Long-term in vivo dissolution of thermo- and pH-responsive, 19F magnetic resonance-traceable and injectable polymer implants
Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
38868824
PubMed Central
PMC11166117
DOI
10.1039/d4na00212a
PII: d4na00212a
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
19F magnetic resonance (19F MR) tracers stand out for their wide range of applications in experimental and clinical medicine, as they can be precisely located in living tissues with negligible fluorine background. This contribution demonstrates the long-term dissolution of multiresponsive fluorinated implants designed for prolonged release. Implants were detected for 14 (intramuscular injection) and 20 (subcutaneous injection) months by 19F MR at 4.7 T, showing favorable MR relaxation times, biochemical stability, biological compatibility and slow, long-term dissolution. Thus, polymeric implants may become a platform for long-term local theranostics.
Zobrazit více v PubMed
Rogosnitzky M. Branch S. Gadolinium-based contrast agent toxicity: a review of known and proposed mechanisms. BioMetals. 2016;29:365–376. doi: 10.1007/s10534-016-9931-7. doi: 10.1007/s10534-016-9931-7. PubMed DOI PMC
Kostiv U. Natile M. M. Jirák D. Půlpánová D. Jiráková K. Vosmanská M. et al., Peg-neridronate-modified NaYf4:GD3+,Yb3+,TM3+/NaGdf4 core–shell upconverting nanoparticles for bimodal magnetic resonance/optical luminescence imaging. ACS Omega. 2021;6:14420–14429. doi: 10.1021/acsomega.1c01313. doi: 10.1021/acsomega.1c01313. PubMed DOI PMC
Ziółkowska N. Vít M. Laga R. Jirák D. Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/31P magnetic resonance imaging. Sci. Rep. 2022;12(1):2118. doi: 10.1038/s41598-022-06125-7. doi: 10.1038/s41598-022-06125-7. PubMed DOI PMC
Kracíková L. Ziółkowska N. Androvič L. Klimánková I. Červený D. Vít M. et al., Phosphorus-containing Polymeric Zwitterion: a pioneering bioresponsive probe for 31 p-magnetic resonance imaging. Macromol. Biosci. 2022:2100523. doi: 10.1002/mabi.202100523. doi: 10.1002/mabi.202100523. PubMed DOI
Brus J. Urbanova M. Sedenkova I. Brusova H. New Perspectives of 19F MAS NMR in the characterization of amorphous forms of atorvastatin in dosage formulations. Int. J. Pharm. 2011;409:62–74. doi: 10.1016/j.ijpharm.2011.02.030. doi: 10.1016/j.ijpharm.2011.02.030. PubMed DOI
Sedlacek O. Jirak D. Vit M. Ziołkowska N. Janouskova O. Hoogenboom R. Fluorinated water-soluble poly(2-oxazoline)s as highly sensitive 19F MRI contrast agents. Macromolecules. 2020;53:6387–6395. doi: 10.1021/acs.macromol.0c01228. doi: 10.1021/acs.macromol.0c01228. DOI
Kolouchova K. Jirak D. Groborz O. Sedlacek O. Ziolkowska N. Vit M. et al., Implant-forming polymeric 19f MRI-tracer with tunable dissolution. JCR. 2020;327:50–60. doi: 10.1016/j.jconrel.2020.07.026. PubMed DOI
Jirak D. Galisova A. Kolouchova K. Babuka D. Hruby M. Fluorine polymer probes for Magnetic Resonance Imaging: Quo Vadis?, Magnetic Resonance Materials in Physics. Biol. Med. 2018;32:173–185. doi: 10.1007/s10334-018-0724-6. PubMed DOI PMC
Rolfe B. E. Blakey I. Squires O. Peng H. Boase N. R. Alexander C. et al., Multimodal polymer nanoparticles with combined 19F magnetic resonance and optical detection for tunable, targeted, multimodal imaging in vivo. J. Am. Chem. Soc. 2014;136:2413–2419. doi: 10.1021/ja410351h. doi: 10.1021/ja410351h. PubMed DOI
Ahrens E. T. Helfer B. M. O'Hanlon C. F. Schirda C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn. Reson. Med. 2014;72:1696–1701. doi: 10.1002/mrm.25454. doi: 10.1002/mrm.25454. PubMed DOI PMC
Kaberov L. I. Kaberova Z. Murmiliuk A. Trousil J. Sedláček O. Konefal R. et al., Fluorine-containing block and gradient copoly(2-oxazoline)s based on 2-(3,3,3-trifluoropropyl)-2-oxazoline: a quest for the optimal self-assembled structure for 19F imaging. Biomacromolecules. 2021;22:2963–2975. doi: 10.1021/acs.biomac.1c00367. doi: 10.1021/acs.biomac.1c00367. PubMed DOI
Jirak D. Svoboda J. Filipová M. Pop-Georgievski O. Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Commun. 2021;57:4718–4721. doi: 10.1039/d1cc00642h. doi: 10.1039/D1CC00642H. PubMed DOI
Fink C. Gaudet J. M. Fox M. S. Bhatt S. Viswanathan S. Smith M. et al., 19F-perfluorocarbon-labeled human peripheral blood mononuclear cells can be detected in vivo using clinical MRI parameters in a therapeutic cell setting. Sci. Rep. 2018;8(1):590. doi: 10.1038/s41598-017-19031-0. doi: 10.1038/s41598-017-19031-0. PubMed DOI PMC
Vít M. Burian M. Berková Z. Lacik J. Sedlacek O. Hoogenboom R. et al., A broad tuneable birdcage coil for mouse 1H/19F MR applications. J. Magn. Reson. 2021;329:107023. doi: 10.1016/j.jmr.2021.107023. doi: 10.1016/j.jmr.2021.107023. PubMed DOI
Švec P. Petrov O. V. Lang J. Štěpnička P. Groborz O. Dunlop D. et al., Fluorinated ferrocene moieties as a platform for redox-responsive polymer 19F MRI theranostics. Macromolecules. 2021;55:658–671. doi: 10.1021/acs.macromol.1c01723. doi: 10.1021/acs.macromol.1c01723. DOI
Sedlacek O. Jirak D. Galisova A. Jager E. Laaser J. E. Lodge T. P. et al., 19F magnetic resonance imaging of injectable polymeric implants with multiresponsive behavior. Chem. Mater. 2018;30:4892–4896. doi: 10.1021/acs.chemmater.8b02115. doi: 10.1021/acs.chemmater.8b02115. DOI
Güden-Silber T., Temme S., Jacoby C. and Flögel U., Biomedical 19F MRI using perfluorocarbons, in Preclinical MRI, Methods in Molecular Biology, ed. M. García Martín and P. López Larrubia, Humana Press, New York, 2018, vol. 1718, pp. 235–257, 10.1007/978-1-4939-7531-0_14 PubMed DOI
Babuka D. Kolouchova K. Hruby M. Groborz O. Tosner Z. Zhigunov A. et al., Investigation of the internal structure of thermoresponsive diblock poly(2-methyl-2-oxazoline)-b-poly[n-(2,2-difluoroethyl)acrylamide] copolymer nanoparticles. Eur. Polym. J. 2019;121:109306. doi: 10.1016/j.eurpolymj.2019.109306. doi: 10.1016/j.eurpolymj.2019.109306. DOI
Babuka D. Kolouchova K. Groborz O. Tosner Z. Zhigunov A. Stepanek P. et al., Internal structure of thermoresponsive physically crosslinked nanogel of poly[n-(2-hydroxypropyl)methacrylamide]-block-poly[n-(2,2-difluoroethyl)acrylamide], prominent 19F MRI Tracer. Nanomaterials. 2020;10:2231. doi: 10.3390/nano10112231. doi: 10.3390/nano10112231. PubMed DOI PMC
Kolouchova K. Groborz O. Cernochova Z. Skarkova A. Brabek J. Rosel D. et al., Thermo- and Ros-responsive self-assembled polymer nanoparticle tracers for 19F MRI theranostics. Biomacromolecules. 2021;22:2325–2337. doi: 10.1021/acs.biomac.0c01316. doi: 10.1021/acs.biomac.0c01316. PubMed DOI
Hruby M. Pouckova P. Zadinova M. Kucka J. Lebeda O. Thermoresponsive polymeric radionuclide delivery system—an injectable brachytherapy. Eur. J. Pharm. Sci. 2011;42:484–488. doi: 10.1016/j.ejps.2011.02.002. doi: 10.1016/j.ejps.2011.02.002. PubMed DOI
Ghuman H. Massensini A. R. Donnelly J. Kim S.-M. Medberry C. J. Badylak S. F. et al., ECM hydrogel for the treatment of stroke: characterization of the host cell infiltrate. Biomaterials. 2016;91:166–181. doi: 10.1016/j.biomaterials.2016.03.014. doi: 10.1016/j.biomaterials.2016.03.014. PubMed DOI PMC
Ghuman H. Gerwig M. Nicholls F. J. Liu J. R. Donnelly J. Badylak S. F. et al., Long-term retention of ECM hydrogel after implantation into a sub-acute stroke cavity reduces lesion volume. Acta Biomater. 2017;63:50–63. doi: 10.1016/j.actbio.2017.09.011. doi: 10.1016/j.actbio.2017.09.011. PubMed DOI PMC
Kim M. J. I. Lee B. S. Chun C. J. Cho J.-K. Kim S.-Y. Song S.-C. Long-term theranostic hydrogel system for solid tumors. Biomaterials. 2012;33:2251–2259. doi: 10.1016/j.biomaterials.2011.11.083. doi: 10.1016/j.biomaterials.2011.11.083. PubMed DOI
Guarnieri M. Tyler B. M. DeTolla L. Zhao M. Kobrin B. Subcutaneous implants for long-acting drug therapy in laboratory animals may generate unintended drug reservoirs. J. Pharm. BioAllied Sci. 2014;6:38. doi: 10.4103/0975-7406.124315. doi: 10.4103/0975-7406.124315. PubMed DOI PMC
Bayat M. and Nasri S., Injectable microgel–hydrogel composites “Plum pudding gels”: new system for prolonged drug delivery, in Nanomaterials for Drug Delivery and Therapy, ed. A. M. Grumezescu, Elsevier, 2019, pp. 343–372, 10.1016/b978-0-12-816505-8.00001-1 DOI
Garello F. Terreno E. Sonosensitive MRI nanosystems as cancer theranostics: a recent update. Front. Chem. 2018;6:157. doi: 10.3389/fchem.2018.00157. doi: 10.3389/fchem.2018.00157. PubMed DOI PMC
Moreno Raja M., Lim P. Q., Wong Y. S., Xiong G. M., Zhang Y., Venkatraman S. and Huang Y., Polymeric nanomaterials, in Nanocarriers for Drug Delivery, ed. S. S. Mohapatra, S. Ranjan, N. Dasgupta, R. K. Mishra and S. Thomas, Elsevier, 2019, pp. 557–653, 10.1016/b978-0-12-814033-8.00018-7 DOI
Jeong Y. Hwang H. S. Na K. Theranostics and contrast agents for Magnetic Resonance Imaging. Biomater. Res. 2018;22:20. doi: 10.1186/s40824-018-0130-1. doi: 10.1186/s40824-018-0130-1. PubMed DOI PMC
Ma Z. Wan H. Wang W. Zhang X. Uno T. Yang Q. et al., A theranostic agent for cancer therapy and imaging in the second near-infrared window. Nano Res. 2018;12:273–279. doi: 10.1007/s12274-018-2210-x. doi: 10.1007/s12274-018-2210-x. PubMed DOI PMC
Jeelani S. Jagat Reddy R. C. Maheswaran T. Asokan G. S. Dany A. Anand B. Theranostics: a treasured tailor for tomorrow. J. Pharm. BioAllied Sci. 2014;6:6. doi: 10.4103/0975-7406.137249. doi: 10.4103/0975-7406.137249. PubMed DOI PMC
Kjær L. Thomsen C. Larsson H. B. Henriksen O. Ring P. Evaluation of biexponential relaxation processes by magnetic resonance imaging. Acta Radiol. 1988;29:473–480. doi: 10.3109/02841858809175023. doi: 10.1177/028418518802900418. PubMed DOI
Bogomolova A. Kaberov L. Sedlacek O. Filippov S. K. Stepanek P. Král V. et al., Double stimuli-responsive polymer systems: how to use crosstalk between pH- and thermosensitivity for drug depots. Eur. Polym. J. 2016;84:54–64. doi: 10.1016/j.eurpolymj.2016.09.010. doi: 10.1016/j.eurpolymj.2016.09.010. DOI
Piccinin M. A. and Schwartz J., Histology, Verhoeff Stain, StatPearls Publishing, Treasure Island, FL, 2020 PubMed
Vít M. Burian M. Gálisová A. Jirák D. Construction of a Wide tuneable Volume Coil for Small-Animal MR Imaging. Int. J. Eng. Sci. Invention. 2019;8:8–17.
Hall J. E., Hall M. E. and Guyton A. C., in Guyton and Hall Textbook of Medical Physiology, Elsevier, Philadelphia, PA, 2006, pp. 316–317
Gruber B. Froeling M. Leiner T. Klomp D. W. J. RF coils: a practical guide for nonphysicists. J. Magn. Reson. Imaging. 2018;48:590–604. doi: 10.1002/jmri.26187. doi: 10.1002/jmri.26187. PubMed DOI PMC
Rabyk M. Galisova A. Jiratova M. Patsula V. Srbova L. Loukotova L. et al., Mannan-based conjugates as a multimodal imaging platform for lymph nodes. J. Mater. Chem. B. 2018;6:2584–2596. doi: 10.1039/c7tb02888a. doi: 10.1039/C7TB02888A. PubMed DOI
Intramuscular Drug Administration, Neglected Factors in Pharmacology and Neuroscience Research – Biopharmaceutics, in Animal Characteristics Maintenance, Testing Conditions, ed. V. Claassen, 1994, pp. 23–34, 10.1016/b978-0-444-81871-3.50008-4 DOI
Kučka J. Hrubý M. Lebeda O. Biodistribution of a radiolabelled thermoresponsive polymer in mice. Appl. Radiat. Isot. 2010;68:1073–1078. doi: 10.1016/j.apradiso.2010.01.022. doi: 10.1016/j.apradiso.2010.01.022. PubMed DOI
Zhang Q. Weber C. Schubert U. S. Hoogenboom R. Thermoresponsive polymers with lower critical solution temperature: from fundamental aspects and measuring techniques to recommended turbidimetry conditions. Mater. Horiz. 2017;4:109–116. doi: 10.1039/c7mh00016b. doi: 10.1039/C7MH00016B. DOI
Schwartz L. Supuran C. Alfarouk K. The Warburg effect and the hallmarks of cancer. Anticancer Agents Med. Chem. 2017;17:164–170. doi: 10.2174/1871520616666161031143301. doi: 10.2174/1871520616666161031143301. PubMed DOI
Punnia-Moorthy A. Evaluation of pH changes in inflammation of the subcutaneous air pouch lining in the rat, induced by Carrageenan, dextran and Staphylococcus aureus. J. Oral Pathol. Med. 1987;16:36–44. doi: 10.1111/j.1600-0714.1987.tb00674.x. doi: 10.1111/j.1600-0714.1987.tb00674.x. PubMed DOI