Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)acrylamide in Water
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
36251480
PubMed Central
PMC10797588
DOI
10.1021/acs.biomac.2c00981
Knihovny.cz E-resources
- MeSH
- Acrylamide MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Mice MeSH
- Nanoparticles * chemistry MeSH
- Polymerization MeSH
- Water * MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Acrylamide MeSH
- Water * MeSH
19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.
See more in PubMed
Ameduri B. Fluoropolymers: The right material for the right applications. Chem.—Eur. J. 2018, 24, 18830–18841. 10.1002/chem.201802708. PubMed DOI
Lv J.; Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem. Soc. Rev. 2021, 50, 5435–5467. 10.1039/d0cs00258e. PubMed DOI
Zhang C.; Yan K.; Fu C.; Peng H.; Hawker C. J.; Whittaker A. K. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2021, 122, 167–208. 10.1021/acs.chemrev.1c00632. PubMed DOI
Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020, 108, 101286.10.1016/j.progpolymsci.2020.101286. DOI
Jirak D.; Galisova A.; Kolouchova K.; Babuka D.; Hruby M. Fluorine polymer probes for magnetic resonance imaging: quo vadis?. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 173–185. 10.1007/s10334-018-0724-6. PubMed DOI PMC
Yang Y.; Zhang Y.; Wang B.; Guo Q.; Yuan Y.; Jiang W.; Shi L.; Yang M.; Chen S.; Lou X.; Zhou X. Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chem. Sci. 2021, 12, 4300–4308. 10.1039/d0sc06969h. PubMed DOI PMC
Kretschmer J.; David T.; Dračínský M.; Socha O.; Jirak D.; Vít M.; Jurok R.; Kuchař M.; Císařová I.; Polasek M. Paramagnetic encoding of molecules. Nat. Commun. 2022, 13, 3179.10.1038/s41467-022-30811-9. PubMed DOI PMC
Wu L.; Liu F.; Liu S.; Xu X.; Liu Z.; Sun X. Perfluorocarbons-based 19F magnetic resonance imaging in biomedicine. Int. J. Nanomed. 2020, 15, 7377.10.2147/ijn.s255084. PubMed DOI PMC
Ruiz-Cabello J.; Walczak P.; Kedziorek D. A.; Chacko V. P.; Schmieder A. H.; Wickline S. A.; Lanza G. M.; Bulte J. W. M. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med. 2008, 60, 1506–1511. 10.1002/mrm.21783. PubMed DOI PMC
Fu C.; Demir B.; Alcantara S.; Kumar V.; Han F.; Kelly H. G.; Tan X.; Yu Y.; Xu W.; Zhao J.; Zhang C.; Peng H.; Boyer C.; Woodruff T. M.; Kent S. J.; Searles D. J.; Whittaker A. K. Low-fouling fluoropolymers for bioconjugation and in vivo tracking. Angew. Chem. 2020, 132, 4759–4765. 10.1002/ange.201914119. PubMed DOI
Jirak D.; Svoboda J.; Filipová M.; Pop-Georgievski O.; Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Commun. 2021, 57, 4718–4721. 10.1039/d1cc00642h. PubMed DOI
Sedlacek O.; Jirak D.; Galisova A.; Jager E.; Laaser J. E.; Lodge T. P.; Stepanek P.; Hruby M. 19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chem. Mater. 2018, 30, 4892–4896. 10.1021/acs.chemmater.8b02115. DOI
Fu C.; Zhang C.; Peng H.; Han F.; Baker C.; Wu Y.; Ta H.; Whittaker A. K. Enhanced performance of polymeric 19F MRI contrast agents through incorporation of highly water-soluble monomer MSEA. Macromolecules 2018, 51, 5875–5882. 10.1021/acs.macromol.8b01190. DOI
Thurecht K. J.; Blakey I.; Peng H.; Squires O.; Hsu S.; Alexander C.; Whittaker A. K. Functional Hyperbranched Polymers: Toward Targeted in Vivo 19F Magnetic Resonance Imaging Using Designed Macromolecules. J. Am. Chem. Soc. 2010, 132, 5336–5337. 10.1021/ja100252y. PubMed DOI
Rolfe B. E.; Blakey I.; Squires O.; Peng H.; Boase N. R. B.; Alexander C.; Parsons P. G.; Boyle G. M.; Whittaker A. K.; Thurecht K. J. Multimodal Polymer Nanoparticles with Combined 19F Magnetic Resonance and Optical Detection for Tunable, Targeted, Multimodal Imaging in Vivo. J. Am. Chem. Soc. 2014, 136, 2413–2419. 10.1021/ja410351h. PubMed DOI
Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated water-soluble poly (2-oxazoline) s as highly sensitive 19F MRI contrast agents. Macromolecules 2020, 53, 6387–6395. 10.1021/acs.macromol.0c01228. DOI
Peng H.; Blakey I.; Dargaville B.; Rasoul F.; Rose S.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Block Copolymers as MRI Imaging Agents. Biomacromolecules 2009, 10, 374–381. 10.1021/bm801136m. PubMed DOI
Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly (2-oxazoline) s Based on 2-(3, 3, 3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22, 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI
Kolouchova K.; Sedlacek O.; Jirak D.; Babuka D.; Blahut J.; Kotek J.; Vit M.; Trousil J.; Konefał R.; Janouskova O.; Podhorska B.; Slouf M.; Hruby M. Self-assembled thermoresponsive polymeric nanogels for 19F MR imaging. Biomacromolecules 2018, 19, 3515–3524. 10.1021/acs.biomac.8b00812. PubMed DOI
D’Agosto F.; Rieger J.; Lansalot M. RAFT-mediated polymerization-induced self-assembly. Angew. Chem., Int. Ed. 2020, 59, 8368–8392. 10.1002/anie.201911758. PubMed DOI
Warren N. J.; Armes S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. 10.1021/ja502843f. PubMed DOI PMC
Penfold N. J.; Yeow J.; Boyer C.; Armes S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 2019, 8, 1029–1054. 10.1021/acsmacrolett.9b00464. PubMed DOI
Le D.; Keller D.; Delaittre G. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019, 40, 1800551.10.1002/marc.201800551. PubMed DOI
Wan J.; Fan B.; Thang S. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem. Sci. 2022, 13, 4192–4224. 10.1039/d2sc00762b. PubMed DOI PMC
Cao J.; Tan Y.; Chen Y.; Zhang L.; Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol. Rapid Commun. 2021, 42, 2100498.10.1002/marc.202100498. PubMed DOI
Czajka A.; Armes S. P. Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. J. Am. Chem. Soc. 2021, 143, 1474–1484. 10.1021/jacs.0c11183. PubMed DOI PMC
Czajka A.; Liao G.; Mykhaylyk O. O.; Armes S. P. In situ small-angle X-ray scattering studies during the formation of polymer/silica nanocomposite particles in aqueous solution. Chem. Sci. 2021, 12, 14288–14300. 10.1039/d1sc03353k. PubMed DOI PMC
Desnos G.; Rubio A.; Gomri C.; Gravelle M.; Ladmiral V.; Semsarilar M. Semi-Fluorinated Di and Triblock Copolymer Nano-Objects Prepared via RAFT Alcoholic Dispersion Polymerization (PISA). Polymers 2021, 13, 2502.10.3390/polym13152502. PubMed DOI PMC
Huo M.; Li D.; Song G.; Zhang J.; Wu D.; Wei Y.; Yuan J. Semi-Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2018, 39, 1700840.10.1002/marc.201700840. PubMed DOI
Cornel E. J.; van Meurs S.; Smith T.; O’Hora P. S.; Armes S. P. In Situ Spectroscopic Studies of Highly Transparent Nanoparticle Dispersions Enable Assessment of Trithiocarbonate Chain-End Fidelity during RAFT Dispersion Polymerization in Nonpolar Media. J. Am. Chem. Soc. 2018, 140, 12980–12988. 10.1021/jacs.8b07953. PubMed DOI PMC
Zhao W.; Ta H. T.; Zhang C.; Whittaker A. K. Polymerization-Induced Self-Assembly (PISA)—Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017, 18, 1145–1156. 10.1021/acs.biomac.6b01788. PubMed DOI
Lueckerath T.; Strauch T.; Koynov K.; Barner-Kowollik C.; Ng D. Y. W.; Weil T. DNA–Polymer Conjugates by Photoinduced RAFT Polymerization. Biomacromolecules 2019, 20, 212–221. 10.1021/acs.biomac.8b01328. PubMed DOI
Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H.-i. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. Polym. Chem. 2013, 4, 2219–2223. 10.1039/c2py20747h. DOI
Vít M.; Burian M.; Berková Z.; Lacik J.; Sedlacek O.; Hoogenboom R.; Raida Z.; Jirak D. A broad tuneable birdcage coil for mouse 1H/19F MR applications. J. Magn. Reson. 2021, 329, 107023.10.1016/j.jmr.2021.107023. PubMed DOI
Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT aqueous dispersion polymerization yields poly (ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC
Feng C.; Zhu C.; Yao W.; Lu G.; Li Y.; Lv X.; Jia M.; Huang X. Constructing semi-fluorinated PDEAEMA-b-PBTFVBP-b-PDEAEMA amphiphilic triblock copolymer via successive thermal step-growth cycloaddition polymerization and ATRP. Polym. Chem. 2015, 6, 7881–7892. 10.1039/c5py01404b. DOI
Sedlacek O.; Bardoula V.; Vuorimaa-Laukkanen E.; Gedda L.; Edwards K.; Radulescu A.; Mun G. A.; Guo Y.; Zhou J.; Zhang H.; Nardello-Rataj V.; Filippov S.; Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly (2-oxazoline) s on Self-Assembly and Drug Encapsulation. Small 2022, 18, 2106251.10.1002/smll.202106251. PubMed DOI
Jirák D.; Kríz J.; Herynek V.; Andersson B.; Girman P.; Burian M.; Saudek F.; Hájek M. MRI of transplanted pancreatic islets. Magn. Reson. Med. 2004, 52, 1228–1233. 10.1002/mrm.20282. PubMed DOI
Cationic fluorinated micelles for cell labeling and 19F-MR imaging