Phosphorus-Containing Polymers as Sensitive Biocompatible Probes for 31P Magnetic Resonance
Jazyk angličtina Země Švýcarsko Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
19-08176S
Czech Science Foundation
LTAUSA18173
Ministry of Education Youth and Sports
NU20-08-00095
Ministry of Health
MH CZ-DRO, Institute for Clinical and Experimental Medicine IKEM, IN 00023001
Ministry of Health
PubMed
36903579
PubMed Central
PMC10005191
DOI
10.3390/molecules28052334
PII: molecules28052334
Knihovny.cz E-zdroje
- Klíčová slova
- 31P magnetic resonance imaging, controlled polymerization, phosphorus-containing polymers, polymer probes,
- MeSH
- biokompatibilní materiály chemie MeSH
- fosfor * MeSH
- fosforylcholin chemie MeSH
- kyseliny polymethakrylové chemie MeSH
- magnetická rezonanční spektroskopie MeSH
- methakryláty chemie MeSH
- micely MeSH
- polymery * chemie MeSH
- povrchové vlastnosti MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- biokompatibilní materiály MeSH
- fosfor * MeSH
- fosforylcholin MeSH
- kyseliny polymethakrylové MeSH
- methakryláty MeSH
- micely MeSH
- polymery * MeSH
The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.
Zobrazit více v PubMed
Santos-Díaz A., Noseworthy M.D. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed. Signal. Process. Control. 2020;60:101967. doi: 10.1016/j.bspc.2020.101967. DOI
Ruhm L., Dorst J., Avdievitch N., Wright A.M., Henning A. 3D 31P MRSI of the human brain at 9.4 Tesla: Optimization and quantitative analysis of metabolic images. Magn. Reson. Med. 2021;86:2368–2383. PubMed
Wijnen J.P., Scheenen T.W.J., Klomp D.W.J., Heerschap A. 31P Magnetic resonance spectroscopic imaging with polarisation transfer of phosphomono- and diesters at 3 T in the human brain: Relation with age and spatial differences. NMR Biomed. 2010;23:968–976. PubMed
Liu Y., Gu Y., Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: A methodology review. Quant. Imaging Med. Surg. 2017;7:707–726. PubMed PMC
Neeman M., Rushkin E., Kaye A.M., Degani H. 31P-NMR studies of phosphate transfer rates in T47D human breast cancer cells. Biochimica Biophysica Acta (BBA)-Mol. Cell Res. 1987;930:179–192. PubMed
Scheuermann-Freestone M., Madsen P.L., Manners D., Blamire A.M., Buckingham R.E., Styles P., Radda G.K., Neubauer S., Clarke K. Abnormal Cardiac and Skeletal Muscle Energy Metabolism in Patients With Type 2 Diabetes. Circulation. 2003;107:3040–3046. PubMed
Levine S.R., Helpern J.A., Welch K.M., Linde A.M.V., Sawaya K.L., Brown E.E., Ramadan N.M., Deveshwar R.K., Ordidge R.J. Human focal cerebral ischemia: Evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Radiology. 1992;185:537–544. PubMed
Weiss R.G., Gerstenblith G., Bottomley P.A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl. Acad. Sci. USA. 2005;102:808–813. PubMed PMC
Kemp G.J., Meyerspeer M., Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: A quantitative review. NMR Biomed. 2007;20:555–565. PubMed
Zhao K., Li D., Shi C., Ma X., Rong G., Kang H., Wang X., Sun B. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. Curr. Drug Deliv. 2016;13:494–499. PubMed
Prajapati S.K., Jain A., Jain A., Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J. 2019;120:109191. doi: 10.1016/j.eurpolymj.2019.08.018. DOI
Ogueri K.S., Ogueri K.S., Ude C.C., Allcock H.R., Laurencin C.T. Biomedical applications of polyphosphazenes. Med. Devices Sens. 2020;3:e10113. PubMed PMC
Andrianov A.K. Water-Soluble Polyphosphazenes for Biomedical Applications. J. Inorg. Organomet. Polym. Mater. 2006;16:397–406.
Zhang S., Ali S., Ma H., Zhang L., Wu Z., Wu D., Hu T.S. Preparation of Poly(bis(phenoxy)phosphazene) and 31P NMR Analysis of Its Structural Defects under Various Synthesis Conditions. J. Phys. Chem. B. 2016;120:11307–11316. PubMed
Weikel A.L., Owens S.G., Fushimi T., Allcock H.R. Synthesis and Characterization of Methionine- and Cysteine-Substituted Phosphazenes. Macromolecules. 2010;43:5205–5210.
Yilmaz Z.E., Jérôme C. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromol. Biosci. 2016;16:1745–1761. PubMed
Pelosi C., Tinè M.R., Wurm F.R. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur. Polym. J. 2020;141:110079. doi: 10.1016/j.eurpolymj.2020.110079. DOI
Goda T., Ishihara K., Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015;132:132. doi: 10.1002/app.41766. DOI
Kojima C., Katayama R., Lien Nguyen T., Oki Y., Tsujimoto A., Yusa S.-I., Shiraishi K., Matsumoto A. Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. Eur. Polym. J. 2020;136:109932. doi: 10.1016/j.eurpolymj.2020.109932. DOI
Nazarova O., Chernova E., Dobrodumov A., Zolotova Y., Bezrukova M., Nekrasova T., Vlasova E., Panarin E. New water-soluble copolymers of 2-methacryloyloxyethyl phosphorylcholine for surface modification. J. Appl. Polym. Sci. 2021;138:50272. doi: 10.1002/app.50272. DOI
Chen Y., Diaz-Dussan D., Wu D., Wang W., Peng Y.-Y., Asha A.B., Hall D.G., Ishihara K., Narain R. Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Lett. 2018;7:904–908. PubMed
Kracíková L., Ziółkowska N., Androvič L., Klimánková I., Červený D., Vít M., Pompach P., Konefał R., Janoušková O., Hrubý M., et al. Phosphorus-Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for 31P-Magnetic Resonance Imaging. Macromol. Biosci. 2022;22:2100523. doi: 10.1002/mabi.202100523. PubMed DOI
Oatway L., Vasanthan T., Helm J.H. Phytic Acid. Food Rev. Int. 2001;17:419–431.
Ziółkowska N., Vít M., Laga R., Jirák D. Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/31P magnetic resonance imaging. Sci. Rep. 2022;12:2118. doi: 10.1038/s41598-022-06125-7. PubMed DOI PMC
Francescato M.P., Cettolo V., di Prampero P.E. Influence of phosphagen concentration on phosphocreatine breakdown kinetics. Data from human gastrocnemius muscle. J. Appl. Physiol. 2008;105:158–164. PubMed
Clément B., Grignard B., Koole L., Jérôme C., Lecomte P. Metal-Free Strategies for the Synthesis of Functional and Well-Defined Polyphosphoesters. Macromolecules. 2012;45:4476–4486.
Wang B., Rivard E., Manners I. A new high-yield synthesis of Cl(3)P=NSiMe(3), a monomeric precursor for the controlled preparation of high molecular weight polyphosphazenes. Inorg. Chem. 2002;41:1690–1691. PubMed
Wilfert S., Henke H., Schöfberger W., Brüggemann O., Teasdale I. Chain-End-Functionalized Polyphosphazenes via a One-Pot Phosphine-Mediated Living Polymerization. Macromol. Rapid Commun. 2014;35:1135–1141. PubMed PMC
Šubr V., Kostka L., Strohalm J., Etrych T., Ulbrich K. Synthesis of Well-Defined Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the α-End of the Polymer Chain by RAFT Polymerization. Macromolecules. 2013;46:2100–2108.
Šubr V., Konák C., Laga R., Ulbrich K. Coating of DNA/Poly(l -lysine) Complexes by Covalent Attachment of Poly[ N -(2-hydroxypropyl)methacrylamide] Biomacromolecules. 2006;7:122–130. PubMed
Androvič L., Woldřichová L., Jozefjaková K., Pechar M., Lynn G.M., Kaňková D., Malinová L., Laga R. Cyclotriphosphazene-Based Star Copolymers as Structurally Tunable Nanocarriers with Programmable Biodegradability. Macromolecules. 2021;54:3139–3157.