Cationic fluorinated micelles for cell labeling and 19F-MR imaging
Language English Country Great Britain, England Media electronic
Document type Journal Article
Grant support
IN00023001
Ministerstvo Zdravotnictví Ceské Republiky
LM2018124
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
CZ.02.1.01/0.0/0.0/16_013/0001821
European Structural and Investments Funds in the frame of the Research Development and Education
PubMed
39349687
PubMed Central
PMC11442823
DOI
10.1038/s41598-024-73511-8
PII: 10.1038/s41598-024-73511-8
Knihovny.cz E-resources
- Keywords
- 19F magnetic resonance imaging, 19F magnetic resonance spectroscopy, Cell labeling, Fluorinated micelles,
- MeSH
- Staining and Labeling methods MeSH
- Phantoms, Imaging MeSH
- Fluorine chemistry MeSH
- Halogenation MeSH
- Cations * chemistry MeSH
- Contrast Media chemistry MeSH
- Humans MeSH
- Magnetic Resonance Imaging methods MeSH
- Micelles * MeSH
- Mice MeSH
- Cell Survival * drug effects MeSH
- Fluorine-19 Magnetic Resonance Imaging methods MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Fluorine MeSH
- Cations * MeSH
- Contrast Media MeSH
- Micelles * MeSH
Magnetic resonance imaging (MRI) relies on appropriate contrast agents, especially for visualizing transplanted cells within host tissue. In recent years, compounds containing fluorine-19 have gained significant attention as MRI probe, particularly in dual 1H/19F-MR imaging. However, various factors affecting probe sensitivity, such as fluorine content and the equivalency of fluorine atoms, must be considered. In this study, we synthesized fluorinated micelles with adjustable surface positive charge density and investigated their physicochemical properties and MRI efficacy in phantoms and labeled cells. While the micelles exhibited clear signals in 19F-MR spectra and imaging, the concentrations required for MRI visualization of labeled cells were relatively high, adversely affecting cell viability. Despite their favourable physicochemical properties, achieving higher labeling rates without compromising cell viability during labeling remains a challenge for potential in vivo applications.
3rd Faculty of Medicine Charles University Ruská 87 Prague 100 00 Czech Republic
Institute for Clinical and Experimental Medicine Vídeňská 1958 9 Prague 140 21 Czech Republic
See more in PubMed
Toso, C. et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. Am. J. Transpl.8, 701–706. 10.1111/j.1600-6143.2007.02120.x (2008). PubMed
Saudek, F. et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. Transplantation. 90, 1602–1606. 10.1097/tp.0b013e3181ffba5e (2010). PubMed
Jirak, D. et al. MRI of transplanted pancreatic islets. Magn. Reson. Med.52, 1228–1233. 10.1002/mrm.20282 (2004). PubMed
Bulte, J. W. In vivo MRI cell tracking: clinical studies. AJR Am. J. Roentgenol.193, 314–325. 10.2214/AJR.09.3107 (2009). PubMed PMC
Deligianni, X. et al. In vivo visualization of cells labeled with superparamagnetic iron oxides by a sub-millisecond gradient echo sequence. MAGMA. 27, 329–337. 10.1007/s10334-013-0422-3 (2014). PubMed
Shapoval, O. et al. Multimodal fluorescently labeled polymer-coated GdF(3) nanoparticles inhibit degranulation in mast cells. Nanoscale. 13, 19023–19037. 10.1039/d1nr06127e (2021). PubMed
Srivastava, A. K. et al. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. Dis. Model. Mech.8, 323–336. 10.1242/dmm.018499 (2015). PubMed PMC
Berkova, Z. et al. Decellularized pancreatic tail as matrix for pancreatic islet transplantation into the greater omentum in rats. J. Funct. Biomater.1310.3390/jfb13040171 (2022). PubMed PMC
Berkova, Z. et al. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. Transplantation. 85, 155–159. 10.1097/01.tp.0000297247.08627.ff (2008). PubMed
Harizaj, A. et al. Cytosolic delivery of gadolinium via photoporation enables improved in vivo magnetic resonance imaging of cancer cells. Biomater. Sci.9, 4005–4018. 10.1039/d1bm00479d (2021). PubMed
Hoehn, M. et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. Proc. Natl. Acad. Sci. USA. 99, 16267–16272. 10.1073/pnas.242435499 (2002). PubMed PMC
Justicia, C., Himmelreich, U., Ramos-Cabrer, P., Sprenger, C. & Hoehn, M. In vivo tracking of endogenous stem cells by MRI after intraparenchymal injection of iron oxide nanoparticles. Mol. Imaging. 4, 351–352 (2005).
Bulte, J. W. M. & Daldrup-Link, H. E. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. Radiology. 289, 604–615. 10.1148/radiol.2018180449 (2018). PubMed PMC
Ettlinger, R. et al. In Vitro studies of Fe3O4-ZIF‐8 core–Shell nanoparticles designed as potential theragnostics. Part. Part. Syst. Charact.3710.1002/ppsc.202000185 (2020).
Thomsen, H. S. et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. Eur. Radiol.23, 307–318. 10.1007/s00330-012-2597-9 (2013). PubMed
Garcia, J., Liu, S. Z. & Louie, A. Y. Biological effects of MRI contrast agents: gadolinium retention, potential mechanisms and a role for phosphorus. Philos. Trans. Math. Phys. Eng. Sci.37510.1098/rsta.2017.0180 (2017). PubMed PMC
Ziolkowska, N., Vit, M., Laga, R. & Jirak, D. Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in (1)H/(31)P magnetic resonance imaging. Sci. Rep.12, 2118. 10.1038/s41598-022-06125-7 (2022). PubMed PMC
Kracikova, L. et al. Phosphorus-containing polymeric zwitterion: a pioneering bioresponsive probe for (31) P-magnetic resonance imaging. Macromol. Biosci.22, e2100523. 10.1002/mabi.202100523 (2022). PubMed
Kracikova, L. et al. Phosphorus-containing polymers as sensitive biocompatible probes for (31)P magnetic resonance. Molecules. 2810.3390/molecules28052334 (2023). PubMed PMC
Kolouchova, K. et al. Multiresponsive fluorinated polymers as a theranostic platform using 19F MRI. Eur. Polymer J.17510.1016/j.eurpolymj.2022.111381 (2022).
Jirak, D., Galisova, A., Kolouchova, K., Babuka, D. & Hruby, M. Fluorine polymer probes for magnetic resonance imaging: quo vadis? MAGMA. 32, 173–185. 10.1007/s10334-018-0724-6 (2019). PubMed PMC
Herynek, V. et al. Low-molecular-weight paramagnetic (19)F contrast agents for fluorine magnetic resonance imaging. MAGMA. 32, 115–122. 10.1007/s10334-018-0721-9 (2019). PubMed PMC
Mali, A., Kaijzel, E. L., Lamb, H. J. & Cruz, L. J. 19)F-nanoparticles: platform for in vivo delivery of fluorinated biomaterials for (19)F-MRI. J. Control Release. 338, 870–889. 10.1016/j.jconrel.2021.09.001 (2021). PubMed
Mali, A. et al. The internal structure of gadolinium and perfluorocarbon-loaded polymer nanoparticles affects (19)F MRI relaxation times. Nanoscale. 15, 18068–18079. 10.1039/d3nr04577c (2023). PubMed
Rho, J. et al. Paramagnetic fluorinated nanoemulsions for in vivo F-19 MRI. Mol. Imaging Biol.22, 665–674. 10.1007/s11307-019-01415-5 (2020). PubMed PMC
Yue, X. et al. Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. Mol. Pharm.11, 4208–4217. 10.1021/mp500443x (2014). PubMed PMC
Li, D. et al. c-Met-targeting (19)F MRI nanoparticles with ultralong tumor retention for precisely detecting small or ill-defined colorectal liver metastases. Int. J. Nanomed.18, 2181–2196. 10.2147/IJN.S403190 (2023). PubMed PMC
Boehm-Sturm, P., Mengler, L., Wecker, S., Hoehn, M. & Kallur, T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PLoS ONE. 6, e29040. 10.1371/journal.pone.0029040 (2011). PubMed PMC
Gonzales, C. et al. in-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PLoS ONE. 11, e0164557. 10.1371/journal.pone.0164557 (2016). PubMed PMC
Vit, M. et al. A broad tuneable birdcage coil for mouse (1)H/(19)F MR applications. J. Magn. Reson.329, 107023. 10.1016/j.jmr.2021.107023 (2021). PubMed
Ahrens, E. T., Helfer, B. M., O’Hanlon, C. F. & Schirda, C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. Magn. Reson. Med.72, 1696–1701. 10.1002/mrm.25454 (2014). PubMed PMC
Galisova, A. et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. Mol. Imaging Biol.21, 454–464. 10.1007/s11307-018-1270-3 (2019). PubMed PMC
Zhao, W., Ta, H. T., Zhang, C. & Whittaker, A. K. Polymerization-induced self-assembly (PISA) - control over the morphology of (19)F-containing polymeric nano-objects for cell uptake and tracking. Biomacromolecules. 18, 1145–1156. 10.1021/acs.biomac.6b01788 (2017). PubMed
Sedlacek, O. & Hoogenboom, R. Drug delivery systems based on poly(2-oxazoline)s and poly(2‐oxazine)s. Adv. Ther.310.1002/adtp.201900168 (2019).
Zhu, X. et al. A fluorinated ionic liquid-based activatable (19)F MRI platform detects biological targets. Chem. 6, 1134–1148. 10.1016/j.chempr.2020.01.023 (2020). PubMed PMC
Arango, J. M. et al. Fluorine labeling of nanoparticles and in vivo (19)F magnetic resonance imaging. ACS Appl. Mater. Interfaces. 13, 12941–12949. 10.1021/acsami.1c01291 (2021). PubMed
Jirak, D., Svoboda, J., Filipova, M., Pop-Georgievski, O. & Sedlacek, O. Antifouling fluoropolymer-coated nanomaterials for (19)F MRI. Chem. Commun. (Camb). 57, 4718–4721. 10.1039/d1cc00642h (2021). PubMed
Hingorani, D. V. et al. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. Magn. Reson. Med.83, 974–987. 10.1002/mrm.27988 (2020). PubMed PMC
Srinivas, M. et al. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. Biomaterials. 31, 7070–7077. 10.1016/j.biomaterials.2010.05.069 (2010). PubMed
Du, W. et al. 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. Bioconjug. Chem.19, 2492–2498. 10.1021/bc800396h (2008). PubMed PMC
Oh, N. & Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. Int. J. Nanomed.9(Suppl 1), 51–63. 10.2147/IJN.S26592 (2014). PubMed PMC
Herynek, V. et al. Pre-microporation improves outcome of pancreatic islet labelling for optical and (19)F MR imaging. Biol. Proced. Online. 19, 6. 10.1186/s12575-017-0055-4 (2017). PubMed PMC
Tomizawa, M. et al. Gene transfer using ultrasound. World J. Methodol.3(4), 39–44. 10.5662/wjm.v3.i4.39 (2013). PubMed PMC
Shapiro, E. M., Medford-Davis, L. N., Fahmy, T. M., Dunbar, C. E. & Koretsky, A. P. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. Contrast Media Mol. Imaging. 2, 147–153. 10.1002/cmmi.134 (2007). PubMed PMC
Di Gregorio, E., Ferrauto, G., Gianolio, E. & Aime, S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. Contrast Media Mol. Imaging. 8(6), 475–486. 10.1002/cmmi.1574 (2013). PubMed
Lorenz, M. R. et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. Biomaterials. 27, 2820–2828. 10.1016/j.biomaterials.2005.12.022 (2006). PubMed
Lueckerath, T. et al. DNA-polymer conjugates by photoinduced RAFT polymerization. Biomacromolecules. 20, 212–221. 10.1021/acs.biomac.8b01328 (2019). PubMed
Truong, N. P., Jia, Z., Burges, M., McMillan, N. A. & Monteiro, M. J. Self-catalyzed degradation of linear cationic poly(2-dimethylaminoethyl acrylate) in water. Biomacromolecules. 12, 1876–1882. 10.1021/bm200219e (2011). PubMed
Bak, J. M. et al. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. Polym. Chem-Uk. 4, 2219–2223. 10.1039/c2py20747h (2013).
Panakkal, V. M. et al. Synthesis of (19)F MRI nanotracers by dispersion polymerization-induced self-assembly of N-(2,2,2-trifluoroethyl)acrylamide in water. Biomacromolecules. 23, 4814–4824. 10.1021/acs.biomac.2c00981 (2022). PubMed PMC
Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. Small. 4, 26–49. 10.1002/smll.200700595 (2008). PubMed
Yu, B., Zhang, Y., Zheng, W., Fan, C. & Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. Inorg. Chem.51, 8956–8963. 10.1021/ic301050v (2012). PubMed
Abdelmonem, A. M. et al. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. J. Inorg. Biochem.153, 334–338. 10.1016/j.jinorgbio.2015.08.029 (2015). PubMed
Schaeublin, N. M. et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. Nanoscale. 3, 410–420. 10.1039/c0nr00478b (2011). PubMed
Pawelczyk, E., Arbab, A. S., Pandit, S., Hu, E. & Frank, J. A. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. NMR Biomed.19, 581–592. 10.1002/nbm.1038 (2006). PubMed
Mailander, V. & Landfester, K. Interaction of nanoparticles with cells. Biomacromolecules. 10, 2379–2400. 10.1021/bm900266r (2009). PubMed
Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. Int. J. Nanomed.7, 5577–5591. 10.2147/IJN.S36111 (2012). PubMed PMC
Weiss, M. et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. J. Nanobiotechnol.1910.1186/s12951-020-00747-7 (2021). PubMed PMC
Mura, S. et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. Int. J. Nanomed.6, 2591–2605. 10.2147/IJN.S24552 (2011). PubMed PMC
Havlicek, D., Panakkal, V. M., Voska, L., Sedlacek, O. & Jirak, D. Self-assembled fluorinated nanoparticles as sensitive and biocompatible theranostic platforms for (19) F MRI. Macromol. Biosci. e2300510. 10.1002/mabi.202300510 (2024). PubMed
Galisova, A. et al. Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence. Sci. Rep.10, 10411. 10.1038/s41598-020-67277-y (2020). PubMed PMC
Keereweer, S. et al. Optical image-guided surgery–where do we stand? Mol. Imaging Biol.13, 199–207. 10.1007/s11307-010-0373-2 (2011). PubMed PMC