• This record comes from PubMed

Synthesis of 19F MRI Nanotracers by Dispersion Polymerization-Induced Self-Assembly of N-(2,2,2-Trifluoroethyl)acrylamide in Water

. 2022 Nov 14 ; 23 (11) : 4814-4824. [epub] 20221017

Language English Country United States Media print-electronic

Document type Journal Article, Research Support, Non-U.S. Gov't

19F magnetic resonance imaging (MRI) using fluoropolymer tracers has recently emerged as a promising, non-invasive diagnostic tool in modern medicine. However, despite its potential, 19F MRI remains overlooked and underused due to the limited availability or unfavorable properties of fluorinated tracers. Herein, we report a straightforward synthetic route to highly fluorinated 19F MRI nanotracers via aqueous dispersion polymerization-induced self-assembly of a water-soluble fluorinated monomer. A polyethylene glycol-based macromolecular chain-transfer agent was extended by RAFT-mediated N-(2,2,2-trifluoroethyl)acrylamide (TFEAM) polymerization in water, providing fluorine-rich self-assembled nanoparticles in a single step. The resulting nanoparticles had different morphologies and sizes ranging from 60 to 220 nm. After optimizing their structure to maximize the magnetic relaxation of the fluorinated core, we obtained a strong 19F NMR/MRI signal in an aqueous environment. Their non-toxicity was confirmed on primary human dermal fibroblasts. Moreover, we visualized the nanoparticles by 19F MRI, both in vitro (in aqueous phantoms) and in vivo (after subcutaneous injection in mice), thus confirming their biomedical potential.

See more in PubMed

Ameduri B. Fluoropolymers: The right material for the right applications. Chem.—Eur. J. 2018, 24, 18830–18841. 10.1002/chem.201802708. PubMed DOI

Lv J.; Cheng Y. Fluoropolymers in biomedical applications: state-of-the-art and future perspectives. Chem. Soc. Rev. 2021, 50, 5435–5467. 10.1039/d0cs00258e. PubMed DOI

Zhang C.; Yan K.; Fu C.; Peng H.; Hawker C. J.; Whittaker A. K. Biological utility of fluorinated compounds: from materials design to molecular imaging, therapeutics and environmental remediation. Chem. Rev. 2021, 122, 167–208. 10.1021/acs.chemrev.1c00632. PubMed DOI

Fu C.; Yu Y.; Xu X.; Wang Q.; Chang Y.; Zhang C.; Zhao J.; Peng H.; Whittaker A. K. Functional polymers as metal-free magnetic resonance imaging contrast agents. Prog. Polym. Sci. 2020, 108, 101286.10.1016/j.progpolymsci.2020.101286. DOI

Jirak D.; Galisova A.; Kolouchova K.; Babuka D.; Hruby M. Fluorine polymer probes for magnetic resonance imaging: quo vadis?. Magn. Reson. Mater. Phys. Biol. Med. 2019, 32, 173–185. 10.1007/s10334-018-0724-6. PubMed DOI PMC

Yang Y.; Zhang Y.; Wang B.; Guo Q.; Yuan Y.; Jiang W.; Shi L.; Yang M.; Chen S.; Lou X.; Zhou X. Coloring ultrasensitive MRI with tunable metal–organic frameworks. Chem. Sci. 2021, 12, 4300–4308. 10.1039/d0sc06969h. PubMed DOI PMC

Kretschmer J.; David T.; Dračínský M.; Socha O.; Jirak D.; Vít M.; Jurok R.; Kuchař M.; Císařová I.; Polasek M. Paramagnetic encoding of molecules. Nat. Commun. 2022, 13, 3179.10.1038/s41467-022-30811-9. PubMed DOI PMC

Wu L.; Liu F.; Liu S.; Xu X.; Liu Z.; Sun X. Perfluorocarbons-based 19F magnetic resonance imaging in biomedicine. Int. J. Nanomed. 2020, 15, 7377.10.2147/ijn.s255084. PubMed DOI PMC

Ruiz-Cabello J.; Walczak P.; Kedziorek D. A.; Chacko V. P.; Schmieder A. H.; Wickline S. A.; Lanza G. M.; Bulte J. W. M. In vivo “hot spot” MR imaging of neural stem cells using fluorinated nanoparticles. Magn. Reson. Med. 2008, 60, 1506–1511. 10.1002/mrm.21783. PubMed DOI PMC

Fu C.; Demir B.; Alcantara S.; Kumar V.; Han F.; Kelly H. G.; Tan X.; Yu Y.; Xu W.; Zhao J.; Zhang C.; Peng H.; Boyer C.; Woodruff T. M.; Kent S. J.; Searles D. J.; Whittaker A. K. Low-fouling fluoropolymers for bioconjugation and in vivo tracking. Angew. Chem. 2020, 132, 4759–4765. 10.1002/ange.201914119. PubMed DOI

Jirak D.; Svoboda J.; Filipová M.; Pop-Georgievski O.; Sedlacek O. Antifouling fluoropolymer-coated nanomaterials for 19F MRI. Chem. Commun. 2021, 57, 4718–4721. 10.1039/d1cc00642h. PubMed DOI

Sedlacek O.; Jirak D.; Galisova A.; Jager E.; Laaser J. E.; Lodge T. P.; Stepanek P.; Hruby M. 19F Magnetic Resonance Imaging of Injectable Polymeric Implants with Multiresponsive Behavior. Chem. Mater. 2018, 30, 4892–4896. 10.1021/acs.chemmater.8b02115. DOI

Fu C.; Zhang C.; Peng H.; Han F.; Baker C.; Wu Y.; Ta H.; Whittaker A. K. Enhanced performance of polymeric 19F MRI contrast agents through incorporation of highly water-soluble monomer MSEA. Macromolecules 2018, 51, 5875–5882. 10.1021/acs.macromol.8b01190. DOI

Thurecht K. J.; Blakey I.; Peng H.; Squires O.; Hsu S.; Alexander C.; Whittaker A. K. Functional Hyperbranched Polymers: Toward Targeted in Vivo 19F Magnetic Resonance Imaging Using Designed Macromolecules. J. Am. Chem. Soc. 2010, 132, 5336–5337. 10.1021/ja100252y. PubMed DOI

Rolfe B. E.; Blakey I.; Squires O.; Peng H.; Boase N. R. B.; Alexander C.; Parsons P. G.; Boyle G. M.; Whittaker A. K.; Thurecht K. J. Multimodal Polymer Nanoparticles with Combined 19F Magnetic Resonance and Optical Detection for Tunable, Targeted, Multimodal Imaging in Vivo. J. Am. Chem. Soc. 2014, 136, 2413–2419. 10.1021/ja410351h. PubMed DOI

Sedlacek O.; Jirak D.; Vit M.; Ziołkowska N.; Janouskova O.; Hoogenboom R. Fluorinated water-soluble poly (2-oxazoline) s as highly sensitive 19F MRI contrast agents. Macromolecules 2020, 53, 6387–6395. 10.1021/acs.macromol.0c01228. DOI

Peng H.; Blakey I.; Dargaville B.; Rasoul F.; Rose S.; Whittaker A. K. Synthesis and Evaluation of Partly Fluorinated Block Copolymers as MRI Imaging Agents. Biomacromolecules 2009, 10, 374–381. 10.1021/bm801136m. PubMed DOI

Kaberov L. I.; Kaberova Z.; Murmiliuk A.; Trousil J.; Sedláček O.; Konefal R.; Zhigunov A.; Pavlova E.; Vít M.; Jirák D.; Hoogenboom R.; Filippov S. K. Fluorine-Containing Block and Gradient Copoly (2-oxazoline) s Based on 2-(3, 3, 3-Trifluoropropyl)-2-oxazoline: A Quest for the Optimal Self-Assembled Structure for 19F Imaging. Biomacromolecules 2021, 22, 2963–2975. 10.1021/acs.biomac.1c00367. PubMed DOI

Kolouchova K.; Sedlacek O.; Jirak D.; Babuka D.; Blahut J.; Kotek J.; Vit M.; Trousil J.; Konefał R.; Janouskova O.; Podhorska B.; Slouf M.; Hruby M. Self-assembled thermoresponsive polymeric nanogels for 19F MR imaging. Biomacromolecules 2018, 19, 3515–3524. 10.1021/acs.biomac.8b00812. PubMed DOI

D’Agosto F.; Rieger J.; Lansalot M. RAFT-mediated polymerization-induced self-assembly. Angew. Chem., Int. Ed. 2020, 59, 8368–8392. 10.1002/anie.201911758. PubMed DOI

Warren N. J.; Armes S. P. Polymerization-induced self-assembly of block copolymer nano-objects via RAFT aqueous dispersion polymerization. J. Am. Chem. Soc. 2014, 136, 10174–10185. 10.1021/ja502843f. PubMed DOI PMC

Penfold N. J.; Yeow J.; Boyer C.; Armes S. P. Emerging trends in polymerization-induced self-assembly. ACS Macro Lett. 2019, 8, 1029–1054. 10.1021/acsmacrolett.9b00464. PubMed DOI

Le D.; Keller D.; Delaittre G. Reactive and Functional Nanoobjects by Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2019, 40, 1800551.10.1002/marc.201800551. PubMed DOI

Wan J.; Fan B.; Thang S. RAFT-mediated polymerization-induced self-assembly (RAFT-PISA): current status and future directions. Chem. Sci. 2022, 13, 4192–4224. 10.1039/d2sc00762b. PubMed DOI PMC

Cao J.; Tan Y.; Chen Y.; Zhang L.; Tan J. Expanding the Scope of Polymerization-Induced Self-Assembly: Recent Advances and New Horizons. Macromol. Rapid Commun. 2021, 42, 2100498.10.1002/marc.202100498. PubMed DOI

Czajka A.; Armes S. P. Time-Resolved Small-Angle X-ray Scattering Studies during Aqueous Emulsion Polymerization. J. Am. Chem. Soc. 2021, 143, 1474–1484. 10.1021/jacs.0c11183. PubMed DOI PMC

Czajka A.; Liao G.; Mykhaylyk O. O.; Armes S. P. In situ small-angle X-ray scattering studies during the formation of polymer/silica nanocomposite particles in aqueous solution. Chem. Sci. 2021, 12, 14288–14300. 10.1039/d1sc03353k. PubMed DOI PMC

Desnos G.; Rubio A.; Gomri C.; Gravelle M.; Ladmiral V.; Semsarilar M. Semi-Fluorinated Di and Triblock Copolymer Nano-Objects Prepared via RAFT Alcoholic Dispersion Polymerization (PISA). Polymers 2021, 13, 2502.10.3390/polym13152502. PubMed DOI PMC

Huo M.; Li D.; Song G.; Zhang J.; Wu D.; Wei Y.; Yuan J. Semi-Fluorinated Methacrylates: A Class of Versatile Monomers for Polymerization-Induced Self-Assembly. Macromol. Rapid Commun. 2018, 39, 1700840.10.1002/marc.201700840. PubMed DOI

Cornel E. J.; van Meurs S.; Smith T.; O’Hora P. S.; Armes S. P. In Situ Spectroscopic Studies of Highly Transparent Nanoparticle Dispersions Enable Assessment of Trithiocarbonate Chain-End Fidelity during RAFT Dispersion Polymerization in Nonpolar Media. J. Am. Chem. Soc. 2018, 140, 12980–12988. 10.1021/jacs.8b07953. PubMed DOI PMC

Zhao W.; Ta H. T.; Zhang C.; Whittaker A. K. Polymerization-Induced Self-Assembly (PISA)—Control over the Morphology of 19F-Containing Polymeric Nano-objects for Cell Uptake and Tracking. Biomacromolecules 2017, 18, 1145–1156. 10.1021/acs.biomac.6b01788. PubMed DOI

Lueckerath T.; Strauch T.; Koynov K.; Barner-Kowollik C.; Ng D. Y. W.; Weil T. DNA–Polymer Conjugates by Photoinduced RAFT Polymerization. Biomacromolecules 2019, 20, 212–221. 10.1021/acs.biomac.8b01328. PubMed DOI

Bak J. M.; Kim K.-B.; Lee J.-E.; Park Y.; Yoon S. S.; Jeong H. M.; Lee H.-i. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. Polym. Chem. 2013, 4, 2219–2223. 10.1039/c2py20747h. DOI

Vít M.; Burian M.; Berková Z.; Lacik J.; Sedlacek O.; Hoogenboom R.; Raida Z.; Jirak D. A broad tuneable birdcage coil for mouse 1H/19F MR applications. J. Magn. Reson. 2021, 329, 107023.10.1016/j.jmr.2021.107023. PubMed DOI

Warren N. J.; Mykhaylyk O. O.; Mahmood D.; Ryan A. J.; Armes S. P. RAFT aqueous dispersion polymerization yields poly (ethylene glycol)-based diblock copolymer nano-objects with predictable single phase morphologies. J. Am. Chem. Soc. 2014, 136, 1023–1033. 10.1021/ja410593n. PubMed DOI PMC

Feng C.; Zhu C.; Yao W.; Lu G.; Li Y.; Lv X.; Jia M.; Huang X. Constructing semi-fluorinated PDEAEMA-b-PBTFVBP-b-PDEAEMA amphiphilic triblock copolymer via successive thermal step-growth cycloaddition polymerization and ATRP. Polym. Chem. 2015, 6, 7881–7892. 10.1039/c5py01404b. DOI

Sedlacek O.; Bardoula V.; Vuorimaa-Laukkanen E.; Gedda L.; Edwards K.; Radulescu A.; Mun G. A.; Guo Y.; Zhou J.; Zhang H.; Nardello-Rataj V.; Filippov S.; Hoogenboom R. Influence of Chain Length of Gradient and Block Copoly (2-oxazoline) s on Self-Assembly and Drug Encapsulation. Small 2022, 18, 2106251.10.1002/smll.202106251. PubMed DOI

Jirák D.; Kríz J.; Herynek V.; Andersson B.; Girman P.; Burian M.; Saudek F.; Hájek M. MRI of transplanted pancreatic islets. Magn. Reson. Med. 2004, 52, 1228–1233. 10.1002/mrm.20282. PubMed DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...