Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species
Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
26978658
PubMed Central
PMC4792377
DOI
10.1371/journal.pone.0150589
PII: PONE-D-15-22669
Knihovny.cz E-zdroje
- MeSH
- divoká zvířata * MeSH
- genetická variace * MeSH
- hospodářská zvířata * MeSH
- kultivované buňky MeSH
- kur domácí MeSH
- kuřecí embryo MeSH
- molekulární sekvence - údaje MeSH
- Na(+)-H(+) antiport chemie genetika MeSH
- sekvence aminokyselin MeSH
- sekvenční homologie aminokyselin MeSH
- zvířata MeSH
- Check Tag
- kuřecí embryo MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- Na(+)-H(+) antiport MeSH
J subgroup avian leukosis virus (ALV-J) infects domestic chicken, jungle fowl, and turkey and enters the host cell through a receptor encoded by tvj locus and identified as Na+/H+ exchanger 1 (NHE1). The resistance to ALV-J in a great majority of examined galliform species was explained by deletions or substitutions of the critical tryptophan 38 in the first extracellular loop of NHE1, and genetic polymorphisms around this site predict the susceptibility or resistance of a given species or individual. In this study, we examined the NHE1 polymorphism in domestic chicken breeds and documented quantitative differences in their susceptibility to ALV-J in vitro. In a panel of chicken breeds assembled with the aim to cover the maximum variability encountered in domestic chickens, we found a completely uniform sequence of NHE1 extracellular loop 1 (ECL1) without any source of genetic variation for the selection of ALV-J-resistant poultry. In parallel, we studied the natural polymorphisms of NHE1 in wild ducks and geese because of recent reports on ALV-J positivity in feral Asian species. In anseriform species, we demonstrate a specific and highly conserved critical ECL1 sequence without any homologue of tryptophan 38 in accordance with the resistance of duck cells to prototype ALV-J. Last, we demonstrated that the new Asian strains of ALV-J have not evolved their envelope glycoprotein to the entry the duck cells. Our results contribute substantially to the current discussion of possible heterotransmission of ALV-J and its spill-over into the wild ducks and geese.
Zobrazit více v PubMed
Payne LN, Brown SR, Bumstead N, Howes K, Frazier JA, Thouless ME (1991) A novel subgroup of exogenous avian leukosis virus in chickens. J Gen Virol 72: 801–807. PubMed
Bai J, Payne LN, Skinner MA (1995) HPRS-103 (exogenous avian leukosis virus, subgroup J) has an env gene related to those of endogenous elements EAV-0 and E51 and an E element found previously only in sarcoma viruses. J Virol 69: 779–784. PubMed PMC
Benson SJ, Ruis BL, Fadly AM, Conklin KF (1998) The unique envelope gene of the subgroup J avian leukosis virus derives from ev/J proviruses, a novel family of avian endogenous viruses. J Virol 72: 10157–10164. PubMed PMC
Chesters PM, Howes K, McKay JC, Payne LN, Venugopal K (2001) Acutely transforming avian leukosis virus subgroup J strain 966: defective genome encodes a 72-kilodalton Gag-Myc fusion protein. J Virol 75: 4219–4225. PubMed PMC
Venugopal K (1999) Avian leukosis virus subgroup J: a rapidly evolving group of oncogenic retroviruses. Res Vet Sci 67: 113–119. PubMed
Silva RF, Fadly AM, Hunt HD (2000) Hypervariability in the envelope genes of subgroup J avian leukosis viruses obtained from different farms in the United States. Virology 272: 106–111. PubMed
Venugopal K, Howes K, Flannery DMJ, Payne LN (2000) Isolation of acutely transforming subgroup J avian leukosis viruses that induce erythroblastosis and myelocytomatosis. Avian Pathol 29: 497–503. 10.1080/030794500750047252 PubMed DOI
Payne LN, Nair V (2012) The long view: 40 years of avian leukosis research. Avian Pathol 41: 11–19. 10.1080/03079457.2011.646237 PubMed DOI
Gingerich E, Porter RE, Lupiani B, Fadly AM (2002) Diagnosis of myeloid leukosis induced by a recombinant avian leukosis virus in commercial white leghorn egg laying flocks. Avian Dis 46: 745–748. PubMed
Lupiani B, Pandiri AR, Mays J, Hunt HD, Fadly AM (2006) Molecular and biological characterization of a naturally occurring recombinant subgroup B avian leukosis virus with a subgroup J-like long terminal repeat. Avian Dis 50: 572–578. PubMed
Liu C, Zheng S, Wang Y, Jing L, Gao H, Gao Y et al. (2011) Detection and molecular characterization of recombinant avian leukosis viruses in commercial egg-type chickens in China. Avian Pathol 40: 269–275. 10.1080/03079457.2011.560932 PubMed DOI
Witter RL, Bacon LD, Hunt HD, Silva RE, Fadly AM (2000) Avian leukosis virus subgroup J infection profiles in broiler breeder chickens: association with virus transmission to progeny. Avian Dis 44: 913–931. PubMed
Witter RL, Fadly AM (2001) Reduction of horizontal transmission of avian leukosis virus subgroup J in broiler breeder chickens hatched and reared in small groups. Avian Pathol 30: 641–654. 10.1080/03079450120092134 PubMed DOI
Payne LN, Howes K, Gillespie AM, Smith LM (1992) Host range of Rous sarcoma virus pseudotype RSV(HPRS-103) in 12 avian species: support for a new avian retrovirus envelope subgroup, designated J. J Gen Virol 73: 2995–2997. PubMed
Chai N, Bates P (2006) Na+/H+ exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc Natl Acad Sci USA 103: 5531–5536. PubMed PMC
Kučerová D, Plachý J, Reinišová M, Šenigl F, Trejbalová K, Geryk J et al. (2013) Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J Virol 87: 8399–8407. 10.1128/JVI.03180-12 PubMed DOI PMC
Shen Y, Cai L, Wang Y, Wei R, He M, Wang S et al. (2014) Genetic mutations of avian leukosis virus subgroup J strains extended their host range. J Gen Virol 95: 691–699. 10.1099/vir.0.059915-0 PubMed DOI
Jiang L, Zeng X, Hua Y, Gao Q, Fan Z, Chai H et al. (2014) Genetic diversity and phylogenetic analysis of glycoprotein gp85 of avian leukosis virus subgroup J wild-bird isolates from Northeast China. Arch Virol 159: 1821–1826. 10.1007/s00705-014-2004-8 PubMed DOI
Zeng X, Liu L, Hao R, Han C (2014). Detection and molecular characterization of J subgroup avian leukosis virus in wild ducks in China. PLoS One 9: e94980 10.1371/journal.pone.0094980 PubMed DOI PMC
Reinišová M, Šenigl F, Yin X, Plachý J, Geryk J, Elleder D et al. (2008) A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo. J Virol 82: 2097–2105. PubMed PMC
Reinišová M, Plachý J, Trejbalová K, Šenigl F, Kučerová D, Geryk J et al. (2012). Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J Virol 86: 2021–2030. 10.1128/JVI.05771-11 PubMed DOI PMC
Plachý J (2000) The chicken—a laboratory animal of the class Aves. Folia Biol (Praha) 46: 17–24. PubMed
Nehyba J, Svoboda J, Karakoz I, Geryk J, Hejnar J (1990) Ducks: a new experimental host system for studying persistent infection with avian leukaemia retrovirus. J Gen Virol 71: 1937–1945. PubMed
Stepanets V, Vernerová Z, Vilhelmová M, Geryk J, Hejnar J, Svoboda J (2001). Amyloid A amyloidosis in non-infected and avian leukosis virus-C persistently infected inbred ducks. Avian Pathol 30: 33–42. 10.1080/03079450020023177 PubMed DOI
Malhotra S, Justice J 4th, Lee N, Li Y, Zavala G, Ruano M et al. (2015) Complete genome sequence of an american avian leukosis virus subgroup J isolate that causes hemangiomas and myeloid leukosis. Genome Announc 3: e1586–14. PubMed PMC
Himly M, Foster DN, Bottoli I, Iacovoni JS, Vogt PK (1998) The DF-1 chicken fibroblast cell line: transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology 248: 295–304. PubMed
Flink LG, Allen R, Barnett R, Malmström H, Peters J, Eriksson J, et al. (2014). Establishing the validity of domestication genes using DNA from ancient chickens. Proc Natl Acad Sci USA 111: 6184–6189. 10.1073/pnas.1308939110 PubMed DOI PMC
Zingler K, Young JA (1996) Residue Trp-48 of Tva is critical for viral entry but not for high-affinity binding to the SU glycoprotein of subgroup A avian leukosis and sarcoma viruses. J Virol 70: 7510–7516. PubMed PMC
Rong L, Gendron K, Strohl B, Shenoy R, Wool-Lewis RJ, Bates P (1998) Characterization of determinants for envelope binding and infection in Tva, the subgroup A avian sarcoma and leukosis virus receptor. J Virol 72: 4552–4559. PubMed PMC
Bates P, Young JA, Varmus HE (1993) A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell 74: 1043–1051. PubMed
Brojatsch J, Naughton J, Rolls MM, Zingler K, Young JA (1996) CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell 87: 845–855. PubMed
Elleder D, Stepanets V, Melder DC, Šenigl F, Geryk J, Pajer P, et al. (2005). The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J Virol 79: 10408–10419. PubMed PMC
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A
Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J