• This record comes from PubMed

Water-soluble fluorinated copolymers as highly sensitive 19F MRI tracers: From structure optimization to multimodal tumor imaging

. 2025 Apr ; 31 () : 101462. [epub] 20250104

Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection

Document type Journal Article

Links

PubMed 39896294
PubMed Central PMC11786703
DOI 10.1016/j.mtbio.2025.101462
PII: S2590-0064(25)00020-1
Knihovny.cz E-resources

Fluorine magnetic resonance imaging (19F MRI) using polymer tracers overcomes limitations of conventional proton MRI by offering enhanced specificity. However, the lack of systematic comparisons among fluorinated polymers has hindered rational tracer design. In this study, we synthesized an extensive library of water-soluble fluorinated copolymers by varying ratios of hydrophilic and fluorinated monomers and evaluated their 19F MRI properties to identify key structure-property relationships. Optimizing the hydrophilicity of the non-fluorinated comonomer increased fluorine content without compromising water solubility, thereby enhancing the MRI signal. Factors such as chemical structure, molecular interactions, and magnetic relaxation times also significantly influenced tracer performance. The optimized copolymer, poly((N-(2,2,2-trifluoroethyl)acrylamide)60-stat-(N-(2-hydroxyethyl)acrylamide)40), exhibited unprecedented 19F MRI sensitivity with detection limits below 1 mg mL-1, the highest reported to date. We demonstrated the tracer's potential through successful in vivo 19F MRI visualization of solid tumors in mouse models, highlighting its promise for advanced biomedical imaging applications.

See more in PubMed

Vijayalaxmi, Fatahi M., Speck O. Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat. Res. Mutat. Res. 2015;764:51–63. doi: 10.1016/j.mrrev.2015.02.002. PubMed DOI

Jirák D., Náměstková K., Herynek V., Liščák R., Vymazal J., Mareš V., Syková E., Hájek M. Lesion evolution after gamma knife irradiation observed by magnetic resonance imaging. Int. J. Radiat. Biol. 2007;83:237–244. doi: 10.1080/09553000601169792. PubMed DOI

Berkova Z., Zacharovova K., Patikova A., Leontovyc I., Hladikova Z., Cerveny D., Tihlarikova E., Nedela V., Girman P., Jirak D., Saudek F. Decellularized pancreatic tail as matrix for pancreatic islet transplantation into the greater omentum in rats. J. Funct. Biomater. 2022;13:171. doi: 10.3390/jfb13040171. PubMed DOI PMC

Patil S., Jirák D., Saudek F., Hájek M., Scheffler K. Positive contrast visualization of SPIO-labeled pancreatic islets using echo-dephased steady-state free precession. Eur. Radiol. 2011;21:214–220. doi: 10.1007/s00330-010-1909-1. PubMed DOI

Tirotta I., Dichiarante V., Pigliacelli C., Cavallo G., Terraneo G., Bombelli F.B., Metrangolo P., Resnati G. 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem. Rev. 2015;115:1106–1129. doi: 10.1021/cr500286d. PubMed DOI

Zhang C., Yan K., Fu C., Peng H., Hawker C.J., Whittaker A.K. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2022;122:167–208. doi: 10.1021/acs.chemrev.1c00632. PubMed DOI

Havlicek D., Panakkal V.M., Voska L., Sedlacek O., Jirak D. Self-assembled fluorinated nanoparticles as sensitive and biocompatible theranostic platforms for 19F MRI. Macromol. Biosci. 2024;24 doi: 10.1002/mabi.202300510. PubMed DOI

Ruiz-Cabello J., Barnett B.P., Bottomley P.A., Bulte J.W.M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24:114–129. doi: 10.1002/nbm.1570. PubMed DOI PMC

Yu J.-X., Hallac R.R., Chiguru S., Mason R.P. New frontiers and developing applications in 19F NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2013;70:25–49. doi: 10.1016/j.pnmrs.2012.10.001. PubMed DOI PMC

Jirát-Ziółkowska N., Vít M., Groborz O., Kolouchová K., Červený D., Sedláček O., Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19 F magnetic resonance-traceable and injectable polymer implants. Nanoscale Adv. 2024;6:3041–3051. doi: 10.1039/D4NA00212A. PubMed DOI PMC

Maxouri O., Bodalal Z., Daal M., Rostami S., Rodriguez I., Akkari L., Srinivas M., Bernards R., Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open. 2023;5 doi: 10.1259/bjro.20230019. PubMed DOI PMC

Wu L., Liu F., Liu S., Xu X., Liu Z., Sun X. Perfluorocarbons-based 19F magnetic resonance imaging in biomedicine. Int. J. Nanomed. 2020;15:7377–7395. doi: 10.2147/IJN.S255084. PubMed DOI PMC

Schmieder A.H., Caruthers S.D., Keupp J., Wickline S.A., Lanza G.M. Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering. 2015;1:475–489. doi: 10.15302/J-ENG-2015103. PubMed DOI PMC

Zhang T., Zhang Q., Tian J.-H., Xing J.-F., Guo W., Liang X.-J. Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Commun. 2018;8:303–313. doi: 10.1557/mrc.2018.49. DOI

Joseph J.M., Gigliobianco M.R., Firouzabadi B.M., Censi R., Di Martino P. Nanotechnology as a versatile tool for 19F-MRI agent's formulation: a glimpse into the use of perfluorinated and fluorinated compounds in nanoparticles. Pharmaceutics. 2022;14:382. doi: 10.3390/pharmaceutics14020382. PubMed DOI PMC

Fu C., Yu Y., Xu X., Wang Q., Chang Y., Zhang C., Zhao J., Peng H., Whittaker A.K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020;108 doi: 10.1016/j.progpolymsci.2020.101286. DOI

Tunca Arın T.A., Sedlacek O. Stimuli-responsive polymers for advanced 19F magnetic resonance imaging: from chemical design to biomedical applications. Biomacromolecules. 2024;25:5630–5649. doi: 10.1021/acs.biomac.4c00833. PubMed DOI PMC

Panakkal V.M., Havlicek D., Pavlova E., Filipová M., Bener S., Jirak D., Sedlacek O. Synthesis of 19F MRI nanotracers by dispersion polymerization-induced self-assembly of N-(2,2,2-Trifluoroethyl)acrylamide in water. Biomacromolecules. 2022;23:4814–4824. doi: 10.1021/acs.biomac.2c00981. PubMed DOI PMC

Nurmi L., Peng H., Seppälä J., Haddleton D.M., Blakey I., Whittaker A.K. Synthesis and evaluation of partly fluorinated polyelectrolytes as components in 19F MRI-detectable nanoparticles. Polym. Chem. 2010;1:1039–1047. doi: 10.1039/C0PY00035C. DOI

Fu C., Demir B., Alcantara S., Kumar V., Han F., Kelly H.G., Tan X., Yu Y., Xu W., Zhao J., Zhang C., Peng H., Boyer C., Woodruff T.M., Kent S.J., Searles D.J., Whittaker A.K. Low-fouling fluoropolymers for bioconjugation and in vivo tracking. Angew. Chem. 2020;132:4759–4765. doi: 10.1002/ange.201914119. PubMed DOI

Jirak D., Svoboda J., Filipová M., Pop-Georgievski O., Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Commun. 2021;57:4718–4721. doi: 10.1039/D1CC00642H. PubMed DOI

Feng Z., Li Q., Wang W., Ni Q., Wang Y., Song H., Zhang C., Kong D., Liang X.-J., Huang P. Superhydrophilic fluorinated polymer and nanogel for high-performance 19F magnetic resonance imaging. Biomaterials. 2020;256 doi: 10.1016/j.biomaterials.2020.120184. PubMed DOI

Zhou L., Triozzi A., Figueiredo M., Emrick T. Fluorinated polymer zwitterions: choline phosphates and phosphorylcholines. ACS Macro Lett. 2021;10:1204–1209. doi: 10.1021/acsmacrolett.1c00451. PubMed DOI

Zhou L., Yang Z., Pagaduan J.N., Emrick T. Fluorinated zwitterionic polymers as dynamic surface coatings. Polym. Chem. 2022;14:32–36. doi: 10.1039/D2PY01197B. DOI

Fu C., Zhang C., Peng H., Han F., Baker C., Wu Y., Ta H., Whittaker A.K. Enhanced performance of polymeric 19F MRI contrast agents through incorporation of highly water-soluble monomer MSEA. Macromolecules. 2018;51:5875–5882. doi: 10.1021/acs.macromol.8b01190. DOI

Huang X., Huang G., Zhang S., Sagiyama K., Togao O., Ma X., Wang Y., Li Y., Soesbe T.C., Sumer B.D., Takahashi M., Sherry A.D., Gao J. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem. Int. Ed. 2013;52:8074–8078. doi: 10.1002/anie.201301135. PubMed DOI PMC

Min Bak J., Kim K.-B., Lee J.-E., Park Y., Sun Yoon S., Mo Jeong H., Lee H. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. Polym. Chem. 2013;4:2219–2223. doi: 10.1039/C2PY20747H. DOI

Olszewski M., Jeong J., Szczepaniak G., Li S., Enciso A., Murata H., Averick S., Kapil K., Das S.R., Matyjaszewski K. Sulfoxide-containing polyacrylamides prepared by PICAR ATRP for biohybrid materials. ACS Macro Lett. 2022;11:1091–1096. doi: 10.1021/acsmacrolett.2c00442. PubMed DOI

Lueckerath T., Strauch T., Koynov K., Barner-Kowollik C., Ng D.Y.W., Weil T. DNA–Polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules. 2019;20:212–221. doi: 10.1021/acs.biomac.8b01328. PubMed DOI

Zhang J., Gody G., Hartlieb M., Catrouillet S., Moffat J., Perrier S. Synthesis of sequence-controlled multiblock single chain nanoparticles by a stepwise folding–chain extension–folding process. Macromolecules. 2016;49:8933–8942. doi: 10.1021/acs.macromol.6b01962. DOI

Ma Y., Yung L.-Y.L. Detection of dissolved CO2 based on the aggregation of gold nanoparticles. Anal. Chem. 2014;86:2429–2435. doi: 10.1021/ac403256s. PubMed DOI

Vít M., Burian M., Berková Z., Lacik J., Sedlacek O., Hoogenboom R., Raida Z., Jirak D. A broad tuneable birdcage coil for mouse 1H/19F MR applications. J. Magn. Reson. 2021;329 doi: 10.1016/j.jmr.2021.107023. PubMed DOI

Yu S., Dai G., Wang Z., Li L., Wei X., Xie Y. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. BMC Med. Imag. 2018;18:17. doi: 10.1186/s12880-018-0256-6. PubMed DOI PMC

Rafiei P., Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int. J. Nanomed. 2017;12:935–947. doi: 10.2147/IJN.S121881. PubMed DOI PMC

Barua S., Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9:223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...