Iron-doped calcium phytate nanoparticles as a bio-responsive contrast agent in 1H/31P magnetic resonance imaging

. 2022 Feb 08 ; 12 (1) : 2118. [epub] 20220208

Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid35136162
Odkazy

PubMed 35136162
PubMed Central PMC8826874
DOI 10.1038/s41598-022-06125-7
PII: 10.1038/s41598-022-06125-7
Knihovny.cz E-zdroje

We present the MR properties of a novel bio-responsive phosphorus probe doped with iron for dual proton and phosphorus magnetic resonance imaging (1H/31P-MRI), which provide simultaneously complementary information. The probes consist of non-toxic biodegradable calcium phytate (CaIP6) nanoparticles doped with different amounts of cleavable paramagnetic Fe3+ ions. Phosphorus atoms in the phytate structure delivered an efficient 31P-MR signal, with iron ions altering MR contrast for both 1H and 31P-MR. The coordinated paramagnetic Fe3+ ions broadened the 31P-MR signal spectral line due to the short T2 relaxation time, resulting in more hypointense signal. However, when Fe3+ was decomplexed from the probe, relaxation times were prolonged. As a result of iron release, intensity of 1H-MR, as well as the 31P-MR signal increase. These 1H and 31P-MR dual signals triggered by iron decomplexation may have been attributable to biochemical changes in the environment with strong iron chelators, such as bacterial siderophore (deferoxamine). Analysing MR signal alternations as a proof-of-principle on a phantom at a 4.7 T magnetic field, we found that iron presence influenced 1H and 31P signals and signal recovery via iron chelation using deferoxamine.

Zobrazit více v PubMed

Hasebroock KM, Serkova NJ. Toxicity of MRI and CT contrast agents. Expert Opin. Drug Metab. Toxicol. 2009;5:403–416. doi: 10.1517/17425250902873796. PubMed DOI

Jeong Y, Hwang HS, Na K. Theranostics and contrast agents for magnetic resonance imaging. Biomater. Res. 2018;22:1. doi: 10.1186/s40824-017-0112-8. PubMed DOI PMC

Benyettou F, et al. A multimodal magnetic resonance imaging nanoplatform for cancer theranostics. Phys. Chem. Chem. Phys. 2011;13:10020–10027. doi: 10.1039/c0cp02034f. PubMed DOI

An L, Cai Y, Tian Q, Lin J, Yang S. Ultrasensitive iron-based magnetic resonance contrast agent constructed with natural polyphenol tannic acid for tumor theranostics. Sci. China Mater. 2021;64:498–509. doi: 10.1007/s40843-020-1434-1. DOI

Sedlacek O, et al. Fluorinated water-soluble poly(2-oxazoline)s as highly sensitive 19F MRI contrast agents. Macromolecules. 2020;53:6387–6395. doi: 10.1021/acs.macromol.0c01228. DOI

Kolouchova K, et al. Implant-forming polymeric 19F MRI-tracer with tunable dissolution. J. Control. Release. 2020;327:50–60. doi: 10.1016/j.jconrel.2020.07.026. PubMed DOI

Hu R, et al. X-nuclei imaging: Current state, technical challenges, and future directions. J. Magn. Reson. Imaging. 2020;51:355–376. doi: 10.1002/jmri.26780. PubMed DOI

Fox MS, Gaudet JM, Foster PJ. Fluorine-19 MRI contrast agents for cell tracking and lung imaging. Magn. Reson. Insights. 2015;8:53–67. PubMed PMC

Santos-Díaz, A. & Noseworthy, M. D. Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: A review of the methods.

Sedivy P, et al. MR compatible ergometers for dynamic 31P MRS. J. Appl. Biomed. 2019;17:91–98. doi: 10.32725/jab.2019.006. PubMed DOI

Lodi R, et al. Deficient energy metabolism is associated with low free magnesium in the brains of patients with migraine and cluster headache. Brain Res. Bull. 2001;54:437–441. doi: 10.1016/S0361-9230(01)00440-3. PubMed DOI

Harper DG, et al. Energetic and cell membrane metabolic products in patients with primary insomnia: A 31-phosphorus magnetic resonance spectroscopy study at 4 tesla. Sleep. 2013;36:493–500. doi: 10.5665/sleep.2530. PubMed DOI PMC

Liu Y, Gu Y, Yu X. Assessing tissue metabolism by phosphorous-31 magnetic resonance spectroscopy and imaging: A methodology review. Quant. Imaging Med. Surg. 2017;7:707–726. doi: 10.21037/qims.2017.11.03. PubMed DOI PMC

Fukuda Y, et al. Superparamagnetic iron oxide (SPIO) MRI contrast agent for bone marrow imaging: Differentiating bone metastasis and osteomyelitis. Magn. Reson. Med. Sci. 2006;5:191–196. doi: 10.2463/mrms.5.191. PubMed DOI

Lu J, et al. Manganese ferrite nanoparticle micellar nanocomposites as MRI contrast agent for liver imaging. Biomaterials. 2009;30:2919–2928. doi: 10.1016/j.biomaterials.2009.02.001. PubMed DOI

Pechrova, Z., Lobaz, V., Konefał, M., Konefał, R. & Hruby, M. Colloidal probe based on iron(III)-doped calcium phytate nanoparticles for 31P NMR monitoring of bacterial siderophores.

Boehm-Sturm P, et al. Low-molecular-weight iron chelates may be an alternative to gadolinium-based contrast agents for T1-weighted contrast-enhanced MR imaging. Radiology. 2018;286:537–546. doi: 10.1148/radiol.2017170116. PubMed DOI

Liu, G.

Monge S, Canniccioni B, Graillot A, Robin J-J. Phosphorus-containing polymers: A great opportunity for the biomedical field. Biomacromol. 2011;12:1973–1982. doi: 10.1021/bm2004803. PubMed DOI

Oatway L, Vasanthan T, Helm JH. Phytic acid. Food Rev. Int. 2001;17:419–431. doi: 10.1081/FRI-100108531. DOI

Harland BF, Morris ER. Phytate: A good or a bad food component? Nutr. Res. 1995;15:733–754. doi: 10.1016/0271-5317(95)00040-P. DOI

Iimura, T., Fukushima, Y., Kumita, S., Ogawa, R. & Hyakusoku, H. Estimating lymphodynamic conditions and lymphovenous anastomosis efficacy using (99m)Tc-phytate lymphoscintigraphy with SPECT-CT in patients with lower-limb lymphedema. PubMed PMC

Graf, E. & Eaton, J. W. Dietary suppression of colonic cancer. Fiber or phytate? PubMed

Nielsen AVF, Tetens I, Meyer AS. Potential of phytase-mediated iron release from cereal-based foods: A quantitative view. Nutrients. 2013;5:3074–3098. doi: 10.3390/nu5083074. PubMed DOI PMC

Holden VI, Bachman MA. Diverging roles of bacterial siderophores during infection. Metallomics. 2015;7:986–995. doi: 10.1039/C4MT00333K. PubMed DOI

Hider, R. C. Siderophore mediated absorption of iron. in

Miethke M, Marahiel MA. Siderophore-based iron acquisition and pathogen control. Microbiol. Mol. Biol. Rev. 2007;71:413–451. doi: 10.1128/MMBR.00012-07. PubMed DOI PMC

Neilands JB. Siderophores: structure and function of microbial iron transport compounds. J. Biol. Chem. 1995;270:26723–26726. doi: 10.1074/jbc.270.45.26723. PubMed DOI

Wang Y, Liu Z, Lin T-M, Chanana S, Xiong MP. Nanogel-DFO conjugates as a model to investigate pharmacokinetics, biodistribution, and iron chelation in vivo. Int. J. Pharm. 2018;538:79–86. doi: 10.1016/j.ijpharm.2018.01.004. PubMed DOI PMC

Ellermann M, Arthur JC. Siderophore-mediated iron acquisition and modulation of host-bacterial interactions. Free Radic. Biol. Med. 2017;105:68–78. doi: 10.1016/j.freeradbiomed.2016.10.489. PubMed DOI PMC

Wilson BR, Bogdan AR, Miyazawa M, Hashimoto K, Tsuji Y. Siderophores in iron metabolism: From mechanism to therapy potential. Trends Mol. Med. 2016;22:1077–1090. doi: 10.1016/j.molmed.2016.10.005. PubMed DOI PMC

Yilmaz, B. & Li, H. Gut Microbiota and iron: The crucial actors in health and disease. PubMed PMC

Khan A, Singh P, Srivastava A. Synthesis, nature and utility of universal iron chelator—Siderophore: A review. Microbiol. Res. 2017;212–213:103–111. PubMed

Zheng T, Bullock JL, Nolan EM. Siderophore-mediated cargo delivery to the cytoplasm of Escherichia coli and Pseudomonas aeruginosa: syntheses of monofunctionalized enterobactin scaffolds and evaluation of enterobactin-cargo conjugate uptake. J. Am. Chem. Soc. 2012;134:18388–18400. doi: 10.1021/ja3077268. PubMed DOI

Zhang, Z., Cheng, W., Pan, Y., & Jia, L. Anticancer agent-loaded PLGA nanomedicine with smart response and targeted delivery for the treatment of lung cancer. PubMed

Pohaku MK, K., Liberman, A., Kummel, A. C., Trogler, W. C. Iron(III)-Doped, Silica Nanoshells: A Biodegradable Form of Silica. J. Am. Chem. Soc. 2012;134(34):13997–14003. doi: 10.1021/ja3036114. PubMed DOI PMC

Wang Y-XJ. Superparamagnetic iron oxide based MRI contrast agents: Current status of clinical application. Quant. Imaging Med. Surg. 2011;1:35–40. PubMed PMC

Knobloch, G. PubMed PMC

Kamp DW, et al. Phytic acid, an iron chelator, attenuates pulmonary inflammation and fibrosis in rats after intratracheal instillation of asbestos. Toxicol. Pathol. 1995;23:689–695. doi: 10.1177/019262339502300606. PubMed DOI

Soldin OP, et al. Serum iron, ferritin, transferrin, total iron binding capacity, hs-CRP, LDL cholesterol and magnesium in children; new reference intervals using the Dade Dimension Clinical Chemistry System. Clin. Chim. Acta. 2004;342:211–217. doi: 10.1016/j.cccn.2004.01.002. PubMed DOI PMC

Jirak D, Janacek J. Volume of the crocodilian brain and endocast during ontogeny. PLoS ONE. 2017;12:e0178491. doi: 10.1371/journal.pone.0178491. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...