Genetic Resistance to Avian Leukosis Viruses Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
30400152
PubMed Central
PMC6266994
DOI
10.3390/v10110605
PII: v10110605
Knihovny.cz E-zdroje
- Klíčová slova
- CRISPR/Cas9, avian leukosis virus, retrovirus receptor, virus-resistance in chicken,
- MeSH
- buněčné linie MeSH
- CRISPR-Cas systémy * MeSH
- editace genu * MeSH
- genetické techniky MeSH
- genetické vektory genetika MeSH
- kur domácí MeSH
- odolnost vůči nemocem genetika MeSH
- ptačí leukóza genetika virologie MeSH
- sekvence nukleotidů MeSH
- virové geny MeSH
- virové receptory genetika metabolismus MeSH
- virus ptačí leukózy fyziologie MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- virové receptory MeSH
- vodící RNA, systémy CRISPR-Cas MeSH
Avian leukosis viruses (ALVs), which are pathogens of concern in domestic poultry, utilize specific receptor proteins for cell entry that are both necessary and sufficient for host susceptibility to a given ALV subgroup. This unequivocal relationship offers receptors as suitable targets of selection and biotechnological manipulation with the aim of obtaining virus-resistant poultry. This approach is further supported by the existence of natural knock-outs of receptor genes that segregate in inbred lines of chickens. We used CRISPR/Cas9 genome editing tools to introduce frame-shifting indel mutations into tva, tvc, and tvj loci encoding receptors for the A, C, and J ALV subgroups, respectively. For all three loci, the homozygous frame-shifting indels generating premature stop codons induced phenotypes which were fully resistant to the virus of respective subgroup. In the tvj locus, we also obtained in-frame deletions corroborating the importance of W38 and the four amino-acids preceding it. We demonstrate that CRISPR/Cas9-mediated knock-out or the fine editing of ALV receptor genes might be the first step in the development of virus-resistant chickens.
BIOPHARM Research Institute of Biopharmacy and Veterinary Drugs 254 49 Jílové u Prahy Czech Republic
Zobrazit více v PubMed
Payne L.N., Nair V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012;41:11–19. doi: 10.1080/03079457.2011.646237. PubMed DOI
Cui N., Su S., Chen Z., Zhao X., Cui Z. Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J. Gen. Virol. 2014;95:2512–2522. doi: 10.1099/vir.0.067264-0. PubMed DOI
Weiss R.A. Cellular receptors and viral glycoproteins involved in retrovirus entry. In: Levy J.A., editor. The Retroviridae. Volume 2. Plenum Press; New York, NY, USA: 1992. pp. 1–108.
Barnard R.J.O., Elleder D., Young J.A.T. Avian sarcoma and leukosis virus-receptor interactions: From classical genetics to novel insights into virus-cell membrane fusion. Virology. 2006;344:25–29. doi: 10.1016/j.virol.2005.09.021. PubMed DOI
Bates P., Young J.A.T., Varmus H.E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74:1043–1051. doi: 10.1016/0092-8674(93)90726-7. PubMed DOI
Young J.A.T., Bates P., Varmus H.E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 1993;67:1811–1816. PubMed PMC
Brojatsch J., Naughton J., Rolls M.M., Zingler K., Young J.A. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell. 1996;87:845–855. doi: 10.1016/S0092-8674(00)81992-3. PubMed DOI
Adkins H.B., Brojatsch J., Naughton J., Rolls M.M., Pesola J.M., Young J.A.T. Identification of a cellular receptor for subgroup E avian leukosis virus. Proc. Natl. Acad. Sci. USA. 1997;94:11617–11622. doi: 10.1073/pnas.94.21.11617. PubMed DOI PMC
Adkins H.B., Brojatsch J., Young J.A.T. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J. Virol. 2000;74:3572–3578. doi: 10.1128/JVI.74.8.3572-3578.2000. PubMed DOI PMC
Elleder D., Stepanets V., Melder D.C., Šenigl F., Geryk J., Pajer P., Plachý J., Hejnar J., Svoboda J., Federspiel M.J. The receptor for the subgroup C avian sarcoma and leukosis viruses, Tvc, is related to mammalian butyrophilins, members of the immunoglobulin superfamily. J. Virol. 2005;79:10408–10419. doi: 10.1128/JVI.79.16.10408-10419.2005. PubMed DOI PMC
Chai N., Bates P. Na/H exchanger type 1 is a receptor for pathogenic subgroup J avian leukosis virus. Proc. Natl. Acad. Sci. USA. 2006;103:5531–5536. doi: 10.1073/pnas.0509785103. PubMed DOI PMC
Klucking S., Adkins H.B., Young J.A.T. Resistance to infection by subgroups B, D, and E avian sarcoma and leukosis viruses is explained by a premature stop codon within a resistance allele of the tvb receptor gene. J. Virol. 2002;76:7918–7921. doi: 10.1128/JVI.76.15.7918-7921.2002. PubMed DOI PMC
Elleder D., Melder D.C., Trejbalová K., Svoboda J., Federspiel M.J. Two different molecular defects in the Tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J. Virol. 2004;78:13489–13500. doi: 10.1128/JVI.78.24.13489-13500.2004. PubMed DOI PMC
Kučerová D., Plachý J., Reinišová M., Šenigl F., Trejbalová K., Geryk J., Hejnar J. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J. Virol. 2013;87:8399–8407. doi: 10.1128/JVI.03180-12. PubMed DOI PMC
Reinišová M., Plachý J., Kučerová D., Šenigl F., Vinkler M., Hejnar J. Genetic Diversity of NHE1, Receptor for Subgroup J Avian Leukosis Virus, in Domestic Chicken and Wild Anseriform Species. PLoS ONE. 2016;11:0150589. doi: 10.1371/journal.pone.0150589. PubMed DOI PMC
Plachý J., Reinišová M., Kučerová D., Šenigl F., Stepanets V., Hron T., Trejbalová K., Elleder D., Hejnar J. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J. Virol. 2017;91:e02002. doi: 10.1128/JVI.02002-16. PubMed DOI PMC
Reinišová M., Šenigl F., Yin X., Plachý J., Geryk J., Elleder D., Svoboda J., Federspiel M.J., Hejnar J. A single-amino-acid substitution in the TvbS1 receptor results in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroups B and D and resistance to infection by subgroup E in vitro and in vivo. J. Virol. 2008;82:2097–2105. doi: 10.1128/JVI.02206-07. PubMed DOI PMC
Reinišová M., Plachý J., Trejbalová K., Šenigl F., Kučerová D., Geryk J., Svoboda J., Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J. Virol. 2012;86:2021–2030. doi: 10.1128/JVI.05771-11. PubMed DOI PMC
Lee H.J., Lee K.Y., Park Y.H., Choi H.J., Yao Y., Nair V., Han J.Y. Acquisition of resistance to avian leukosis virus subgroup B through mutations on tvb cysteine-rich domains in DF-1 chicken fibroblasts. Vet. Res. 2017;48:48. doi: 10.1186/s13567-017-0454-1. PubMed DOI PMC
Lee H.J., Lee K.Y., Jung K.M., Park K.J., Lee K.O., Suh J.Y., Yao Y., Nair V., Han J.Y. Precise gene editing of chicken Na+/H+ exchange type 1 (chNHE1) confers resistance to avian leukosis virus subgroup J (ALV-J) Dev. Comp. Immunol. 2017;77:340–349. doi: 10.1016/j.dci.2017.09.006. PubMed DOI
Ran F.A., Hsu P.D., Wright J., Agarwala V., Scott D.A., Zhang F. Genome engineering using the CRISPR-Cas9 system. Nat. Protoc. 2013;8:2281–2308. doi: 10.1038/nprot.2013.143. PubMed DOI PMC
Hsu P.D., Scott D.A., Weinstein J.A., Ran F.A., Konermann S., Agarwala V., Li Y., Fine E.J., Wu X., Shalem O., et al. DNA targeting specificity of RNA-guided Cas9 nucleases. Nat. Biotechnol. 2013;31:827–832. doi: 10.1038/nbt.2647. PubMed DOI PMC
Himly M., Foster D.N., Bottoli I., Iacovoni J.S., Vogt P.K. The DF-1 chicken fibroblast cell line: Transformation induced by diverse oncogenes and cell death resulting from infection by avian leukosis viruses. Virology. 1998;248:295–304. doi: 10.1006/viro.1998.9290. PubMed DOI
Federspiel M.J., Hughes S.H. Retroviral gene delivery. Methods Cell Biol. 1997;52:67–177. PubMed
Schusser B., Collarini E.J., Yi H., Izquierdo S.M., Fesler J., Pedersen D., Klasing K.C., Kaspers B., Harriman W.D., van de Lavoir M.C., et al. Immunoglobulin knockout chickens via efficient homologous recombination in primordial germ cells. Proc. Natl. Acad. Sci. USA. 2013;110:20170–20175. doi: 10.1073/pnas.1317106110. PubMed DOI PMC
Trefil P., Aumann D., Koslová A., Mucksová J., Benešová B., Kalina J., Wurmser C., Fries R., Elleder D., Schusser B., et al. Male fertility restored by transplanting primordial germ cells into testes: A new way towards efficient transgenesis in chicken. Sci. Rep. 2017;7:14246. doi: 10.1038/s41598-017-14475-w. PubMed DOI PMC
Whitworth K.M., Rowland R.R., Ewen C.L., Trible B.R., Kerrigan M.A., Cino-Ozuna A.G., Samuel M.S., Lightner J.E., McLaren D.G., Mileham A.J., et al. Gene-edited pigs are protected from porcine reproductive and respiratory syndrome virus. Nat. Biotechnol. 2016;34:20–22. doi: 10.1038/nbt.3434. PubMed DOI
Boddicker N.J., Bjorkquist A., Rowland R.R., Lunney J.K., Reecy J.M., Dekkers J.C. Genome-wide association and genomic prediction for host response to porcine reproductive and respiratory syndrome virus infection. Genet. Sel. Evol. 2014;46:18. doi: 10.1186/1297-9686-46-18. PubMed DOI PMC
Counillon L., Bouret Y., Marchiq I., Pouysségur J. Na(+)/H(+) antiporter (NHE1) and lactate/H(+) symporters (MCTs) in pH homeostasis and cancer metabolism. Biochim. Biophys. Acta. 2016;1863:2465–2480. doi: 10.1016/j.bbamcr.2016.02.018. PubMed DOI
Denker S.P., Barber D.L. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J. Cell Biol. 2002;159:1087–1096. doi: 10.1083/jcb.200208050. PubMed DOI PMC
Cardone R.A., Casavola V., Reshkin S.J. The role of disturbed pH dynamics and the Na+/H+ exchanger in metastasis. Nat. Rev. Cancer. 2005;5:786–795. doi: 10.1038/nrc1713. PubMed DOI
Bourguignon L.Y., Singleton P.A., Diedrich F., Stern R., Gilad E. CD44 interaction with Na+-H+ exchanger (NHE1) creates acidic microenvironments leading to hyaluronidase-2 and cathepsin B activation and breast tumor cell invasion. J. Biol. Chem. 2004;279:26991–27007. doi: 10.1074/jbc.M311838200. PubMed DOI
Shrode L.D., Gan B.S., D’Souza S.J., Orlowski J., Grinstein S. Topological analysis of NHE1, the ubiquitous Na+/H+ exchanger using chymotryptic cleavage. Am. J. Physiol. 1998;275:C431–C439. doi: 10.1152/ajpcell.1998.275.2.C431. PubMed DOI
Counillon L., Pouysségur J., Reithmeier R.A. The Na+/H+ exchanger NHE-1 possesses N- and O-linked glycosylation restricted to the first N-terminal extracellular domain. Biochemistry. 1994;33:10463–10469. doi: 10.1021/bi00200a030. PubMed DOI
Guan X., Zhang Y., Yu M., Ren C., Gao Y., Yun B., Liu Y., Wang Y., Qi X., Liu C., et al. Residues 28 to 39 of the Extracellular Loop 1 of Chicken Na+/H+ Exchanger Type I Mediate Cell Binding and Entry of Subgroup J Avian Leukosis Virus. J. Virol. 2018;92:e01627-17. doi: 10.1128/JVI.01627-17. PubMed DOI PMC
Antiviral Activity and Adaptive Evolution of Avian Tetherins
The Current View of Retroviruses as Seen from the Shoulders of a Giant
The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A