Single Amino Acid Residue W33 of tva Receptor Is Critical for Viral Entry and High-Affinity Binding of Avian Leukosis Virus Subgroup K
Language English Country Switzerland Media electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
Grant support
AV21 - Virology and Antiviral Therapy
Czech Academy of Sciences
EXCELLES, LX22NPO5103
Ministry of Education, Youth, and Sports
PubMed
40431720
PubMed Central
PMC12115504
DOI
10.3390/v17050709
PII: v17050709
Knihovny.cz E-resources
- Keywords
- avian leukosis virus, chicken, guineafowl, tva receptor,
- MeSH
- Cell Line MeSH
- Virus Internalization * MeSH
- Chickens MeSH
- Poultry Diseases virology MeSH
- Virus Attachment * MeSH
- Avian Leukosis virology MeSH
- Avian Proteins MeSH
- Amino Acid Substitution MeSH
- Receptors, Virus * genetics metabolism chemistry MeSH
- Avian Leukosis Virus * physiology genetics classification MeSH
- Animals MeSH
- Check Tag
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Avian Proteins MeSH
- Tva receptor MeSH Browser
- Receptors, Virus * MeSH
Avian leukosis virus (ALV), the prototypical alpharetrovirus, causes tumorigenesis, immunosuppression, and wasting disease in poultry. The ALV genus is classified into ten subgroups, which differ in their host range, cell tropism, and receptor usage. The subgroups A, B, K, and J cause significant economic losses worldwide. The most recently discovered subgroup, ALV-K, which is now widespread in China, has been shown to use the tva cell receptor and share it with ALV-A. However, the specific amino acid residues crucial for ALV-K host cell entry remain unknown. Using precise tva expression and chimeric tva receptors, we further elucidated the significance of the cysteine-rich domain in mediating interactions with both ALV-A and ALV-K. Through a comprehensive analysis of mutated tva receptor variants, we pinpointed tryptophan at position 33 (W33) as a pivotal amino acid residue essential for ALV-K virus binding and entry. Of note is the finding that the substitution of W33 induced resistance to ALV-K while preserving sensitivity to ALV-A. This study not only represents an advance in the understanding of the specificity of the tva receptor for ALV-K, but also offers a biotechnological strategy for the prevention of ALV-K infections in poultry.
See more in PubMed
Payne L.N., Nair V. The long view: 40 years of avian leukosis research. Avian Pathol. 2012;41:11–19. doi: 10.1080/03079457.2011.646237. PubMed DOI
Federspiel M.J. Reverse Engineering Provides Insights on the Evolution of Subgroups A to E Avian Sarcoma and Leukosis Virus Receptor Specificity. Viruses. 2019;11:497. doi: 10.3390/v11060497. PubMed DOI PMC
Dorner A.J., Stoye J.P., Coffin J.M. Molecular basis of host range variation in avian retroviruses. J. Virol. 1985;53:32–39. doi: 10.1128/jvi.53.1.32-39.1985. PubMed DOI PMC
Li X., Yu Y., Ma M., Chang F., Muhammad F., Yu M., Ren C., Bao Y., Zhang Z., Liu A., et al. Molecular characteristic and pathogenicity analysis of a novel multiple recombinant ALV-K strain. Vet. Microbiol. 2021;260:109184. doi: 10.1016/j.vetmic.2021.109184. PubMed DOI
Fandiño S., Gomez-Lucia E., Benítez L., Doménech A. Avian Leukosis: Will We Be Able to Get Rid of It? Animals. 2023;13:2358. doi: 10.3390/ani13142358. PubMed DOI PMC
Lin W., Li X., Dai Z., Zhang X., Chang S., Zhao P., Zhang H., Chen F., Xie Q. Molecular epidemiology of J-subgroup avian leukosis virus isolated from meat-type chickens in southern China between 2013 and 2014. Arch. Virol. 2016;161:3039–3046. doi: 10.1007/s00705-016-3003-8. PubMed DOI
Cui N., Su S., Chen Z., Zhao X., Cui Z. Genomic sequence analysis and biological characteristics of a rescued clone of avian leukosis virus strain JS11C1, isolated from indigenous chickens. J. Gen. Virol. 2014;95:2512–2522. doi: 10.1099/vir.0.067264-0. PubMed DOI
Přikryl D., Plachý J., Kučerová D., Koslová A., Reinišová M., Šenigl F., Hejnar J. The Novel Avian Leukosis Virus Subgroup K Shares Its Cellular Receptor with Subgroup A. J. Virol. 2019;93:e00580-19. doi: 10.1128/JVI.00580-19. PubMed DOI PMC
Bates P., Young J.A., Varmus H.E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74:1043–1051. doi: 10.1016/0092-8674(93)90726-7. PubMed DOI
Young J.A., Bates P., Varmus H.E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 1993;67:1811–1816. doi: 10.1128/jvi.67.4.1811-1816.1993. PubMed DOI PMC
Krchlíková V., Mikešová J., Geryk J., Bařinka C., Nexo E., Fedosov S.N., Kosla J., Kučerová D., Reinišová M., Hejnar J., et al. The avian retroviral receptor tva mediates the uptake of transcobalamin bound vitamin B12 (cobalamin) J. Virol. 2021;95:e02136-20. doi: 10.1128/JVI.02136-20. PubMed DOI PMC
Koslová A., Trefil P., Mucksová J., Reinišová M., Plachý J., Kalina J., Kučerová D., Geryk J., Krchlíková V., Lejčková B., et al. Precise CRISPR/Cas9 editing of the NHE1 gene renders chickens resistant to the J subgroup of avian leukosis virus. Proc. Natl. Acad. Sci. USA. 2020;117:2108–2112. doi: 10.1073/pnas.1913827117. PubMed DOI PMC
Elleder D., Melder D.C., Trejbalová K., Svoboda J., Federspiel M.J. Two different molecular defects in the tva receptor gene explain the resistance of two tvar lines of chickens to infection by subgroup A avian sarcoma and leukosis viruses. J. Virol. 2004;78:13489–13500. doi: 10.1128/JVI.78.24.13489-13500.2004. PubMed DOI PMC
Reinišová M., Plachý J., Trejbalová K., Šenigl F., Kučerová D., Geryk J., Svoboda J., Hejnar J. Intronic deletions that disrupt mRNA splicing of the tva receptor gene result in decreased susceptibility to infection by avian sarcoma and leukosis virus subgroup A. J. Virol. 2012;86:2021–2030. doi: 10.1128/JVI.05771-11. PubMed DOI PMC
Chen W., Liu Y., Li H., Chang S., Shu D., Zhang H., Chen F., Xie Q. Intronic deletions of tva receptor gene decrease the susceptibility to infection by avian sarcoma and leukosis virus subgroup A. Sci. Rep. 2015;5:9900. doi: 10.1038/srep09900. PubMed DOI PMC
Koslová A., Trefil P., Mucksová J., Krchlíková V., Plachý J., Krijt J., Reinišová M., Kučerová D., Geryk J., Kalina J., et al. Knock-Out of Retrovirus Receptor Gene in the Chicken Confers Resistance to Avian Leukosis Virus Subgroups A and K and Affects Cobalamin (Vitamin B)-Dependent Level of Methylmalonic Acid. Viruses. 2021;13:2504. doi: 10.3390/v13122504. PubMed DOI PMC
Melder D.C., Pike G.M., VanBrocklin M.W., Federspiel M.J. Model of the TVA receptor determinants required for efficient infection by subgroup A avian sarcoma and leukosis viruses. J. Virol. 2015;89:2136–2148. doi: 10.1128/JVI.02339-14. PubMed DOI PMC
Rong L., Edinger A., Bates P. Role of basic residues in the subgroup-determining region of the subgroup A avian sarcoma and leukosis virus envelope in receptor binding and infection. J. Virol. 1997;71:3458–3465. doi: 10.1128/jvi.71.5.3458-3465.1997. PubMed DOI PMC
Zingler K., Young J.A. Residue Trp-48 of tva is critical for viral entry but not for high-affinity binding to the SU glycoprotein of subgroup A avian leukosis and sarcoma viruses. J. Virol. 1996;70:7510–7516. doi: 10.1128/jvi.70.11.7510-7516.1996. PubMed DOI PMC
Li X., Chen Y., Yu M., Wang S., Liu P., Meng L., Guo R., Feng X., Hu M., He T., et al. Residues E53, L55, H59, and G70 of the cellular receptor protein tva mediate cell binding and entry of the novel subgroup K avian leukosis virus. J. Biol. Chem. 2023;299:102962. doi: 10.1016/j.jbc.2023.102962. PubMed DOI PMC
Koslová A., Kučerová D., Reinišová M., Geryk J., Trefil P., Hejnar J. Genetic Resistance to Avian Leukosis Viruses Induced by CRISPR/Cas9 Editing of Specific Receptor Genes in Chicken Cells. Viruses. 2018;10:605. doi: 10.3390/v10110605. PubMed DOI PMC
Federspiel M.J., Hughes S.H. Retroviral gene delivery. Methods Cell Biol. 1997;52:179–214. PubMed
Štafl K., Trávníček M., Kučerová D., Pecnová Ľ., Krchlíková V., Gáliková E., Stepanets V., Hejnar J., Trejbalová K. Heterologous avian system for quantitative analysis of Syncytin-1 interaction with ASCT2 receptor. Retrovirology. 2021;18:15. doi: 10.1186/s12977-021-00558-0. PubMed DOI PMC
Holmen S.L., Salter D.W., Payne W.S., Dodgson J.B., Hughes S.H., Federspiel M.J. Soluble Forms of the Subgroup A Avian Leukosis Virus [ALV(A)] Receptor tva Significantly Inhibit ALV(A) Infection In Vitro and In Vivo. J. Virol. 1999;73:10051–10060. doi: 10.1128/JVI.73.12.10051-10060.1999. PubMed DOI PMC
Rainey G.J.A., Natonson A., Maxfield L.F., Coffin J.M. Mechanisms of avian retroviral host range extension. J. Virol. 2003;77:6709–6719. doi: 10.1128/JVI.77.12.6709-6719.2003. PubMed DOI PMC
Wang Q.-Y., Huang W., Dolmer K., Gettins P.G.W., Rong L. Solution structure of the viral receptor domain of tva and its implications in viral entry. J. Virol. 2002;76:2848–2856. doi: 10.1128/JVI.76.6.2848-2856.2002. PubMed DOI PMC
Chen Y., Wang S., Li X., Yu M., Liu P., Meng L., Guo R., Feng X., Liu A., Qi X., et al. Residues L55 and W69 of tva Mediate Entry of Subgroup A Avian Leukosis Virus. J. Virol. 2022;96:e0067822. doi: 10.1128/jvi.00678-22. PubMed DOI PMC
Kučerová D., Plachý J., Reinišová M., Šenigl F., Trejbalová K., Geryk J., Hejnar J. Nonconserved tryptophan 38 of the cell surface receptor for subgroup J avian leukosis virus discriminates sensitive from resistant avian species. J. Virol. 2013;87:8399–8407. doi: 10.1128/JVI.03180-12. PubMed DOI PMC
O’Doherty U., Swiggard W.J., Malim M.H. Human immunodeficiency virus type 1 spinoculation enhances infection through virus binding. J. Virol. 2000;74:10074–10080. doi: 10.1128/JVI.74.21.10074-10080.2000. PubMed DOI PMC
Holmen S.L., Federspiel M.J. Selection of a subgroup A avian leukosis virus ALV(A) envelope resistant to soluble ALV(A) surface glycoprotein. Virology. 2000;273:364–373. doi: 10.1006/viro.2000.0424. PubMed DOI
Melder D.C., Pankratz V.S., Federspiel M.J. Evolutionary pressure of a receptor competitor selects different subgroup a avian leukosis virus escape variants with altered receptor interactions. J. Virol. 2003;77:0504–10514. doi: 10.1128/JVI.77.19.10504-10514.2003. PubMed DOI PMC
Brojatsch J., Naughton J., Rolls M.M., Zingler K., Young J.A. CAR1, a TNFR-related protein, is a cellular receptor for cytopathic avian leukosis-sarcoma viruses and mediates apoptosis. Cell. 1996;87:845–855. doi: 10.1016/S0092-8674(00)81992-3. PubMed DOI
Adkins H.B., Brojatsch J., Naughton J., Rolls M.M., Pesola J.M., Young J.A. Identification of a cellular receptor for subgroup E avian leukosis virus. Proc. Natl. Acad. Sci. USA. 1997;94:11617–11622. doi: 10.1073/pnas.94.21.11617. PubMed DOI PMC
Adkins H.B., Brojatsch J., Young J.A.T. Identification and characterization of a shared TNFR-related receptor for subgroup B, D, and E avian leukosis viruses reveal cysteine residues required specifically for subgroup E viral entry. J. Virol. 2000;74:3572–3578. doi: 10.1128/JVI.74.8.3572-3578.2000. PubMed DOI PMC
Adkins H.B., Blacklow S.C., Young J.A. Two functionally distinct forms of a retroviral receptor explain the nonreciprocal receptor interference among subgroups B, D, and E avian leukosis viruses. J. Virol. 2001;75:3520–3526. doi: 10.1128/JVI.75.8.3520-3526.2001. PubMed DOI PMC
Knauss D.J., Young J.A. A fifteen-amino-acid TVB peptide serves as a minimal soluble receptor for subgroup B avian leukosis and sarcoma viruses. J. Virol. 2002;76:5404–5410. doi: 10.1128/JVI.76.11.5404-5410.2002. PubMed DOI PMC
Klucking S., Young J.A.T. Amino acid residues Tyr-67, Asn-72, and Asp-73 of the TVB receptor are important for subgroup E avian sarcoma and leukosis virus interaction. Virology. 2004;318:371–380. doi: 10.1016/j.virol.2003.09.024. PubMed DOI
Plachý J., Reinišová M., Kučerová D., Šenigl F., Stepanets V., Hron T., Trejbalová K., Elleder D., Hejnar J. Identification of New World Quails Susceptible to Infection with Avian Leukosis Virus Subgroup J. J. Virol. 2017;91:e02002-16. doi: 10.1128/JVI.02002-16. PubMed DOI PMC
Matoušková M., Plachý J., Kučerová D., Pecnová Ľ., Reinišová M., Geryk J., Karafiát V., Hron T., Hejnar J. Rapid adaptive evolution of avian leukosis virus subgroup J in response to biotechnologically induced host resistance. PLoS Pathog. 2024;20:e1012468. doi: 10.1371/journal.ppat.1012468. PubMed DOI PMC