gloenvcha.2015.10.003. DOI

Reineke LH. Perfecting a stand-density index for even-aged forests. J Agric Res. 1933;46:627–638.

Reyer C, Lasch-Born P, Suckow F, Gutsch M, Murawski A, Pilz T. Projections of regional changes in forest net primary productivity for different tree species in Europe driven by climate change and carbon dioxide. Ann For Sci. 2014;71:211–225. doi: 10.1007/s13595-013-0306-8. DOI

Rizman I, et al. Knowledge-base on species composition in site units of forest typology for average (typical) conditions of Slovakia. Natl For Centre Electron Mater. 2005

Seidl R, Rammer W. Climate change amplifies the interactions between wind and bark beetle disturbances in forest landscapes. Landsc Ecol. 2017;32:1485–1498. doi: 10.1007/s10980-016-0396-4. PubMed DOI PMC

Seidl R, Rammer W, Scheller RM, Spies TA. An individual-based process model to simulate landscape-scale forest ecosystem dynamics. Ecol Modell. 2012a;231:87–100. doi: 10.1016/j.ecolmodel.2012.02.015. DOI

Seidl R, Spies TA, Rammer W, Steel EA, Pabst RJ, Olsen K. Multi-scale drivers of spatial variation in old-growth forest carbon density disentangled with lidar and an individual-based landscape model. Ecosystems. 2012b;15:1321–1335. doi: 10.1007/s10021-012-9587-2. DOI

Seidl R, Rammer W, Spies TA. Disturbance legacies increase the resilience of forest ecosystem structure, composition, and functioning. Ecol Appl. 2014a;24:2063–2077. doi: 10.1890/14-0255.1. PubMed DOI PMC

Seidl R, Schelhaas M-J, Rammer W, Verkerk PJ. Increasing forest disturbances in Europe and their impact on carbon storage. Nat Clim Change. 2014b;4:806–810. doi: 10.1038/nclimate2318. PubMed DOI PMC

Seidl R, Spies TA, Peterson DL, Stephens SL, Jeffrey A. Searching for resilience: addressing the impacts of changing disturbance regimes on forest ecosystem services. J Appl Ecol. 2016;53:120–129. doi: 10.1111/1365-2664.12511. PubMed DOI PMC

Seidl R, Thom D, Kautz M, Martin-Benito D, Peltoniemi M, Vacchiano G, Wild J, Ascoli D, Petr M, Honkaniemi J, Lexer MJ, et al. Forest disturbances under climate change. Nat Clim Change. 2017a;7:395–402. doi: 10.1038/nclimate3303. PubMed DOI PMC

Seidl R, Vigl F, Rössler G, Neumann M, Rammer W. Assessing the resilience of Norway spruce forests through a model-based reanalysis of thinning trials. For Ecol Manag. 2017b;388:3–12. doi: 10.1016/j.foreco.2016.11.030. PubMed DOI PMC

Seidl R, Albrich F, Thom D, Rammer W. Harnessing landscape heterogeneity for managing future disturbance risks in forest ecosystems. J Environ Manang. 2018;209:46–56. doi: 10.1016/j.jenvman.2017.12.014. PubMed DOI PMC

Senf C, Pflugmacher D, Hostert P, Seidl R. Using Landsat time series for characterizing forest disturbance dynamics in the coupled human and natural systems of Central Europe. ISPRS J Photogramm Remote Sens. 2017;130:453–463. doi: 10.1016/j.isprsjprs.2017.07.004. PubMed DOI PMC

Silva Pedro M, Rammer W, Seidl R. Tree species diversity mitigates disturbance impacts on the forest carbon cycle. Oecologia. 2015;177:619–630. doi: 10.1007/s00442-014-3150-0. PubMed DOI

Smith NG, Dukes JS. Plant respiration and photosynthesis in global-scale models: incorporating acclimation to temperature and CO2. Glob Change Biol. 2012;19:45–63. doi: 10.1111/j.1365-2486.2012.02797.x. PubMed DOI

Solberg S, Dobbertin M, Reinds GJ, Lange H, Andreassen K, Garcia F, Hildingsson A, de Vries W. Analyses of the impact of changes in atmospheric deposition and climate on forest growth in European monitoring plots: a stand growth approach. For Ecol Manag. 2009;258:1735–1750. doi: 10.1016/j.foreco.2008.09.057. DOI

Spiecker H, Hansen J, Klimo E, Skovsgaard JP, Sterba H, von Teuffel K. Norway Spruce Conversion – Options and Consequences. Brill; Leiden: 2004.

Stadelmann G, Bugmann H, Meier F, Wermelinger B, Bigler C. Effects of salvage logging and sanitation felling on bark beetle (Ips typographus L.) infestations. For Ecol Manag. 2013;305:273–281. doi: 10.1016/j.foreco.2013.06.003. DOI

Štepánek P, Zahradnícek P, Farda A, Skalák P, Trnka M, Meitner J, Rajdl K. Projection of drought-inducing climate conditions in the Czech Republic according to Euro-CORDEX models. Clim Chang Res Lett. 2016;70:179–193. doi: 10.3354/cr01424. DOI

Strandberg G, Bärring L, Hansson U, Jansson C, Jones C, Kjellström E, Kolax M, Kupiainen M, Nikulin G, Samuelsson P, Ullerstig A, et al. CORDEX scenarios for Europe from the Ross by Centre regional climate model RCA4. SMHI Rep Meteorol Climatol. 2014;116:1–45.

Thom D, Seidl R, Steyrer G, Krehan H, Formayer H. Slow and fast drivers of the natural disturbance regime in Central European forest ecosystems. For Ecol Manag. 2013;307:293–302. doi: 10.1016/j.foreco.2013.07.017. DOI

Thom D, Rammer W, Dirnböck T, Müller J, Kobler J, Katzensteiner K, Helm N, Seidl R. The impacts of climate change and disturbance on spatio-temporal trajectories of biodiversity in a temperate forest landscape. J Appl Ecol. 2017a;54:28–38. doi: 10.1111/1365-2664.12644. PubMed DOI PMC

Thom D, Seidl R, Rammer W. The impact of future forest dynamics on climate: interactive effects of changing vegetation and disturbance regimes. Ecol Monogr. 2017b;87:665–684. doi: 10.1002/ecm.1272. PubMed DOI PMC

Thomas FM, Bögelein R, Werner W. Interaction between Douglas fir and European beech -Investigations in pure and mixed stands. Forstarchiv. 2015;86:83–91. doi: 10.4432/0300-4112-86-83. DOI

Thuille A, Buchmann N, Schulze ED. Carbon stocks and soil respiration rates during deforestation, grassland use and subsequent Norway spruce afforestation in the Southern Alps, Italy. Tree Physiol. 2000;20:849–857. doi: 10.1093/treephys/20.13.849. PubMed DOI

Turner MG. Disturbance and landscape dynamics in a changing world. Ecology. 2010;91:2833–2849. doi: 10.1890/10-0097.1. PubMed DOI

van Meijgaard E, van Ulft LH, van de Berg WJ, Bosveld FC, van den Hurk B, Lenderink G, Siebesma AP. Technical Report 302: the KNMI Regional Atmospheric Climate Model RACMO Version 2.1. De Bilt: 2008.

van Oijen M, Reyer C, Bohn FJ, Cameron DR, Deckmyn G, Flechsig M, Härkönen S, Hartig F, Huth A, Kiviste A, Lasch P, et al. Bayesian calibration, comparison and averaging of six forest models, using data from Scots pine stands across Europe. For Ecol Manage. 2013;289:255–268. doi: 10.1016/j.foreco.2012.09.043. DOI

Wang W, Xiao J, Ollinger SV, Desai AR, Chen J, Noormets A. Quantifying the effects of harvesting on carbon fluxes and stocks in northern temperate forests. Biogeosciences. 2014;11:6667–6682. doi: 10.5194/bg-11-6667-2014. DOI

White JW, Rassweiler A, Samhouri JF, Stier AC, White C. Ecologists should not use statistical significance tests to interpret simulation model results. Oikos. 2014;123:385–388. doi: 10.1111/j.1600-0706.2013.01073.x. DOI

Williams CA, Collatz GJ, Masek J, Goward SN. Carbon consequences of forest disturbance and recovery across the conterminous United States. Glob Biogeochem Cycles. 2012;26:1–13. doi: 10.1029/2010GB003947. DOI

Williams AP, Allen CD, Macalady AK, Griffin D, Woodhouse CA, Meko DM, Swetnam TW, Rauscher SA, Seager R, Grissino-Mayer HD, Dean JS, et al. Temperature as a potent driver of regional forest drought stress and tree mortality. Nat Clim Change. 2013;3:292–297. doi: 10.1038/nclimate1693. DOI

Yoda K, Kira T, Ogawa H, Hozumi K. elf-thinning in overcrowded pure stands under cultivated and natural condition. J Inst Polytech Osaka City Univ Ser D, Biol. 1963;14:107–129.

Yue C, Ciais P, Zhu D, Wang T, Peng SS, Piao SL. How have past fire disturbances contributed to the current carbon balance of boreal ecosystems? Biogeosciences. 2016;13:675–690. doi: 10.5194/bg-13-675-2016. DOI

Zehetgruber B, Kobler J, Dirnböck T, Jandl R, Seidl R, Schindlbacher A. Intensive ground vegetation growth mitigates the carbon loss after forest disturbance. Plant Soil. 2017:1–14. doi: 10.1007/s11104-017-3384-9. PubMed DOI PMC

Zeng N, Qian H, Roedenbeck C, Heimann M. Impact of 1998-2002 midlatitude drought and warming on terrestrial ecosystem and the global carbon cycle. Geophys Res Lett. 2005;32:L22709. doi: 10.1029/2005GL024607. DOI

Zhao M, Running SW. Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science (80-.) 2010;(329):940–943. doi: 10.1126/science.1192666. PubMed DOI

Zhou T, Shi P, Jia G, Dai Y, Zhao X, Shangguan W, Du L, Wu H, Luo Y. Age-dependent forest carbon sink: estimation via inverse modeling. J Geophys Res Biogeosciences. 2015;120:2473–2492. doi: 10.1002/2015JG002943. DOI

Zhu Q, Zhuang Q. Influences of calibration data length and data period on model parameterization and quantification of terrestrial ecosystem carbon dynamics. Geosci Model Dev Discuss. 2013;6:6835–6865. doi: 10.5194/gmdd-6-6835-2013. DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...