Cationic fluorinated micelles for cell labeling and 19F-MR imaging
Jazyk angličtina Země Velká Británie, Anglie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
IN00023001
Ministerstvo Zdravotnictví Ceské Republiky
LM2018124
Ministerstvo Školství, Mládeže a Tělovýchovy
LX22NPO5104
National Institute for Research of Metabolic and Cardiovascular Diseases
CZ.02.1.01/0.0/0.0/16_013/0001821
European Structural and Investments Funds in the frame of the Research Development and Education
PubMed
39349687
PubMed Central
PMC11442823
DOI
10.1038/s41598-024-73511-8
PII: 10.1038/s41598-024-73511-8
Knihovny.cz E-zdroje
- Klíčová slova
- 19F magnetic resonance imaging, 19F magnetic resonance spectroscopy, Cell labeling, Fluorinated micelles,
- MeSH
- barvení a značení metody MeSH
- fantomy radiodiagnostické MeSH
- fluor chemie MeSH
- halogenace MeSH
- kationty * chemie MeSH
- kontrastní látky chemie MeSH
- lidé MeSH
- magnetická rezonanční tomografie metody MeSH
- micely * MeSH
- myši MeSH
- viabilita buněk * účinky léků MeSH
- zobrazování fluorovou magnetickou rezonancí metody MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- fluor MeSH
- kationty * MeSH
- kontrastní látky MeSH
- micely * MeSH
Magnetic resonance imaging (MRI) relies on appropriate contrast agents, especially for visualizing transplanted cells within host tissue. In recent years, compounds containing fluorine-19 have gained significant attention as MRI probe, particularly in dual 1H/19F-MR imaging. However, various factors affecting probe sensitivity, such as fluorine content and the equivalency of fluorine atoms, must be considered. In this study, we synthesized fluorinated micelles with adjustable surface positive charge density and investigated their physicochemical properties and MRI efficacy in phantoms and labeled cells. While the micelles exhibited clear signals in 19F-MR spectra and imaging, the concentrations required for MRI visualization of labeled cells were relatively high, adversely affecting cell viability. Despite their favourable physicochemical properties, achieving higher labeling rates without compromising cell viability during labeling remains a challenge for potential in vivo applications.
3rd Faculty of Medicine Charles University Ruská 87 Prague 100 00 Czech Republic
Institute for Clinical and Experimental Medicine Vídeňská 1958 9 Prague 140 21 Czech Republic
Zobrazit více v PubMed
Toso, C. et al. Clinical magnetic resonance imaging of pancreatic islet grafts after iron nanoparticle labeling. PubMed DOI
Saudek, F. et al. Magnetic resonance imaging of pancreatic islets transplanted into the liver in humans. PubMed DOI
Jirak, D. et al. MRI of transplanted pancreatic islets. PubMed DOI
Bulte, J. W. In vivo MRI cell tracking: clinical studies. PubMed DOI PMC
Deligianni, X. et al. In vivo visualization of cells labeled with superparamagnetic iron oxides by a sub-millisecond gradient echo sequence. PubMed DOI
Shapoval, O. et al. Multimodal fluorescently labeled polymer-coated GdF(3) nanoparticles inhibit degranulation in mast cells. PubMed DOI
Srivastava, A. K. et al. Advances in using MRI probes and sensors for in vivo cell tracking as applied to regenerative medicine. PubMed DOI PMC
Berkova, Z. et al. Decellularized pancreatic tail as matrix for pancreatic islet transplantation into the greater omentum in rats. PubMed PMC
Berkova, Z. et al. Labeling of pancreatic islets with iron oxide nanoparticles for in vivo detection with magnetic resonance. PubMed DOI
Harizaj, A. et al. Cytosolic delivery of gadolinium via photoporation enables improved in vivo magnetic resonance imaging of cancer cells. PubMed DOI
Hoehn, M. et al. Monitoring of implanted stem cell migration in vivo: a highly resolved in vivo magnetic resonance imaging investigation of experimental stroke in rat. PubMed DOI PMC
Justicia, C., Himmelreich, U., Ramos-Cabrer, P., Sprenger, C. & Hoehn, M. In vivo tracking of endogenous stem cells by MRI after intraparenchymal injection of iron oxide nanoparticles.
Bulte, J. W. M. & Daldrup-Link, H. E. Clinical tracking of cell transfer and cell transplantation: trials and tribulations. PubMed DOI PMC
Ettlinger, R. et al. In Vitro studies of Fe3O4-ZIF‐8 core–Shell nanoparticles designed as potential theragnostics.
Thomsen, H. S. et al. Nephrogenic systemic fibrosis and gadolinium-based contrast media: updated ESUR Contrast Medium Safety Committee guidelines. PubMed DOI
Garcia, J., Liu, S. Z. & Louie, A. Y. Biological effects of MRI contrast agents: gadolinium retention, potential mechanisms and a role for phosphorus. PubMed PMC
Ziolkowska, N., Vit, M., Laga, R. & Jirak, D. Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in (1)H/(31)P magnetic resonance imaging. PubMed DOI PMC
Kracikova, L. et al. Phosphorus-containing polymeric zwitterion: a pioneering bioresponsive probe for (31) P-magnetic resonance imaging. PubMed DOI
Kracikova, L. et al. Phosphorus-containing polymers as sensitive biocompatible probes for (31)P magnetic resonance. PubMed PMC
Kolouchova, K. et al. Multiresponsive fluorinated polymers as a theranostic platform using 19F MRI.
Jirak, D., Galisova, A., Kolouchova, K., Babuka, D. & Hruby, M. Fluorine polymer probes for magnetic resonance imaging: quo vadis? PubMed DOI PMC
Herynek, V. et al. Low-molecular-weight paramagnetic (19)F contrast agents for fluorine magnetic resonance imaging. PubMed DOI PMC
Mali, A., Kaijzel, E. L., Lamb, H. J. & Cruz, L. J. 19)F-nanoparticles: platform for in vivo delivery of fluorinated biomaterials for (19)F-MRI. PubMed DOI
Mali, A. et al. The internal structure of gadolinium and perfluorocarbon-loaded polymer nanoparticles affects (19)F MRI relaxation times. PubMed DOI
Rho, J. et al. Paramagnetic fluorinated nanoemulsions for in vivo F-19 MRI. PubMed DOI PMC
Yue, X. et al. Novel 19F activatable probe for the detection of matrix metalloprotease-2 activity by MRI/MRS. PubMed DOI PMC
Li, D. et al. c-Met-targeting (19)F MRI nanoparticles with ultralong tumor retention for precisely detecting small or ill-defined colorectal liver metastases. PubMed DOI PMC
Boehm-Sturm, P., Mengler, L., Wecker, S., Hoehn, M. & Kallur, T. In vivo tracking of human neural stem cells with 19F magnetic resonance imaging. PubMed DOI PMC
Gonzales, C. et al. in-vivo detection and tracking of T cells in various organs in a melanoma tumor model by 19F-fluorine MRS/MRI. PubMed DOI PMC
Vit, M. et al. A broad tuneable birdcage coil for mouse (1)H/(19)F MR applications. PubMed DOI
Ahrens, E. T., Helfer, B. M., O’Hanlon, C. F. & Schirda, C. Clinical cell therapy imaging using a perfluorocarbon tracer and fluorine-19 MRI. PubMed DOI PMC
Galisova, A. et al. A trimodal imaging platform for tracking viable transplanted pancreatic islets in vivo: F-19 MR, fluorescence, and bioluminescence imaging. PubMed DOI PMC
Zhao, W., Ta, H. T., Zhang, C. & Whittaker, A. K. Polymerization-induced self-assembly (PISA) - control over the morphology of (19)F-containing polymeric nano-objects for cell uptake and tracking. PubMed DOI
Sedlacek, O. & Hoogenboom, R. Drug delivery systems based on poly(2-oxazoline)s and poly(2‐oxazine)s.
Zhu, X. et al. A fluorinated ionic liquid-based activatable (19)F MRI platform detects biological targets. PubMed DOI PMC
Arango, J. M. et al. Fluorine labeling of nanoparticles and in vivo (19)F magnetic resonance imaging. PubMed DOI
Jirak, D., Svoboda, J., Filipova, M., Pop-Georgievski, O. & Sedlacek, O. Antifouling fluoropolymer-coated nanomaterials for (19)F MRI. PubMed DOI
Hingorani, D. V. et al. Cell penetrating peptide functionalized perfluorocarbon nanoemulsions for targeted cell labeling and enhanced fluorine-19 MRI detection. PubMed DOI PMC
Srinivas, M. et al. Customizable, multi-functional fluorocarbon nanoparticles for quantitative in vivo imaging using 19F MRI and optical imaging. PubMed DOI
Du, W. et al. 19F- and fluorescently labeled micelles as nanoscopic assemblies for chemotherapeutic delivery. PubMed DOI PMC
Oh, N. & Park, J. H. Endocytosis and exocytosis of nanoparticles in mammalian cells. PubMed DOI PMC
Herynek, V. et al. Pre-microporation improves outcome of pancreatic islet labelling for optical and (19)F MR imaging. PubMed DOI PMC
Tomizawa, M. et al. Gene transfer using ultrasound. PubMed DOI PMC
Shapiro, E. M., Medford-Davis, L. N., Fahmy, T. M., Dunbar, C. E. & Koretsky, A. P. Antibody-mediated cell labeling of peripheral T cells with micron-sized iron oxide particles (MPIOs) allows single cell detection by MRI. PubMed DOI PMC
Di Gregorio, E., Ferrauto, G., Gianolio, E. & Aime, S. Gd loading by hypotonic swelling: an efficient and safe route for cellular labeling. PubMed DOI
Lorenz, M. R. et al. Uptake of functionalized, fluorescent-labeled polymeric particles in different cell lines and stem cells. PubMed DOI
Lueckerath, T. et al. DNA-polymer conjugates by photoinduced RAFT polymerization. PubMed DOI
Truong, N. P., Jia, Z., Burges, M., McMillan, N. A. & Monteiro, M. J. Self-catalyzed degradation of linear cationic poly(2-dimethylaminoethyl acrylate) in water. PubMed DOI
Bak, J. M. et al. Thermoresponsive fluorinated polyacrylamides with low cytotoxicity. DOI
Panakkal, V. M. et al. Synthesis of (19)F MRI nanotracers by dispersion polymerization-induced self-assembly of N-(2,2,2-trifluoroethyl)acrylamide in water. PubMed DOI PMC
Lewinski, N., Colvin, V. & Drezek, R. Cytotoxicity of nanoparticles. PubMed DOI
Yu, B., Zhang, Y., Zheng, W., Fan, C. & Chen, T. Positive surface charge enhances selective cellular uptake and anticancer efficacy of selenium nanoparticles. PubMed DOI
Abdelmonem, A. M. et al. Charge and agglomeration dependent in vitro uptake and cytotoxicity of zinc oxide nanoparticles. PubMed DOI
Schaeublin, N. M. et al. Surface charge of gold nanoparticles mediates mechanism of toxicity. PubMed DOI
Pawelczyk, E., Arbab, A. S., Pandit, S., Hu, E. & Frank, J. A. Expression of transferrin receptor and ferritin following ferumoxides-protamine sulfate labeling of cells: implications for cellular magnetic resonance imaging. PubMed DOI
Mailander, V. & Landfester, K. Interaction of nanoparticles with cells. PubMed DOI
Frohlich, E. The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles. PubMed DOI PMC
Weiss, M. et al. Density of surface charge is a more predictive factor of the toxicity of cationic carbon nanoparticles than zeta potential. PubMed PMC
Mura, S. et al. Influence of surface charge on the potential toxicity of PLGA nanoparticles towards Calu-3 cells. PubMed DOI PMC
Havlicek, D., Panakkal, V. M., Voska, L., Sedlacek, O. & Jirak, D. Self-assembled fluorinated nanoparticles as sensitive and biocompatible theranostic platforms for (19) F MRI. PubMed
Galisova, A. et al. Glycogen as an advantageous polymer carrier in cancer theranostics: Straightforward in vivo evidence. PubMed DOI PMC
Keereweer, S. et al. Optical image-guided surgery–where do we stand? PubMed DOI PMC