Phosphorus-Containing Polymers as Sensitive Biocompatible Probes for 31P Magnetic Resonance

. 2023 Mar 02 ; 28 (5) : . [epub] 20230302

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid36903579

Grantová podpora
19-08176S Czech Science Foundation
LTAUSA18173 Ministry of Education Youth and Sports
NU20-08-00095 Ministry of Health
MH CZ-DRO, Institute for Clinical and Experimental Medicine IKEM, IN 00023001 Ministry of Health

The visualization of organs and tissues using 31P magnetic resonance (MR) imaging represents an immense challenge. This is largely due to the lack of sensitive biocompatible probes required to deliver a high-intensity MR signal that can be distinguished from the natural biological background. Synthetic water-soluble phosphorus-containing polymers appear to be suitable materials for this purpose due to their adjustable chain architecture, low toxicity, and favorable pharmacokinetics. In this work, we carried out a controlled synthesis, and compared the MR properties, of several probes consisting of highly hydrophilic phosphopolymers differing in composition, structure, and molecular weight. Based on our phantom experiments, all probes with a molecular weight of ~3-400 kg·mol-1, including linear polymers based on poly(2-methacryloyloxyethyl phosphorylcholine) (PMPC), poly(ethyl ethylenephosphate) (PEEP), and poly[bis(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)]phosphazene (PMEEEP) as well as star-shaped copolymers composed of PMPC arms grafted onto poly(amidoamine) dendrimer (PAMAM-g-PMPC) or cyclotriphosphazene-derived cores (CTP-g-PMPC), were readily detected using a 4.7 T MR scanner. The highest signal-to-noise ratio was achieved by the linear polymers PMPC (210) and PMEEEP (62) followed by the star polymers CTP-g-PMPC (56) and PAMAM-g-PMPC (44). The 31P T1 and T2 relaxation times for these phosphopolymers were also favorable, ranging between 1078 and 2368 and 30 and 171 ms, respectively. We contend that select phosphopolymers are suitable for use as sensitive 31P MR probes for biomedical applications.

Zobrazit více v PubMed

Santos-Díaz A., Noseworthy M.D. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods. Biomed. Signal. Process. Control. 2020;60:101967. doi: 10.1016/j.bspc.2020.101967. DOI

Ruhm L., Dorst J., Avdievitch N., Wright A.M., Henning A. 3D 31P MRSI of the human brain at 9.4 Tesla: Optimization and quantitative analysis of metabolic images. Magn. Reson. Med. 2021;86:2368–2383. PubMed

Wijnen J.P., Scheenen T.W.J., Klomp D.W.J., Heerschap A. 31P Magnetic resonance spectroscopic imaging with polarisation transfer of phosphomono- and diesters at 3 T in the human brain: Relation with age and spatial differences. NMR Biomed. 2010;23:968–976. PubMed

Liu Y., Gu Y., Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: A methodology review. Quant. Imaging Med. Surg. 2017;7:707–726. PubMed PMC

Neeman M., Rushkin E., Kaye A.M., Degani H. 31P-NMR studies of phosphate transfer rates in T47D human breast cancer cells. Biochimica Biophysica Acta (BBA)-Mol. Cell Res. 1987;930:179–192. PubMed

Scheuermann-Freestone M., Madsen P.L., Manners D., Blamire A.M., Buckingham R.E., Styles P., Radda G.K., Neubauer S., Clarke K. Abnormal Cardiac and Skeletal Muscle Energy Metabolism in Patients With Type 2 Diabetes. Circulation. 2003;107:3040–3046. PubMed

Levine S.R., Helpern J.A., Welch K.M., Linde A.M.V., Sawaya K.L., Brown E.E., Ramadan N.M., Deveshwar R.K., Ordidge R.J. Human focal cerebral ischemia: Evaluation of brain pH and energy metabolism with P-31 NMR spectroscopy. Radiology. 1992;185:537–544. PubMed

Weiss R.G., Gerstenblith G., Bottomley P.A. ATP flux through creatine kinase in the normal, stressed, and failing human heart. Proc. Natl. Acad. Sci. USA. 2005;102:808–813. PubMed PMC

Kemp G.J., Meyerspeer M., Moser E. Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: A quantitative review. NMR Biomed. 2007;20:555–565. PubMed

Zhao K., Li D., Shi C., Ma X., Rong G., Kang H., Wang X., Sun B. Biodegradable Polymeric Nanoparticles as the Delivery Carrier for Drug. Curr. Drug Deliv. 2016;13:494–499. PubMed

Prajapati S.K., Jain A., Jain A., Jain S. Biodegradable polymers and constructs: A novel approach in drug delivery. Eur. Polym. J. 2019;120:109191. doi: 10.1016/j.eurpolymj.2019.08.018. DOI

Ogueri K.S., Ogueri K.S., Ude C.C., Allcock H.R., Laurencin C.T. Biomedical applications of polyphosphazenes. Med. Devices Sens. 2020;3:e10113. PubMed PMC

Andrianov A.K. Water-Soluble Polyphosphazenes for Biomedical Applications. J. Inorg. Organomet. Polym. Mater. 2006;16:397–406.

Zhang S., Ali S., Ma H., Zhang L., Wu Z., Wu D., Hu T.S. Preparation of Poly(bis(phenoxy)phosphazene) and 31P NMR Analysis of Its Structural Defects under Various Synthesis Conditions. J. Phys. Chem. B. 2016;120:11307–11316. PubMed

Weikel A.L., Owens S.G., Fushimi T., Allcock H.R. Synthesis and Characterization of Methionine- and Cysteine-Substituted Phosphazenes. Macromolecules. 2010;43:5205–5210.

Yilmaz Z.E., Jérôme C. Polyphosphoesters: New Trends in Synthesis and Drug Delivery Applications. Macromol. Biosci. 2016;16:1745–1761. PubMed

Pelosi C., Tinè M.R., Wurm F.R. Main-chain water-soluble polyphosphoesters: Multi-functional polymers as degradable PEG-alternatives for biomedical applications. Eur. Polym. J. 2020;141:110079. doi: 10.1016/j.eurpolymj.2020.110079. DOI

Goda T., Ishihara K., Miyahara Y. Critical update on 2-methacryloyloxyethyl phosphorylcholine (MPC) polymer science. J. Appl. Polym. Sci. 2015;132:132. doi: 10.1002/app.41766. DOI

Kojima C., Katayama R., Lien Nguyen T., Oki Y., Tsujimoto A., Yusa S.-I., Shiraishi K., Matsumoto A. Different antifouling effects of random and block copolymers comprising 2-methacryloyloxyethyl phosphorylcholine and dodecyl methacrylate. Eur. Polym. J. 2020;136:109932. doi: 10.1016/j.eurpolymj.2020.109932. DOI

Nazarova O., Chernova E., Dobrodumov A., Zolotova Y., Bezrukova M., Nekrasova T., Vlasova E., Panarin E. New water-soluble copolymers of 2-methacryloyloxyethyl phosphorylcholine for surface modification. J. Appl. Polym. Sci. 2021;138:50272. doi: 10.1002/app.50272. DOI

Chen Y., Diaz-Dussan D., Wu D., Wang W., Peng Y.-Y., Asha A.B., Hall D.G., Ishihara K., Narain R. Bioinspired Self-Healing Hydrogel Based on Benzoxaborole-Catechol Dynamic Covalent Chemistry for 3D Cell Encapsulation. ACS Macro Lett. 2018;7:904–908. PubMed

Kracíková L., Ziółkowska N., Androvič L., Klimánková I., Červený D., Vít M., Pompach P., Konefał R., Janoušková O., Hrubý M., et al. Phosphorus-Containing Polymeric Zwitterion: A Pioneering Bioresponsive Probe for 31P-Magnetic Resonance Imaging. Macromol. Biosci. 2022;22:2100523. doi: 10.1002/mabi.202100523. PubMed DOI

Oatway L., Vasanthan T., Helm J.H. Phytic Acid. Food Rev. Int. 2001;17:419–431.

Ziółkowska N., Vít M., Laga R., Jirák D. Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/31P magnetic resonance imaging. Sci. Rep. 2022;12:2118. doi: 10.1038/s41598-022-06125-7. PubMed DOI PMC

Francescato M.P., Cettolo V., di Prampero P.E. Influence of phosphagen concentration on phosphocreatine breakdown kinetics. Data from human gastrocnemius muscle. J. Appl. Physiol. 2008;105:158–164. PubMed

Clément B., Grignard B., Koole L., Jérôme C., Lecomte P. Metal-Free Strategies for the Synthesis of Functional and Well-Defined Polyphosphoesters. Macromolecules. 2012;45:4476–4486.

Wang B., Rivard E., Manners I. A new high-yield synthesis of Cl(3)P=NSiMe(3), a monomeric precursor for the controlled preparation of high molecular weight polyphosphazenes. Inorg. Chem. 2002;41:1690–1691. PubMed

Wilfert S., Henke H., Schöfberger W., Brüggemann O., Teasdale I. Chain-End-Functionalized Polyphosphazenes via a One-Pot Phosphine-Mediated Living Polymerization. Macromol. Rapid Commun. 2014;35:1135–1141. PubMed PMC

Šubr V., Kostka L., Strohalm J., Etrych T., Ulbrich K. Synthesis of Well-Defined Semitelechelic Poly[N-(2-hydroxypropyl)methacrylamide] Polymers with Functional Group at the α-End of the Polymer Chain by RAFT Polymerization. Macromolecules. 2013;46:2100–2108.

Šubr V., Konák C., Laga R., Ulbrich K. Coating of DNA/Poly(l -lysine) Complexes by Covalent Attachment of Poly[ N -(2-hydroxypropyl)methacrylamide] Biomacromolecules. 2006;7:122–130. PubMed

Androvič L., Woldřichová L., Jozefjaková K., Pechar M., Lynn G.M., Kaňková D., Malinová L., Laga R. Cyclotriphosphazene-Based Star Copolymers as Structurally Tunable Nanocarriers with Programmable Biodegradability. Macromolecules. 2021;54:3139–3157.

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...