Activation of Neurogenesis in Multipotent Stem Cells Cultured In Vitro and in the Spinal Cord Tissue After Severe Injury by Inhibition of Glycogen Synthase Kinase-3
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
33000422
PubMed Central
PMC8116371
DOI
10.1007/s13311-020-00928-0
PII: S1878-7479(23)01213-8
Knihovny.cz E-zdroje
- Klíčová slova
- GSK3 inhibition, Spinal cord injury, axonal growth, neurogenesis, stem cells,
- MeSH
- kinasa 3 glykogensynthasy antagonisté a inhibitory MeSH
- lidé MeSH
- modely nemocí na zvířatech MeSH
- multipotentní kmenové buňky účinky léků MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- neurogeneze účinky léků MeSH
- poranění míchy farmakoterapie enzymologie MeSH
- transplantace kmenových buněk MeSH
- western blotting MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kinasa 3 glykogensynthasy MeSH
The inhibition of glycogen synthase kinase-3 (GSK-3) can induce neurogenesis, and the associated activation of Wnt/β-catenin signaling via GSK-3 inhibition may represent a means to promote motor function recovery following spinal cord injury (SCI) via increased astrocyte migration, reduced astrocyte apoptosis, and enhanced axonal growth. Herein, we assessed the effects of GSK-3 inhibition in vitro on the neurogenesis of ependymal stem/progenitor cells (epSPCs) resident in the mouse spinal cord and of human embryonic stem cell-derived neural progenitors (hESC-NPs) and human-induced pluripotent stem cell-derived neural progenitors (hiPSC-NPs) and in vivo on spinal cord tissue regeneration and motor activity after SCI. We report that the treatment of epSPCs and human pluripotent stem cell-derived neural progenitors (hPSC-NPs) with the GSK-3 inhibitor Ro3303544 activates β-catenin signaling and increases the expression of the bIII-tubulin neuronal marker; furthermore, the differentiation of Ro3303544-treated cells prompted an increase in the number of terminally differentiated neurons. Administration of a water-soluble, bioavailable form of this GSK-3 inhibitor (Ro3303544-Cl) in a severe SCI mouse model revealed the increased expression of bIII-tubulin in the injury epicenter. Treatment with Ro3303544-Cl increased survival of mature neuron types from the propriospinal tract (vGlut1, Parv) and raphe tract (5-HT), protein kinase C gamma-positive neurons, and GABAergic interneurons (GAD65/67) above the injury epicenter. Moreover, we observed higher numbers of newly born BrdU/DCX-positive neurons in Ro3303544-Cl-treated animal tissues, a reduced area delimited by astrocyte scar borders, and improved motor function. Based on this study, we believe that treating animals with epSPCs or hPSC-NPs in combination with Ro3303544-Cl deserves further investigation towards the development of a possible therapeutic strategy for SCI.
Department of Human Genetics Faculty of Medical Sciences University of Kragujevac Kragujevac Serbia
Department of Organic Chemistry University of Valencia 46100 Burjassot Spain
Department of Otolaryngology Head and Neck Surgery Harvard Medical School Boston MA USA
Eaton Peabody Laboratories Department of Otolaryngology Massachusetts Eye and Ear Boston MA USA
Organic Molecules Lab Research Center Principe Felipe C Eduardo Primo Yufera 3 46012 Valencia Spain
Zobrazit více v PubMed
Adachi K, Mirzadeh Z, Sakaguchi M, Yamashita T, Nikolcheva T, Gotoh Y, Peltz G, Gong L, Kawase T, Alvarez-Buylla A, et al. Beta-catenin signaling promotes proliferation of progenitor cells in the adult mouse subventricular zone. Stem Cells. 2007;25:2827–2836. doi: 10.1634/stemcells.2007-0177. PubMed DOI
Akinori M. Subspecies of protein kinase C in the rat spinal cord. Prog Neurobiol. 1998;54:499–530. doi: 10.1016/S0301-0082(97)00077-4. PubMed DOI
Alastrue-Agudo A, Rodriguez-Jimenez FJ, Mocholi EL, De Giorgio F, Erceg S, Moreno-Manzano V (2018) FM19G11 and Ependymal Progenitor/Stem Cell Combinatory Treatment Enhances Neuronal Preservation and Oligodendrogenesis after Severe Spinal Cord Injury. International Journal of Molecular Sciences 19: Doi 10.3390/ijms19010200 PubMed PMC
Anderson MA, Burda JE, Ren Y, Ao Y, O'Shea TM, Kawaguchi R, Coppola G, Khakh BS, Deming TJ, Sofroniew MV. Astrocyte scar formation aids central nervous system axon regeneration. Nature. 2016;532:195–200. doi: 10.1038/nature17623. PubMed DOI PMC
Armstrong L, Tilgner K, Saretzki G, Atkinson SP, Stojkovic M, Moreno R, Przyborski S, Lako M. Human induced pluripotent stem cell lines show stress defense mechanisms and mitochondrial regulation similar to those of human embryonic stem cells. Stem Cells. 2010;28:661–673. doi: 10.1002/stem.307. PubMed DOI
Barbeau H, Rossignol S. Recovery of locomotion after chronic spinalization in the adult cat. Brain Res. 1987;412:84–95. doi: 10.1016/0006-8993(87)91442-9. PubMed DOI
Barnabe-Heider F, Goritz C, Sabelstrom H, Takebayashi H, Pfrieger FW, Meletis K, Frisen J. Origin of new glial cells in intact and injured adult spinal cord. Cell Stem Cell. 2010;7:470–482. doi: 10.1016/j.stem.2010.07.014. PubMed DOI
Barriere G, Leblond H, Provencher J, Rossignol S. Prominent role of the spinal central pattern generator in the recovery of locomotion after partial spinal cord injuries. J Neurosci. 2008;28:3976–3987. doi: 10.1523/JNEUROSCI.5692-07.2008. PubMed DOI PMC
Barritt AW, Davies M, Marchand F, Hartley R, Grist J, Yip P, McMahon SB, Bradbury EJ. Chondroitinase ABC promotes sprouting of intact and injured spinal systems after spinal cord injury. J Neurosci. 2006;26:10856–10867. doi: 10.1523/JNEUROSCI.2980-06.2006. PubMed DOI PMC
Basso DM, Beattie MS, Bresnahan JC. A sensitive and reliable locomotor rating scale for open field testing in rats. J Neurotrauma. 1995;12:1–21. doi: 10.1089/neu.1995.12.1. PubMed DOI
Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS, Patel PN, Fawcett JW, McMahon SB. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature. 2002;416:636–640. doi: 10.1038/416636a. PubMed DOI
Braz JM, Sharif-Naeini R, Vogt D, Kriegstein A, Alvarez-Buylla A, Rubenstein JL, Basbaum AI. Forebrain GABAergic neuron precursors integrate into adult spinal cord and reduce injury-induced neuropathic pain. Neuron. 2012;74:663–675. doi: 10.1016/j.neuron.2012.02.033. PubMed DOI PMC
Brown AR, Martinez M. From cortex to cord: motor circuit plasticity after spinal cord injury. Neural Regen Res. 2019;14:2054–2062. doi: 10.4103/1673-5374.262572. PubMed DOI PMC
Clowry GJ, Fallah Z, Arnott G. Developmental expression of parvalbumin by rat lower cervical spinal cord neurones and the effect of early lesions to the motor cortex. Brain Research Developmental Brain Research. 1997;102:197–208. doi: 10.1016/S0165-3806(97)00098-9. PubMed DOI
Cuzzocrea S, Genovese T, Mazzon E, Crisafulli C, Di Paola R, Muia C, Collin M, Esposito E, Bramanti P, Thiemermann C. Glycogen synthase kinase-3 beta inhibition reduces secondary damage in experimental spinal cord trauma. The Journal of Pharmacology and Experimental Therapeutics. 2006;318:79–89. doi: 10.1124/jpet.106.102863. PubMed DOI
Dahlstroem A, Fuxe K. Evidence for the Existence of Monoamine-Containing Neurons in the Central Nervous System. I. Demonstration of Monoamines in the Cell Bodies of Brain Stem Neurons. Acta Physiologica Scandinavica Supplementum: SUPPL. 1964;232:231–255. PubMed
Dennis CV, Suh LS, Rodriguez ML, Kril JJ, Sutherland GT. Human adult neurogenesis across the ages: An immunohistochemical study. Neuropathology and Applied Neurobiology. 2016;42:621–638. doi: 10.1111/nan.12337. PubMed DOI PMC
Dill J, Wang H, Zhou F, Li S. Inactivation of glycogen synthase kinase 3 promotes axonal growth and recovery in the CNS. J Neurosci. 2008;28:8914–8928. doi: 10.1523/JNEUROSCI.1178-08.2008. PubMed DOI PMC
Du Beau A, Shakya Shrestha S, Bannatyne BA, Jalicy SM, Linnen S, Maxwell DJ. Neurotransmitter phenotypes of descending systems in the rat lumbar spinal cord. Neuroscience. 2012;227:67–79. doi: 10.1016/j.neuroscience.2012.09.037. PubMed DOI
Du K, Zheng S, Zhang Q, Li S, Gao X, Wang J, Jiang L, Liu K. Pten Deletion Promotes Regrowth of Corticospinal Tract Axons 1 Year after Spinal Cord Injury. J Neurosci. 2015;35:9754–9763. doi: 10.1523/JNEUROSCI.3637-14.2015. PubMed DOI PMC
Erceg S, Ronaghi M, Oria M, Rosello MG, Arago MA, Lopez MG, Radojevic I, Moreno-Manzano V, Rodriguez-Jimenez FJ, Bhattacharya SS, et al. Transplanted oligodendrocytes and motoneuron progenitors generated from human embryonic stem cells promote locomotor recovery after spinal cord transection. Stem Cells. 2010;28:1541–1549. doi: 10.1002/stem.489. PubMed DOI PMC
Eriksson T, Bjorkman S, Roth B, Fyge A, Hoglund P. Enantiomers of thalidomide: blood distribution and the influence of serum albumin on chiral inversion and hydrolysis. Chirality. 1998;10:223–228. doi: 10.1002/(SICI)1520-636X(1998)10:3<223::AID-CHIR4>3.0.CO;2-A. PubMed DOI
Faigle R, Song H. Signaling mechanisms regulating adult neural stem cells and neurogenesis. Biochim Biophys Acta. 2013;1830:2435–2448. doi: 10.1016/j.bbagen.2012.09.002. PubMed DOI PMC
Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J Neurosci. 2004;24:2143–2155. doi: 10.1523/JNEUROSCI.3547-03.2004. PubMed DOI PMC
Flynn JR, Conn VL, Boyle KA, Hughes DI, Watanabe M, Velasquez T, Goulding MD, Callister RJ, Graham BA. Anatomical and Molecular Properties of Long Descending Propriospinal Neurons in Mice. Frontiers in Neuroanatomy. 2017;11:5. doi: 10.3389/fnana.2017.00005. PubMed DOI PMC
Ganzer PD, Beringer CR, Shumsky JS, Nwaobasi C, Moxon KA. Serotonin receptor and dendritic plasticity in the spinal cord mediated by chronic serotonergic pharmacotherapy combined with exercise following complete SCI in the adult rat. Exp Neurol. 2018;304:132–142. doi: 10.1016/j.expneurol.2018.03.006. PubMed DOI PMC
Ghosh M, Pearse DD. The role of the serotonergic system in locomotor recovery after spinal cord injury. Front Neural Circuits. 2014;8:151. doi: 10.3389/fncir.2014.00151. PubMed DOI PMC
Gong L, Hirschfeld D, Tan YC, Heather Hogg J, Peltz G, Avnur Z, Dunten P. Discovery of potent and bioavailable GSK-3beta inhibitors. Bioorganic & Medicinal Chemistry Letters. 2010;20:1693–1696. doi: 10.1016/j.bmcl.2010.01.038. PubMed DOI
Hashimoto T, Fukuda N. Contribution of serotonin neurons to the functional recovery after spinal cord injury in rats. Brain Res. 1991;539:263–270. doi: 10.1016/0006-8993(91)91630-J. PubMed DOI
Kakinohana O, Hefferan MP, Miyanohara A, Nejime T, Marsala S, Juhas S, Juhasova J, Motlik J, Kucharova K, Strnadel J, et al. Combinational spinal GAD65 gene delivery and systemic GABA-mimetic treatment for modulation of spasticity. PLoS ONE. 2012;7:e30561. doi: 10.1371/journal.pone.0030561. PubMed DOI PMC
Kakuta Y, Adachi A, Yokohama M, Horii T, Mieda T, Iizuka Y, Takagishi K, Chikuda H, Iizuka H, Nakamura K. Spontaneous functional full recovery from motor and sensory deficits in adult mice after mild spinal cord injury. Heliyon. 2019;5:e01847. doi: 10.1016/j.heliyon.2019.e01847. PubMed DOI PMC
Kami K, Taguchi Ms S, Tajima F, Senba E (2016) Improvements in impaired GABA and GAD65/67 production in the spinal dorsal horn contribute to exercise-induced hypoalgesia in a mouse model of neuropathic pain. Molecular Pain 12: Doi 10.1177/1744806916629059 PubMed PMC
Kempermann G, Gage FH, Aigner L, Song H, Curtis MA, Thuret S, Kuhn HG, Jessberger S, Frankland PW, Cameron HA, et al. Human Adult Neurogenesis: Evidence and Remaining Questions. Cell Stem Cell. 2018;23:25–30. doi: 10.1016/j.stem.2018.04.004. PubMed DOI PMC
Kim WY, Wang X, Wu Y, Doble BW, Patel S, Woodgett JR, Snider WD. GSK-3 is a master regulator of neural progenitor homeostasis. Nat Neurosci. 2009;12:1390–1397. doi: 10.1038/nn.2408. PubMed DOI PMC
Knoth R, Singec I, Ditter M, Pantazis G, Capetian P, Meyer RP, Horvat V, Volk B, Kempermann G. Murine features of neurogenesis in the human hippocampus across the lifespan from 0 to 100 years. PLoS One. 2010;5:e8809. doi: 10.1371/journal.pone.0008809. PubMed DOI PMC
Lange C, Mix E, Frahm J, Glass A, Muller J, Schmitt O, Schmole AC, Klemm K, Ortinau S, Hubner R, et al. Small molecule GSK-3 inhibitors increase neurogenesis of human neural progenitor cells. Neurosci Lett. 2011;488:36–40. doi: 10.1016/j.neulet.2010.10.076. PubMed DOI
Lee-Liu D, Edwards-Faret G, Tapia VS, Larrain J. Spinal cord regeneration: lessons for mammals from non-mammalian vertebrates. Genesis. 2013;51:529–544. doi: 10.1002/dvg.22406. PubMed DOI
Li GL, Farooque M, Isaksson J, Olsson Y. Changes in synapses and axons demonstrated by synaptophysin immunohistochemistry following spinal cord compression trauma in the rat and mouse. Biomedical and Environmental Sciences: BES. 2004;17:281–290. PubMed
Li X, Floriddia EM, Toskas K, Fernandes KJL, Guerout N, Barnabe-Heider F. Regenerative Potential of Ependymal Cells for Spinal Cord Injuries Over Time. EBioMedicine. 2016;13:55–65. doi: 10.1016/j.ebiom.2016.10.035. PubMed DOI PMC
Lie DC, Colamarino SA, Song HJ, Desire L, Mira H, Consiglio A, Lein ES, Jessberger S, Lansford H, Dearie AR, et al. Wnt signalling regulates adult hippocampal neurogenesis. Nature. 2005;437:1370–1375. doi: 10.1038/nature04108. PubMed DOI
Lukovic D, Diez Lloret A, Stojkovic P, Rodriguez-Martinez D, Perez Arago MA, Rodriguez-Jimenez FJ, Gonzalez-Rodriguez P, Lopez-Barneo J, Sykova E, Jendelova P, et al. Highly Efficient Neural Conversion of Human Pluripotent Stem Cells in Adherent and Animal-Free Conditions. Stem Cells Translational Medicine. 2017;6:1217–1226. doi: 10.1002/sctm.16-0371. PubMed DOI PMC
Lukovic D, Moreno Manzano V, Stojkovic M, Bhattacharya SS, Erceg S. Concise review: human pluripotent stem cells in the treatment of spinal cord injury. Stem Cells. 2012;30:1787–1792. doi: 10.1002/stem.1159. PubMed DOI
Medici T, Shortland PJ. Effects of peripheral nerve injury on parvalbumin expression in adult rat dorsal root ganglion neurons. BMC Neuroscience. 2015;16:93. doi: 10.1186/s12868-015-0232-9. PubMed DOI PMC
Meletis K, Barnabe-Heider F, Carlen M, Evergren E, Tomilin N, Shupliakov O, Frisen J. Spinal cord injury reveals multilineage differentiation of ependymal cells. PLoS Biol. 2008;6:e182. doi: 10.1371/journal.pbio.0060182. PubMed DOI PMC
Morales-Garcia JA, Luna-Medina R, Alonso-Gil S, Sanz-Sancristobal M, Palomo V, Gil C, Santos A, Martinez A, Perez-Castillo A. Glycogen synthase kinase 3 inhibition promotes adult hippocampal neurogenesis in vitro and in vivo. ACS Chem Neurosci. 2012;3:963–971. doi: 10.1021/cn300110c. PubMed DOI PMC
Moreau E, Fortin S, Lacroix J, Patenaude A, Rousseau JL, R CG N-Phenyl-N'-(2-chloroethyl)ureas (CEUs) as potential antineoplastic agents. Part 3: role of carbonyl groups in the covalent binding to the colchicine-binding site. Bioorg Med Chem. 2008;16:1206–1217. doi: 10.1016/j.bmc.2007.10.078. PubMed DOI
Moreno-Manzano V, Rodriguez-Jimenez FJ, Garcia-Rosello M, Lainez S, Erceg S, Calvo MT, Ronaghi M, Lloret M, Planells-Cases R, Sanchez-Puelles JM, et al. Activated spinal cord ependymal stem cells rescue neurological function. Stem Cells. 2009;27:733–743. doi: 10.1002/stem.24. PubMed DOI
Mothe AJ, Tator CH. Proliferation, migration, and differentiation of endogenous ependymal region stem/progenitor cells following minimal spinal cord injury in the adult rat. Neuroscience. 2005;131:177–187. doi: 10.1016/j.neuroscience.2004.10.011. PubMed DOI
Nardone R, Holler Y, Thomschewski A, Holler P, Lochner P, Golaszewski S, Brigo F, Trinka E. Serotonergic transmission after spinal cord injury. J Neural Transm (Vienna) 2015;122:279–295. doi: 10.1007/s00702-014-1241-z. PubMed DOI
Neumann S, Braz JM, Skinner K, Llewellyn-Smith IJ, Basbaum AI. Innocuous, not noxious, input activates PKCgamma interneurons of the spinal dorsal horn via myelinated afferent fibers. J Neurosci. 2008;28:7936–7944. doi: 10.1523/JNEUROSCI.1259-08.2008. PubMed DOI PMC
Ni Y, Nawabi H, Liu X, Yang L, Miyamichi K, Tedeschi A, Xu B, Wall NR, Callaway EM, He Z. Characterization of long descending premotor propriospinal neurons in the spinal cord. J Neurosci. 2014;34:9404–9417. doi: 10.1523/JNEUROSCI.1771-14.2014. PubMed DOI PMC
Onifer SM, Smith GM, Fouad K. Plasticity after spinal cord injury: relevance to recovery and approaches to facilitate it. Neurotherapeutics. 2011;8:283–293. doi: 10.1007/s13311-011-0034-4. PubMed DOI PMC
Park JH, Kim DY, Sung IY, Choi GH, Jeon MH, Kim KK, Jeon SR. Long-term results of spinal cord injury therapy using mesenchymal stem cells derived from bone marrow in humans. Neurosurgery. 2012;70:1238–1247. doi: 10.1227/NEU.0b013e31824387f9. PubMed DOI
Peltz LGAGGA . 3-Indolyl-4-phenyl-1H-pyrrole-2,5- dione derivatives as inhibitors of glycogen synthase-3β. City: Patent; 2002.
Petitjean H, Pawlowski SA, Fraine SL, Sharif B, Hamad D, Fatima T, Berg J, Brown CM, Jan LY, Ribeiro-da-Silva A, et al. Dorsal Horn Parvalbumin Neurons Are Gate-Keepers of Touch-Evoked Pain after Nerve Injury. Cell Reports. 2015;13:1246–1257. doi: 10.1016/j.celrep.2015.09.080. PubMed DOI PMC
Qi W, Ding D, Salvi RJ. Cytotoxic effects of dimethyl sulphoxide (DMSO) on cochlear organotypic cultures. Hearing Research. 2008;236:52–60. doi: 10.1016/j.heares.2007.12.002. PubMed DOI PMC
Reimer MM, Sorensen I, Kuscha V, Frank RE, Liu C, Becker CG, Becker T. Motor neuron regeneration in adult zebrafish. J Neurosci. 2008;28:8510–8516. doi: 10.1523/JNEUROSCI.1189-08.2008. PubMed DOI PMC
Renault-Mihara F, Katoh H, Ikegami T, Iwanami A, Mukaino M, Yasuda A, Nori S, Mabuchi Y, Tada H, Shibata S, et al. Beneficial compaction of spinal cord lesion by migrating astrocytes through glycogen synthase kinase-3 inhibition. EMBO molecular medicine. 2011;3:682–696. doi: 10.1002/emmm.201100179. PubMed DOI PMC
Renault-Mihara F, Okada S, Shibata S, Nakamura M, Toyama Y, Okano H. Spinal cord injury: emerging beneficial role of reactive astrocytes' migration. The International Journal of Biochemistry & Cell Biology. 2008;40:1649–1653. doi: 10.1016/j.biocel.2008.03.009. PubMed DOI
Reynolds BA, Rietze RL. Neural stem cells and neurospheres--re-evaluating the relationship. Nature Methods. 2005;2:333–336. doi: 10.1038/nmeth758. PubMed DOI
Rodriguez-Jimenez FJ, Alastrue-Agudo A, Stojkovic M, Erceg S, Moreno-Manzano V. Connexin 50 Expression in Ependymal Stem Progenitor Cells after Spinal Cord Injury Activation. International Journal of Molecular Sciences. 2015;16:26608–26618. doi: 10.3390/ijms161125981. PubMed DOI PMC
Rodriguez-Jimnez FJ, Alastrue-Agudo A, Erceg S, Stojkovic M, Moreno-Manzano V. FM19G11 favors spinal cord injury regeneration and stem cell self-renewal by mitochondrial uncoupling and glucose metabolism induction. Stem Cells. 2012;30:2221–2233. doi: 10.1002/stem.1189. PubMed DOI
Rolls A, Shechter R, Schwartz M. The bright side of the glial scar in CNS repair. Nat Rev Neurosci. 2009;10:235–241. doi: 10.1038/nrn2591. PubMed DOI
Ronaghi M, Erceg S, Moreno-Manzano V, Stojkovic M. Challenges of stem cell therapy for spinal cord injury: human embryonic stem cells, endogenous neural stem cells, or induced pluripotent stem cells? Stem Cells. 2010;28:93–99. doi: 10.1002/stem.253. PubMed DOI
Rossignol S. Plasticity of connections underlying locomotor recovery after central and/or peripheral lesions in the adult mammals. Philosophical Transactions of the Royal Society of London. 2006;361:1647–1671. doi: 10.1098/rstb.2006.1889. PubMed DOI PMC
Rossignol S, Frigon A. Recovery of locomotion after spinal cord injury: some facts and mechanisms. Annu Rev Neurosci. 2011;34:413–440. doi: 10.1146/annurev-neuro-061010-113746. PubMed DOI
Russ JB, Verina T, Comer JD, Comi AM, Kaltschmidt JA. Corticospinal tract insult alters GABAergic circuitry in the mammalian spinal cord. Frontiers in Neural Circuits. 2013;7:150. doi: 10.3389/fncir.2013.00150. PubMed DOI PMC
Sabelstrom H, Stenudd M, Reu P, Dias DO, Elfineh M, Zdunek S, Damberg P, Goritz C, Frisen J. Resident neural stem cells restrict tissue damage and neuronal loss after spinal cord injury in mice. Science. 2013;342:637–640. doi: 10.1126/science.1242576. PubMed DOI
Sasaki M, Radtke C, Tan AM, Zhao P, Hamada H, Houkin K, Honmou O, Kocsis JD. BDNF-hypersecreting human mesenchymal stem cells promote functional recovery, axonal sprouting, and protection of corticospinal neurons after spinal cord injury. J Neurosci. 2009;29:14932–14941. doi: 10.1523/JNEUROSCI.2769-09.2009. PubMed DOI PMC
Sembongi K, Tanaka M, Sakurada K, Kobayashi M, Itagaki S, Hirano T, Iseki K. A new method for determination of both thalidomide enantiomers using HPLC systems. Biol Pharm Bull. 2008;31:497–500. doi: 10.1248/bpb.31.497. PubMed DOI
Shortland PJ, Mahns DA. Differing roles for parvalbumin neurons after nerve injury. Neural Gegeneration Research. 2016;11:1241–1242. doi: 10.4103/1673-5374.189179. PubMed DOI PMC
Sofroniew MV. Molecular dissection of reactive astrogliosis and glial scar formation. Trends Neurosci. 2009;32:638–647. doi: 10.1016/j.tins.2009.08.002. PubMed DOI PMC
Sofroniew MV. Reactive astrocytes in neural repair and protection. Neuroscientist. 2005;11:400–407. doi: 10.1177/1073858405278321. PubMed DOI
Taccola G, Sayenko D, Gad P, Gerasimenko Y, Edgerton VR. And yet it moves: Recovery of volitional control after spinal cord injury. Prog Neurobiol. 2018;160:64–81. doi: 10.1016/j.pneurobio.2017.10.004. PubMed DOI PMC
Todd AJ, Hughes DI, Polgar E, Nagy GG, Mackie M, Ottersen OP, Maxwell DJ. The expression of vesicular glutamate transporters VGLUT1 and VGLUT2 in neurochemically defined axonal populations in the rat spinal cord with emphasis on the dorsal horn. Eur J Neurosci. 2003;17:13–27. doi: 10.1046/j.1460-9568.2003.02406.x. PubMed DOI
Valero-Cabre A, Fores J, Navarro X. Reorganization of reflex responses mediated by different afferent sensory fibers after spinal cord transection. J Neurophysiol. 2004;91:2838–2848. doi: 10.1152/jn.01177.2003. PubMed DOI
van Strien ME, van den Berge SA, Hol EM. Migrating neuroblasts in the adult human brain: a stream reduced to a trickle. Cell Research. 2011;21:1523–1525. doi: 10.1038/cr.2011.101. PubMed DOI PMC
Wang M, Gao M, Miller KD, Sledge GW, Hutchins GD, Zheng QH. The first synthesis of [(11)C]SB-216763, a new potential PET agent for imaging of glycogen synthase kinase-3 (GSK-3) Bioorganic & Medicinal Chemistry Letters. 2011;21:245–249. doi: 10.1016/j.bmcl.2010.11.026. PubMed DOI
Ye Q, Mao W, Zhou Y, Xu L, Li Q, Gao Y, Wang J, Li C, Xu Y, Liao H, et al. Synthesis and biological evaluation of 3-([1,2,4]triazolo[4,3-a]pyridin-3-yl)-4-(indol-3-yl)-maleimides as potent, selective GSK-3beta inhibitors and neuroprotective agents. Bioorg Med Chem. 2015;23:1179–1188. doi: 10.1016/j.bmc.2014.12.026. PubMed DOI
Zhang JH, Morita Y, Hironaka T, Emson PC, Tohyama M. Ontological study of calbindin-D28k-like and parvalbumin-like immunoreactivities in rat spinal cord and dorsal root ganglia. J Comp Neurol. 1990;302:715–728. doi: 10.1002/cne.903020404. PubMed DOI
The activation of dormant ependymal cells following spinal cord injury
Neurogenesis as a Tool for Spinal Cord Injury