Neurogenesis as a Tool for Spinal Cord Injury

. 2022 Mar 28 ; 23 (7) : . [epub] 20220328

Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid35409088

Grantová podpora
CZ.02.1.01/0.0./0.0/15_003/0000419 Ministry of Education, Youth and Sports Czech Republic

Spinal cord injury is a devastating medical condition with no effective treatment. One approach to SCI treatment may be provided by stem cells (SCs). Studies have mainly focused on the transplantation of exogenous SCs, but the induction of endogenous SCs has also been considered as an alternative. While the differentiation potential of neural stem cells in the brain neurogenic regions has been known for decades, there are ongoing debates regarding the multipotent differentiation potential of the ependymal cells of the central canal in the spinal cord (SCECs). Following spinal cord insult, SCECs start to proliferate and differentiate mostly into astrocytes and partly into oligodendrocytes, but not into neurons. However, there are several approaches concerning how to increase neurogenesis in the injured spinal cord, which are discussed in this review. The potential treatment approaches include drug administration, the reduction of neuroinflammation, neuromodulation with physical factors and in vivo reprogramming.

Zobrazit více v PubMed

Rowland J.W., Hawryluk G.W., Kwon B., Fehlings M.G. Current status of acute spinal cord injury pathophysiology and emerging therapies: Promise on the horizon. Neurosurg. Focus. 2008;25:E2. doi: 10.3171/FOC.2008.25.11.E2. PubMed DOI

Ahuja C.S., Wilson J.R., Nori S., Kotter M.R.N., Druschel C., Curt A., Fehlings M.G. Traumatic spinal cord injury. Nat. Rev. Dis. Primers. 2017;3:17018. doi: 10.1038/nrdp.2017.18. PubMed DOI

Venkatesh K., Ghosh S.K., Mullick M., Manivasagam G., Sen D. Spinal cord injury: Pathophysiology, treatment strategies, associated challenges, and future implications. Cell Tissue Res. 2019;377:125–151. doi: 10.1007/s00441-019-03039-1. PubMed DOI

Liu W.M., Wu J.Y., Li F.C., Chen Q.X. Ion channel blockers and spinal cord injury. J. Neurosci. Res. 2011;89:791–801. doi: 10.1002/jnr.22602. PubMed DOI

Meldrum B.S. Glutamate as a neurotransmitter in the brain: Review of physiology and pathology. J. Nutr. 2000;130:1007S–1015S. doi: 10.1093/jn/130.4.1007S. PubMed DOI

Jia Z., Zhu H., Li J., Wang X., Misra H., Li Y. Oxidative stress in spinal cord injury and antioxidant-based intervention. Spinal Cord. 2012;50:264–274. doi: 10.1038/sc.2011.111. PubMed DOI

Christie S.D., Comeau B., Myers T., Sadi D., Purdy M., Mendez I. Duration of lipid peroxidation after acute spinal cord injury in rats and the effect of methylprednisolone. Neurosurg. Focus. 2008;25:E5. doi: 10.3171/FOC.2008.25.11.E5. PubMed DOI

Liu S., Sarkar C., Dinizo M., Faden A.I., Koh E.Y., Lipinski M.M., Wu J. Disrupted autophagy after spinal cord injury is associated with er stress and neuronal cell death. Cell Death Dis. 2015;6:e1582. doi: 10.1038/cddis.2014.527. PubMed DOI PMC

Marsala J., Orendacova J., Lukacova N., Vanicky I. Traumatic injury of the spinal cord and nitric oxide. Prog. Brain Res. 2007;161:171–183. PubMed

Bradbury E.J., Burnside E.R. Moving beyond the glial scar for spinal cord repair. Nat. Commun. 2019;10:3879. doi: 10.1038/s41467-019-11707-7. PubMed DOI PMC

Han Q., Xie Y., Ordaz J.D., Huh A.J., Huang N., Wu W., Liu N., Chamberlain K.A., Sheng Z.H., Xu X.M. Restoring cellular energetics promotes axonal regeneration and functional recovery after spinal cord injury. Cell Metab. 2020;31:623–641.e8. doi: 10.1016/j.cmet.2020.02.002. PubMed DOI PMC

Beattie M.S., Hermann G.E., Rogers R.C., Bresnahan J.C. Cell death in models of spinal cord injury. Prog. Brain Res. 2002;137:37–47. PubMed

Oyinbo C.A. Secondary injury mechanisms in traumatic spinal cord injury: A nugget of this multiply cascade. Acta Neurobiol. Exp. 2011;71:281–299. PubMed

Rowlands D., Sugahara K., Kwok J.C. Glycosaminoglycans and glycomimetics in the central nervous system. Molecules. 2015;20:3527–3548. doi: 10.3390/molecules20033527. PubMed DOI PMC

Leal-Galicia P., Chavez-Hernandez M.E., Mata F., Mata-Luevanos J., Rodriguez-Serrano L.M., Tapia-de-Jesus A., Buenrostro-Jauregui M.H. Adult neurogenesis: A story ranging from controversial new neurogenic areas and human adult neurogenesis to molecular regulation. Int. J. Mol. Sci. 2021;22:11489. doi: 10.3390/ijms222111489. PubMed DOI PMC

Bergmann O., Spalding K.L., Frisen J. Adult neurogenesis in humans. Cold Spring Harb. Perspect. Biol. 2015;7:a018994. doi: 10.1101/cshperspect.a018994. PubMed DOI PMC

Nogueira A.B., Hoshino H.S.R., Ortega N.C., Dos Santos B.G.S., Teixeira M.J. Adult human neurogenesis: Early studies clarify recent controversies and go further. Metab. Brain Dis. 2022;37:153–172. doi: 10.1007/s11011-021-00864-8. PubMed DOI

Barnabe-Heider F., Goritz C., Sabelstrom H., Takebayashi H., Pfrieger F.W., Meletis K., Frisen J. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7:470–482. doi: 10.1016/j.stem.2010.07.014. PubMed DOI

Adrian E.K., Jr., Walker B.E. Incorporation of thymidine-h3 by cells in normal and injured mouse spinal cord. J. Neuropathol. Exp. Neurol. 1962;21:597–609. doi: 10.1097/00005072-196210000-00007. PubMed DOI

Horner P.J., Power A.E., Kempermann G., Kuhn H.G., Palmer T.D., Winkler J., Thal L.J., Gage F.H. Proliferation and differentiation of progenitor cells throughout the intact adult rat spinal cord. J. Neurosci. 2000;20:2218–2228. doi: 10.1523/JNEUROSCI.20-06-02218.2000. PubMed DOI PMC

Meletis K., Barnabe-Heider F., Carlen M., Evergren E., Tomilin N., Shupliakov O., Frisen J. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6:e182. doi: 10.1371/journal.pbio.0060182. PubMed DOI PMC

Weiss S., Dunne C., Hewson J., Wohl C., Wheatley M., Peterson A.C., Reynolds B.A. Multipotent cns stem cells are present in the adult mammalian spinal cord and ventricular neuroaxis. J. Neurosci. 1996;16:7599–7609. doi: 10.1523/JNEUROSCI.16-23-07599.1996. PubMed DOI PMC

Maeda Y., Nakagomi N., Nakano-Doi A., Ishikawa H., Tatsumi Y., Bando Y., Yoshikawa H., Matsuyama T., Gomi F., Nakagomi T. Potential of adult endogenous neural stem/progenitor cells in the spinal cord to contribute to remyelination in experimental autoimmune encephalomyelitis. Cells. 2019;8:1025. doi: 10.3390/cells8091025. PubMed DOI PMC

Zhou Y., Lu Y., Fang X., Zhang J., Li J., Li S., Deng X., Yu Y., Xu R. An astrocyte regenerative response from vimentin-containing cells in the spinal cord of amyotrophic lateral sclerosis’s disease-like transgenic (g93a sod1) mice. Neurodegener. Dis. 2015;15:1–12. doi: 10.1159/000369466. PubMed DOI

Cizkova D., Nagyova M., Slovinska L., Novotna I., Radonak J., Cizek M., Mechirova E., Tomori Z., Hlucilova J., Motlik J., et al. Response of ependymal progenitors to spinal cord injury or enhanced physical activity in adult rat. Cell Mol. Neurobiol. 2009;29:999–1013. doi: 10.1007/s10571-009-9387-1. PubMed DOI PMC

Liu Y., Tan B., Wang L., Long Z., Li Y., Liao W., Wu Y. Endogenous neural stem cells in central canal of adult rats acquired limited ability to differentiate into neurons following mild spinal cord injury. Int. J. Clin. Exp. Pathol. 2015;8:3835–3842. PubMed PMC

Yang H., Lu P., McKay H.M., Bernot T., Keirstead H., Steward O., Gage F.H., Edgerton V.R., Tuszynski M.H. Endogenous neurogenesis replaces oligodendrocytes and astrocytes after primate spinal cord injury. J. Neurosci. 2006;26:2157–2166. doi: 10.1523/JNEUROSCI.4070-05.2005. PubMed DOI PMC

Escartin C., Galea E., Lakatos A., O’Callaghan J.P., Petzold G.C., Serrano-Pozo A., Steinhauser C., Volterra A., Carmignoto G., Agarwal A., et al. Reactive astrocyte nomenclature, definitions, and future directions. Nat. Neurosci. 2021;24:312–325. doi: 10.1038/s41593-020-00783-4. PubMed DOI PMC

Hamby M.E., Sofroniew M.V. Reactive astrocytes as therapeutic targets for cns disorders. Neurotherapeutics. 2010;7:494–506. doi: 10.1016/j.nurt.2010.07.003. PubMed DOI PMC

Sabelstrom H., Stenudd M., Reu P., Dias D.O., Elfineh M., Zdunek S., Damberg P., Goritz C., Frisen J. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science. 2013;342:637–640. doi: 10.1126/science.1242576. PubMed DOI

Hawryluk G.W., Mothe A.J., Chamankhah M., Wang J., Tator C., Fehlings M.G. In vitro characterization of trophic factor expression in neural precursor cells. Stem Cells Dev. 2012;21:432–447. doi: 10.1089/scd.2011.0242. PubMed DOI

Hofstetter C.P., Holmstrom N.A., Lilja J.A., Schweinhardt P., Hao J., Spenger C., Wiesenfeld-Hallin Z., Kurpad S.N., Frisen J., Olson L. Allodynia limits the usefulness of intraspinal neural stem cell grafts; directed differentiation improves outcome. Nat. Neurosci. 2005;8:346–353. doi: 10.1038/nn1405. PubMed DOI

Shihabuddin L.S., Horner P.J., Ray J., Gage F.H. Adult spinal cord stem cells generate neurons after transplantation in the adult dentate gyrus. J. Neurosci. 2000;20:8727–8735. doi: 10.1523/JNEUROSCI.20-23-08727.2000. PubMed DOI PMC

Abematsu M., Tsujimura K., Yamano M., Saito M., Kohno K., Kohyama J., Namihira M., Komiya S., Nakashima K. Neurons derived from transplanted neural stem cells restore disrupted neuronal circuitry in a mouse model of spinal cord injury. J. Clin. Investig. 2010;120:3255–3266. doi: 10.1172/JCI42957. PubMed DOI PMC

Chu T., Zhou H., Wang T., Lu L., Li F., Liu B., Kong X., Feng S. In vitro characteristics of valproic acid and all-trans-retinoic acid and their combined use in promoting neuronal differentiation while suppressing astrocytic differentiation in neural stem cells. Brain Res. 2015;1596:31–47. doi: 10.1016/j.brainres.2014.11.029. PubMed DOI

Chu W., Yuan J., Huang L., Xiang X., Zhu H., Chen F., Chen Y., Lin J., Feng H. Valproic acid arrests proliferation but promotes neuronal differentiation of adult spinal nspcs from sci rats. Neurochem. Res. 2015;40:1472–1486. doi: 10.1007/s11064-015-1618-x. PubMed DOI

Jope R.S., Johnson G.V. The glamour and gloom of glycogen synthase kinase-3. Trends Biochem. Sci. 2004;29:95–102. doi: 10.1016/j.tibs.2003.12.004. PubMed DOI

Takahashi-Yanaga F., Sasaguri T. The wnt/beta-catenin signaling pathway as a target in drug discovery. J. Pharmacol. Sci. 2007;104:293–302. doi: 10.1254/jphs.CR0070024. PubMed DOI

Chiu C.T., Wang Z., Hunsberger J.G., Chuang D.M. Therapeutic potential of mood stabilizers lithium and valproic acid: Beyond bipolar disorder. Pharmacol. Rev. 2013;65:105–142. doi: 10.1124/pr.111.005512. PubMed DOI PMC

Kostrouchova M., Kostrouch Z., Kostrouchova M. Valproic acid, a molecular lead to multiple regulatory pathways. Folia Biol. 2007;53:37–49. PubMed

Chu T., Zhou H., Lu L., Kong X., Wang T., Pan B., Feng S. Valproic acid-mediated neuroprotection and neurogenesis after spinal cord injury: From mechanism to clinical potential. Regen. Med. 2015;10:193–209. doi: 10.2217/rme.14.86. PubMed DOI

Rodriguez-Jimenez F.J., Vilches A., Perez-Arago M.A., Clemente E., Roman R., Leal J., Castro A.A., Fustero S., Moreno-Manzano V., Jendelova P., et al. Activation of neurogenesis in multipotent stem cells cultured in vitro and in the spinal cord tissue after severe injury by inhibition of glycogen synthase kinase-3. Neurotherapeutics. 2021;18:515–533. doi: 10.1007/s13311-020-00928-0. PubMed DOI PMC

Yang L., Li G., Ye J., Lu D., Chen Z., Xiang A.P., Jiang M.H. Substance p enhances endogenous neurogenesis to improve functional recovery after spinal cord injury. Int. J. Biochem. Cell Biol. 2017;89:110–119. doi: 10.1016/j.biocel.2017.05.030. PubMed DOI

Pal R., Bondar V.V., Adamski C.J., Rodney G.G., Sardiello M. Inhibition of erk1/2 restores gsk3beta activity and protein synthesis levels in a model of tuberous sclerosis. Sci. Rep. 2017;7:4174. doi: 10.1038/s41598-017-04528-5. PubMed DOI PMC

Wang Q., Zhou Y., Wang X., Evers B.M. Glycogen synthase kinase-3 is a negative regulator of extracellular signal-regulated kinase. Oncogene. 2006;25:43–50. doi: 10.1038/sj.onc.1209004. PubMed DOI PMC

Ye Y., Chao X.J., Wu J.F., Cheng B.C., Su T., Fu X.Q., Li T., Guo H., Tse A.K., Kwan H.Y., et al. Erk/gsk3beta signaling is involved in atractylenolide i-induced apoptosis and cell cycle arrest in melanoma cells. Oncol. Rep. 2015;34:1543–1548. doi: 10.3892/or.2015.4111. PubMed DOI

Tan B.T., Wang L., Li S., Long Z.Y., Wu Y.M., Liu Y. Retinoic acid induced the differentiation of neural stem cells from embryonic spinal cord into functional neurons in vitro. Int. J. Clin. Exp. Pathol. 2015;8:8129–8135. PubMed PMC

Zhao H., Zuo X., Ren L., Li Y., Tai H., Du J., Xie X., Zhang X., Han Y., Wu Y., et al. Combined use of bfgf/egf and all-trans-retinoic acid cooperatively promotes neuronal differentiation and neurite outgrowth in neural stem cells. Neurosci. Lett. 2019;690:61–68. doi: 10.1016/j.neulet.2018.10.002. PubMed DOI

Liu C., Sun R., Huang J., Zhang D., Huang D., Qi W., Wang S., Xie F., Shen Y., Shen C. The baf45d protein is preferentially expressed in adult neurogenic zones and in neurons and may be required for retinoid acid induced pax6 expression. Front. Neuroanat. 2017;11:94. doi: 10.3389/fnana.2017.00094. PubMed DOI PMC

Wang Z., Huang J., Liu C., Liu L., Shen Y., Shen C., Liu C. Baf45d downregulation in spinal cord ependymal cells following spinal cord injury in adult rats and its potential role in the development of neuronal lesions. Front. Neurosci. 2019;13:1151. doi: 10.3389/fnins.2019.01151. PubMed DOI PMC

Fabbiani G., Reali C., Valentin-Kahan A., Rehermann M.I., Fagetti J., Falco M.V., Russo R.E. Connexin signaling is involved in the reactivation of a latent stem cell niche after spinal cord injury. J. Neurosci. 2020;40:2246–2258. doi: 10.1523/JNEUROSCI.2056-19.2020. PubMed DOI PMC

Rodriguez-Jimenez F.J., Alastrue A., Stojkovic M., Erceg S., Moreno-Manzano V. Connexin 50 modulates sox2 expression in spinal-cord-derived ependymal stem/progenitor cells. Cell Tissue Res. 2016;365:295–307. doi: 10.1007/s00441-016-2421-y. PubMed DOI

Su Z., Niu W., Liu M.L., Zou Y., Zhang C.L. In vivo conversion of astrocytes to neurons in the injured adult spinal cord. Nat Commun. 2014;5:3338. doi: 10.1038/ncomms4338. PubMed DOI PMC

Nekoui A., Blaise G. Erythropoietin and nonhematopoietic effects. Am. J. Med. Sci. 2017;353:76–81. doi: 10.1016/j.amjms.2016.10.009. PubMed DOI

Simon F.H., Erhart P., Vcelar B., Scheuerle A., Schelzig H., Oberhuber A. Erythropoietin preconditioning improves clinical and histologic outcome in an acute spinal cord ischemia and reperfusion rabbit model. J. Vasc Surg. 2016;64:1797–1804. doi: 10.1016/j.jvs.2015.10.011. PubMed DOI

Hassouna I., Ott C., Wustefeld L., Offen N., Neher R.A., Mitkovski M., Winkler D., Sperling S., Fries L., Goebbels S., et al. Revisiting adult neurogenesis and the role of erythropoietin for neuronal and oligodendroglial differentiation in the hippocampus. Mol. Psychiatry. 2016;21:1752–1767. doi: 10.1038/mp.2015.212. PubMed DOI PMC

Zhang H., Fang X., Huang D., Luo Q., Zheng M., Wang K., Cao L., Yin Z. Erythropoietin signaling increases neurogenesis and oligodendrogenesis of endogenous neural stem cells following spinal cord injury both in vivo and in vitro. Mol. Med. Rep. 2018;17:264–272. doi: 10.3892/mmr.2017.7873. PubMed DOI PMC

Keefe K.M., Sheikh I.S., Smith G.M. Targeting neurotrophins to specific populations of neurons: Ngf, bdnf, and nt-3 and their relevance for treatment of spinal cord injury. Int. J. Mol. Sci. 2017;18:548. doi: 10.3390/ijms18030548. PubMed DOI PMC

Yang B., Zhang F., Cheng F., Ying L., Wang C., Shi K., Wang J., Xia K., Gong Z., Huang X., et al. Strategies and prospects of effective neural circuits reconstruction after spinal cord injury. Cell Death Dis. 2020;11:439. doi: 10.1038/s41419-020-2620-z. PubMed DOI PMC

Kanakasabai S., Pestereva E., Chearwae W., Gupta S.K., Ansari S., Bright J.J. Ppargamma agonists promote oligodendrocyte differentiation of neural stem cells by modulating stemness and differentiation genes. PLoS ONE. 2012;7:e50500. doi: 10.1371/journal.pone.0050500. PubMed DOI PMC

Jimenez Hamann M.C., Tator C.H., Shoichet M.S. Injectable intrathecal delivery system for localized administration of egf and fgf-2 to the injured rat spinal cord. Exp. Neurol. 2005;194:106–119. doi: 10.1016/j.expneurol.2005.01.030. PubMed DOI

Kojima A., Tator C.H. Epidermal growth factor and fibroblast growth factor 2 cause proliferation of ependymal precursor cells in the adult rat spinal cord in vivo. J. Neuropathol. Exp. Neurol. 2000;59:687–697. doi: 10.1093/jnen/59.8.687. PubMed DOI

Kojima A., Tator C.H. Intrathecal administration of epidermal growth factor and fibroblast growth factor 2 promotes ependymal proliferation and functional recovery after spinal cord injury in adult rats. J. Neurotrauma. 2002;19:223–238. doi: 10.1089/08977150252806974. PubMed DOI

Ohori Y., Yamamoto S., Nagao M., Sugimori M., Yamamoto N., Nakamura K., Nakafuku M. Growth factor treatment and genetic manipulation stimulate neurogenesis and oligodendrogenesis by endogenous neural progenitors in the injured adult spinal cord. J. Neurosci. 2006;26:11948–11960. doi: 10.1523/JNEUROSCI.3127-06.2006. PubMed DOI PMC

Oudega M., Hao P., Shang J., Haggerty A.E., Wang Z., Sun J., Liebl D.J., Shi Y., Cheng L., Duan H., et al. Validation study of neurotrophin-3-releasing chitosan facilitation of neural tissue generation in the severely injured adult rat spinal cord. Exp. Neurol. 2019;312:51–62. doi: 10.1016/j.expneurol.2018.11.003. PubMed DOI

Yang Z., Zhang A., Duan H., Zhang S., Hao P., Ye K., Sun Y.E., Li X. Nt3-chitosan elicits robust endogenous neurogenesis to enable functional recovery after spinal cord injury. Proc. Natl. Acad. Sci. USA. 2015;112:13354–13359. doi: 10.1073/pnas.1510194112. PubMed DOI PMC

Rao J.S., Zhao C., Zhang A., Duan H., Hao P., Wei R.H., Shang J., Zhao W., Liu Z., Yu J., et al. Nt3-chitosan enables de novo regeneration and functional recovery in monkeys after spinal cord injury. Proc. Natl. Acad. Sci. USA. 2018;115:E5595–E5604. doi: 10.1073/pnas.1804735115. PubMed DOI PMC

Xie Y., Song W., Zhao W., Gao Y., Shang J., Hao P., Yang Z., Duan H., Li X. Application of the sodium hyaluronate-cntf scaffolds in repairing adult rat spinal cord injury and facilitating neural network formation. Sci. China Life Sci. 2018;61:559–568. doi: 10.1007/s11427-017-9217-2. PubMed DOI

Li X., Zhang C., Haggerty A.E., Yan J., Lan M., Seu M., Yang M., Marlow M.M., Maldonado-Lasuncion I., Cho B., et al. The effect of a nanofiber-hydrogel composite on neural tissue repair and regeneration in the contused spinal cord. Biomaterials. 2020;245:119978. doi: 10.1016/j.biomaterials.2020.119978. PubMed DOI PMC

Liu H., Xu X., Tu Y., Chen K., Song L., Zhai J., Chen S., Rong L., Zhou L., Wu W., et al. Engineering microenvironment for endogenous neural regeneration after spinal cord injury by reassembling extracellular matrix. ACS Appl. Mater. Interfaces. 2020;12:17207–17219. doi: 10.1021/acsami.9b19638. PubMed DOI

Koprivica V., Cho K.S., Park J.B., Yiu G., Atwal J., Gore B., Kim J.A., Lin E., Tessier-Lavigne M., Chen D.F., et al. Egfr activation mediates inhibition of axon regeneration by myelin and chondroitin sulfate proteoglycans. Science. 2005;310:106–110. doi: 10.1126/science.1115462. PubMed DOI

Zhao Y., Xiao Z., Chen B., Dai J. The neuronal differentiation microenvironment is essential for spinal cord injury repair. Organogenesis. 2017;13:63–70. doi: 10.1080/15476278.2017.1329789. PubMed DOI PMC

Fan C., Li X., Xiao Z., Zhao Y., Liang H., Wang B., Han S., Li X., Xu B., Wang N., et al. A modified collagen scaffold facilitates endogenous neurogenesis for acute spinal cord injury repair. Acta Biomater. 2017;51:304–316. doi: 10.1016/j.actbio.2017.01.009. PubMed DOI

Fan C., Li X., Zhao Y., Xiao Z., Xue W., Sun J., Li X., Zhuang Y., Chen Y., Dai J. Cetuximab and taxol co-modified collagen scaffolds show combination effects for the repair of acute spinal cord injury. Biomater. Sci. 2018;6:1723–1734. doi: 10.1039/C8BM00363G. PubMed DOI

Li X., Xiao Z., Han J., Chen L., Xiao H., Ma F., Hou X., Li X., Sun J., Ding W., et al. Promotion of neuronal differentiation of neural progenitor cells by using egfr antibody functionalized collagen scaffolds for spinal cord injury repair. Biomaterials. 2013;34:5107–5116. doi: 10.1016/j.biomaterials.2013.03.062. PubMed DOI

Li X., Zhao Y., Cheng S., Han S., Shu M., Chen B., Chen X., Tang F., Wang N., Tu Y., et al. Cetuximab modified collagen scaffold directs neurogenesis of injury-activated endogenous neural stem cells for acute spinal cord injury repair. Biomaterials. 2017;137:73–86. doi: 10.1016/j.biomaterials.2017.05.027. PubMed DOI

Lu T.M., Houghton S., Magdeldin T., Durán J.G.B., Minotti A.P., Snead A., Sproul A., Nguyen D.T., Xiang J., Fine H.A., et al. Pluripotent stem cell-derived epithelium misidentified as brain microvascular endothelium requires ETS factors to acquire vascular fate. Proc Natl Acad Sci USA. 2021;118:e2016950118. doi: 10.1073/pnas.2016950118. PubMed DOI PMC

Ren Y., Ao Y., O’Shea T.M., Burda J.E., Bernstein A.M., Brumm A.J., Muthusamy N., Ghashghaei H.T., Carmichael S.T., Cheng L., et al. Ependymal cell contribution to scar formation after spinal cord injury is minimal, local and dependent on direct ependymal injury. Sci. Rep. 2017;7:41122. doi: 10.1038/srep41122. PubMed DOI PMC

Shah P.T., Stratton J.A., Stykel M.G., Abbasi S., Sharma S., Mayr K.A., Koblinger K., Whelan P.J., Biernaskie J. Single-cell transcriptomics and fate mapping of ependymal cells reveals an absence of neural stem cell function. Cell. 2018;173:1045–1057.e1049. doi: 10.1016/j.cell.2018.03.063. PubMed DOI

Cawsey T., Duflou J., Weickert C.S., Gorrie C.A. Nestin-positive ependymal cells are increased in the human spinal cord after traumatic central nervous system injury. J. Neurotrauma. 2015;32:1393–1402. doi: 10.1089/neu.2014.3575. PubMed DOI PMC

Rodriguez J.P., Coulter M., Miotke J., Meyer R.L., Takemaru K., Levine J.M. Abrogation of beta-catenin signaling in oligodendrocyte precursor cells reduces glial scarring and promotes axon regeneration after cns injury. J. Neurosci. 2014;34:10285–10297. doi: 10.1523/JNEUROSCI.4915-13.2014. PubMed DOI PMC

Lukovic D., Stojkovic M., Moreno-Manzano V., Jendelova P., Sykova E., Bhattacharya S.S., Erceg S. Concise review: Reactive astrocytes and stem cells in spinal cord injury: Good guys or bad guys? Stem Cells. 2015;33:1036–1041. doi: 10.1002/stem.1959. PubMed DOI

Ramadan W.S., Abdel-Hamid G.A., Al-Karim S., Zakar N., Elassouli M.Z. Neuroectodermal stem cells: A remyelinating potential in acute compressed spinal cord injury in rat model. J. Biosci. 2018;43:897–909. doi: 10.1007/s12038-018-9812-z. PubMed DOI

Ma Y., Deng M., Zhao X.Q., Liu M. Alternatively polarized macrophages regulate the growth and differentiation of ependymal stem cells through the sirt2 pathway. Exp. Neurobiol. 2020;29:150–163. doi: 10.5607/en19078. PubMed DOI PMC

Chen N., Zhou P., Liu X., Li J., Wan Y., Liu S., Wei F. Overexpression of rictor in the injured spinal cord promotes functional recovery in a rat model of spinal cord injury. FASEB J. 2020;34:6984–6998. doi: 10.1096/fj.201903171R. PubMed DOI

Rodriguez-Barrera R., Flores-Romero A., Garcia E., Fernandez-Presas A.M., Incontri-Abraham D., Navarro-Torres L., Garcia-Sanchez J., Juarez-Vignon Whaley J.J., Madrazo I., Ibarra A. Immunization with neural-derived peptides increases neurogenesis in rats with chronic spinal cord injury. CNS Neurosci. Ther. 2020;26:650–658. doi: 10.1111/cns.13368. PubMed DOI PMC

Ye J., Qin Y., Tang Y., Ma M., Wang P., Huang L., Yang R., Chen K., Chai C., Wu Y., et al. Methylprednisolone inhibits the proliferation of endogenous neural stem cells in nonhuman primates with spinal cord injury. J. Neurosurg. Spine. 2018;29:199–207. doi: 10.3171/2017.12.SPINE17669. PubMed DOI

Zheng Y., Mao Y.R., Yuan T.F., Xu D.S., Cheng L.M. Multimodal treatment for spinal cord injury: A sword of neuroregeneration upon neuromodulation. Neural Regen. Res. 2020;15:1437–1450. PubMed PMC

Blackmore J., Shrivastava S., Sallet J., Butler C.R., Cleveland R.O. Ultrasound neuromodulation: A review of results, mechanisms and safety. Ultrasound Med. Biol. 2019;45:1509–1536. doi: 10.1016/j.ultrasmedbio.2018.12.015. PubMed DOI PMC

Cui M., Ge H., Zhao H., Zou Y., Chen Y., Feng H. Electromagnetic fields for the regulation of neural stem cells. Stem Cells Int. 2017;2017:9898439. doi: 10.1155/2017/9898439. PubMed DOI PMC

Abbasnia K., Ghanbari A., Abedian M., Ghanbari A., Sharififar S., Azari H. The effects of repetitive transcranial magnetic stimulation on proliferation and differentiation of neural stem cells. Anat. Cell Biol. 2015;48:104–113. doi: 10.5115/acb.2015.48.2.104. PubMed DOI PMC

Cui Y., Liu X., Yang T., Mei Y.A., Hu C. Exposure to extremely low-frequency electromagnetic fields inhibits t-type calcium channels via aa/lte4 signaling pathway. Cell Calcium. 2014;55:48–58. doi: 10.1016/j.ceca.2013.11.002. PubMed DOI

He Y.L., Liu D.D., Fang Y.J., Zhan X.Q., Yao J.J., Mei Y.A. Exposure to extremely low-frequency electromagnetic fields modulates na+ currents in rat cerebellar granule cells through increase of aa/pge2 and ep receptor-mediated camp/pka pathway. PLoS ONE. 2013;8:e54376. doi: 10.1371/journal.pone.0054376. PubMed DOI PMC

Shin D.C., Ha K.Y., Kim Y.H., Kim J.W., Cho Y.K., Kim S.I. Induction of endogenous neural stem cells by extracorporeal shock waves after spinal cord injury. Spine. 2018;43:E200–E207. doi: 10.1097/BRS.0000000000002302. PubMed DOI

Chen X., Li H. Neuronal reprogramming in treating spinal cord injury. Neural Regen. Res. 2022;17:1440–1445. PubMed PMC

Tai W., Wu W., Wang L.L., Ni H., Chen C., Yang J., Zang T., Zou Y., Xu X.M., Zhang C.L. In vivo reprogramming of ng2 glia enables adult neurogenesis and functional recovery following spinal cord injury. Cell Stem Cell. 2021;28:923–937.e4. doi: 10.1016/j.stem.2021.02.009. PubMed DOI PMC

Puls B., Ding Y., Zhang F., Pan M., Lei Z., Pei Z., Jiang M., Bai Y., Forsyth C., Metzger M., et al. Regeneration of functional neurons after spinal cord injury via in situ neurod1-mediated astrocyte-to-neuron conversion. Front. Cell Dev. Biol. 2020;8:591883. doi: 10.3389/fcell.2020.591883. PubMed DOI PMC

Wang L.L., Su Z., Tai W., Zou Y., Xu X.M., Zhang C.L. The p53 pathway controls sox2-mediated reprogramming in the adult mouse spinal cord. Cell Rep. 2016;17:891–903. doi: 10.1016/j.celrep.2016.09.038. PubMed DOI PMC

Zhou M., Tao X., Sui M., Cui M., Liu D., Wang B., Wang T., Zheng Y., Luo J., Mu Y., et al. Reprogramming astrocytes to motor neurons by activation of endogenous ngn2 and isl1. Stem Cell Rep. 2021;16:1777–1791. doi: 10.1016/j.stemcr.2021.05.020. PubMed DOI PMC

Paniagua-Torija B., Norenberg M., Arevalo-Martin A., Carballosa-Gautam M.M., Campos-Martin Y., Molina-Holgado E., Garcia-Ovejero D. Cells in the adult human spinal cord ependymal region do not proliferate after injury. J. Pathol. 2018;246:415–421. doi: 10.1002/path.5151. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...