Water-soluble fluorinated copolymers as highly sensitive 19F MRI tracers: From structure optimization to multimodal tumor imaging
Status PubMed-not-MEDLINE Language English Country England, Great Britain Media electronic-ecollection
Document type Journal Article
PubMed
39896294
PubMed Central
PMC11786703
DOI
10.1016/j.mtbio.2025.101462
PII: S2590-0064(25)00020-1
Knihovny.cz E-resources
- Publication type
- Journal Article MeSH
Fluorine magnetic resonance imaging (19F MRI) using polymer tracers overcomes limitations of conventional proton MRI by offering enhanced specificity. However, the lack of systematic comparisons among fluorinated polymers has hindered rational tracer design. In this study, we synthesized an extensive library of water-soluble fluorinated copolymers by varying ratios of hydrophilic and fluorinated monomers and evaluated their 19F MRI properties to identify key structure-property relationships. Optimizing the hydrophilicity of the non-fluorinated comonomer increased fluorine content without compromising water solubility, thereby enhancing the MRI signal. Factors such as chemical structure, molecular interactions, and magnetic relaxation times also significantly influenced tracer performance. The optimized copolymer, poly((N-(2,2,2-trifluoroethyl)acrylamide)60-stat-(N-(2-hydroxyethyl)acrylamide)40), exhibited unprecedented 19F MRI sensitivity with detection limits below 1 mg mL-1, the highest reported to date. We demonstrated the tracer's potential through successful in vivo 19F MRI visualization of solid tumors in mouse models, highlighting its promise for advanced biomedical imaging applications.
See more in PubMed
Vijayalaxmi, Fatahi M., Speck O. Magnetic resonance imaging (MRI): a review of genetic damage investigations. Mutat. Res. Mutat. Res. 2015;764:51–63. doi: 10.1016/j.mrrev.2015.02.002. PubMed DOI
Jirák D., Náměstková K., Herynek V., Liščák R., Vymazal J., Mareš V., Syková E., Hájek M. Lesion evolution after gamma knife irradiation observed by magnetic resonance imaging. Int. J. Radiat. Biol. 2007;83:237–244. doi: 10.1080/09553000601169792. PubMed DOI
Berkova Z., Zacharovova K., Patikova A., Leontovyc I., Hladikova Z., Cerveny D., Tihlarikova E., Nedela V., Girman P., Jirak D., Saudek F. Decellularized pancreatic tail as matrix for pancreatic islet transplantation into the greater omentum in rats. J. Funct. Biomater. 2022;13:171. doi: 10.3390/jfb13040171. PubMed DOI PMC
Patil S., Jirák D., Saudek F., Hájek M., Scheffler K. Positive contrast visualization of SPIO-labeled pancreatic islets using echo-dephased steady-state free precession. Eur. Radiol. 2011;21:214–220. doi: 10.1007/s00330-010-1909-1. PubMed DOI
Tirotta I., Dichiarante V., Pigliacelli C., Cavallo G., Terraneo G., Bombelli F.B., Metrangolo P., Resnati G. 19F magnetic resonance imaging (MRI): from design of materials to clinical applications. Chem. Rev. 2015;115:1106–1129. doi: 10.1021/cr500286d. PubMed DOI
Zhang C., Yan K., Fu C., Peng H., Hawker C.J., Whittaker A.K. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2022;122:167–208. doi: 10.1021/acs.chemrev.1c00632. PubMed DOI
Havlicek D., Panakkal V.M., Voska L., Sedlacek O., Jirak D. Self-assembled fluorinated nanoparticles as sensitive and biocompatible theranostic platforms for 19F MRI. Macromol. Biosci. 2024;24 doi: 10.1002/mabi.202300510. PubMed DOI
Ruiz-Cabello J., Barnett B.P., Bottomley P.A., Bulte J.W.M. Fluorine (19F) MRS and MRI in biomedicine. NMR Biomed. 2011;24:114–129. doi: 10.1002/nbm.1570. PubMed DOI PMC
Yu J.-X., Hallac R.R., Chiguru S., Mason R.P. New frontiers and developing applications in 19F NMR. Prog. Nucl. Magn. Reson. Spectrosc. 2013;70:25–49. doi: 10.1016/j.pnmrs.2012.10.001. PubMed DOI PMC
Jirát-Ziółkowska N., Vít M., Groborz O., Kolouchová K., Červený D., Sedláček O., Jirák D. Long-term in vivo dissolution of thermo- and pH-responsive, 19 F magnetic resonance-traceable and injectable polymer implants. Nanoscale Adv. 2024;6:3041–3051. doi: 10.1039/D4NA00212A. PubMed DOI PMC
Maxouri O., Bodalal Z., Daal M., Rostami S., Rodriguez I., Akkari L., Srinivas M., Bernards R., Beets-Tan R. How to 19F MRI: applications, technique, and getting started. BJR Open. 2023;5 doi: 10.1259/bjro.20230019. PubMed DOI PMC
Wu L., Liu F., Liu S., Xu X., Liu Z., Sun X. Perfluorocarbons-based 19F magnetic resonance imaging in biomedicine. Int. J. Nanomed. 2020;15:7377–7395. doi: 10.2147/IJN.S255084. PubMed DOI PMC
Schmieder A.H., Caruthers S.D., Keupp J., Wickline S.A., Lanza G.M. Recent advances in 19Fluorine magnetic resonance imaging with perfluorocarbon emulsions. Engineering. 2015;1:475–489. doi: 10.15302/J-ENG-2015103. PubMed DOI PMC
Zhang T., Zhang Q., Tian J.-H., Xing J.-F., Guo W., Liang X.-J. Perfluorocarbon-based nanomedicine: emerging strategy for diagnosis and treatment of diseases. MRS Commun. 2018;8:303–313. doi: 10.1557/mrc.2018.49. DOI
Joseph J.M., Gigliobianco M.R., Firouzabadi B.M., Censi R., Di Martino P. Nanotechnology as a versatile tool for 19F-MRI agent's formulation: a glimpse into the use of perfluorinated and fluorinated compounds in nanoparticles. Pharmaceutics. 2022;14:382. doi: 10.3390/pharmaceutics14020382. PubMed DOI PMC
Fu C., Yu Y., Xu X., Wang Q., Chang Y., Zhang C., Zhao J., Peng H., Whittaker A.K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020;108 doi: 10.1016/j.progpolymsci.2020.101286. DOI
Tunca Arın T.A., Sedlacek O. Stimuli-responsive polymers for advanced 19F magnetic resonance imaging: from chemical design to biomedical applications. Biomacromolecules. 2024;25:5630–5649. doi: 10.1021/acs.biomac.4c00833. PubMed DOI PMC
Panakkal V.M., Havlicek D., Pavlova E., Filipová M., Bener S., Jirak D., Sedlacek O. Synthesis of 19F MRI nanotracers by dispersion polymerization-induced self-assembly of N-(2,2,2-Trifluoroethyl)acrylamide in water. Biomacromolecules. 2022;23:4814–4824. doi: 10.1021/acs.biomac.2c00981. PubMed DOI PMC
Nurmi L., Peng H., Seppälä J., Haddleton D.M., Blakey I., Whittaker A.K. Synthesis and evaluation of partly fluorinated polyelectrolytes as components in 19F MRI-detectable nanoparticles. Polym. Chem. 2010;1:1039–1047. doi: 10.1039/C0PY00035C. DOI
Fu C., Demir B., Alcantara S., Kumar V., Han F., Kelly H.G., Tan X., Yu Y., Xu W., Zhao J., Zhang C., Peng H., Boyer C., Woodruff T.M., Kent S.J., Searles D.J., Whittaker A.K. Low-fouling fluoropolymers for bioconjugation and in vivo tracking. Angew. Chem. 2020;132:4759–4765. doi: 10.1002/ange.201914119. PubMed DOI
Jirak D., Svoboda J., Filipová M., Pop-Georgievski O., Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Commun. 2021;57:4718–4721. doi: 10.1039/D1CC00642H. PubMed DOI
Feng Z., Li Q., Wang W., Ni Q., Wang Y., Song H., Zhang C., Kong D., Liang X.-J., Huang P. Superhydrophilic fluorinated polymer and nanogel for high-performance 19F magnetic resonance imaging. Biomaterials. 2020;256 doi: 10.1016/j.biomaterials.2020.120184. PubMed DOI
Zhou L., Triozzi A., Figueiredo M., Emrick T. Fluorinated polymer zwitterions: choline phosphates and phosphorylcholines. ACS Macro Lett. 2021;10:1204–1209. doi: 10.1021/acsmacrolett.1c00451. PubMed DOI
Zhou L., Yang Z., Pagaduan J.N., Emrick T. Fluorinated zwitterionic polymers as dynamic surface coatings. Polym. Chem. 2022;14:32–36. doi: 10.1039/D2PY01197B. DOI
Fu C., Zhang C., Peng H., Han F., Baker C., Wu Y., Ta H., Whittaker A.K. Enhanced performance of polymeric 19F MRI contrast agents through incorporation of highly water-soluble monomer MSEA. Macromolecules. 2018;51:5875–5882. doi: 10.1021/acs.macromol.8b01190. DOI
Huang X., Huang G., Zhang S., Sagiyama K., Togao O., Ma X., Wang Y., Li Y., Soesbe T.C., Sumer B.D., Takahashi M., Sherry A.D., Gao J. Multi-chromatic pH-activatable 19F-MRI nanoprobes with binary ON/OFF pH transitions and chemical-shift barcodes. Angew. Chem. Int. Ed. 2013;52:8074–8078. doi: 10.1002/anie.201301135. PubMed DOI PMC
Min Bak J., Kim K.-B., Lee J.-E., Park Y., Sun Yoon S., Mo Jeong H., Lee H. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. Polym. Chem. 2013;4:2219–2223. doi: 10.1039/C2PY20747H. DOI
Olszewski M., Jeong J., Szczepaniak G., Li S., Enciso A., Murata H., Averick S., Kapil K., Das S.R., Matyjaszewski K. Sulfoxide-containing polyacrylamides prepared by PICAR ATRP for biohybrid materials. ACS Macro Lett. 2022;11:1091–1096. doi: 10.1021/acsmacrolett.2c00442. PubMed DOI
Lueckerath T., Strauch T., Koynov K., Barner-Kowollik C., Ng D.Y.W., Weil T. DNA–Polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules. 2019;20:212–221. doi: 10.1021/acs.biomac.8b01328. PubMed DOI
Zhang J., Gody G., Hartlieb M., Catrouillet S., Moffat J., Perrier S. Synthesis of sequence-controlled multiblock single chain nanoparticles by a stepwise folding–chain extension–folding process. Macromolecules. 2016;49:8933–8942. doi: 10.1021/acs.macromol.6b01962. DOI
Ma Y., Yung L.-Y.L. Detection of dissolved CO2 based on the aggregation of gold nanoparticles. Anal. Chem. 2014;86:2429–2435. doi: 10.1021/ac403256s. PubMed DOI
Vít M., Burian M., Berková Z., Lacik J., Sedlacek O., Hoogenboom R., Raida Z., Jirak D. A broad tuneable birdcage coil for mouse 1H/19F MR applications. J. Magn. Reson. 2021;329 doi: 10.1016/j.jmr.2021.107023. PubMed DOI
Yu S., Dai G., Wang Z., Li L., Wei X., Xie Y. A consistency evaluation of signal-to-noise ratio in the quality assessment of human brain magnetic resonance images. BMC Med. Imag. 2018;18:17. doi: 10.1186/s12880-018-0256-6. PubMed DOI PMC
Rafiei P., Haddadi A. Docetaxel-loaded PLGA and PLGA-PEG nanoparticles for intravenous application: pharmacokinetics and biodistribution profile. Int. J. Nanomed. 2017;12:935–947. doi: 10.2147/IJN.S121881. PubMed DOI PMC
Barua S., Mitragotri S. Challenges associated with penetration of nanoparticles across cell and tissue barriers: a review of current status and future prospects. Nano Today. 2014;9:223–243. doi: 10.1016/j.nantod.2014.04.008. PubMed DOI PMC