Neurons rely on the microtubule cytoskeleton to create and maintain their sophisticated cellular architectures. Advances in cryogenic electron microscopy, expansion microscopy, live imaging, and gene editing have enabled novel insights into mechanisms of centrosomal and acentrosomal microtubule nucleation, the key process generating new microtubules. This has paved the way for the functional dissection of distinct microtubule networks that regulate various processes during neuronal development, including neuronal delamination, polarization, migration, maturation, and synapse function. We review recent progress in understanding the molecular concepts of microtubule nucleation, how these concepts underlie neurodevelopmental processes, and pinpoint the open questions. Since microtubules play a pivotal role in axon regeneration within the adult central nervous system, understanding the processes of microtubule nucleation could inform strategies to enhance the regenerative capabilities of neurons in the future.
- MeSH
- centrozom * metabolismus fyziologie MeSH
- lidé MeSH
- mikrotubuly * metabolismus fyziologie MeSH
- neurogeneze * fyziologie MeSH
- neurony * fyziologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Hypothalamic Adult Neurogenesis (hAN) has been implicated in regulating energy homeostasis. Adult-generated neurons and adult Neural Stem Cells (aNSCs) in the hypothalamus control food intake and body weight. Conversely, diet-induced obesity (DIO) by high fat diets (HFD) exerts adverse influence on hAN. However, the effects of anti-obesity compounds on hAN are not known. To address this, we administered a lipidized analogue of an anti-obesity neuropeptide, Prolactin Releasing Peptide (PrRP), so-called LiPR, to mice. In the HFD context, LiPR rescued the survival of adult-born hypothalamic neurons and increased the number of aNSCs by reducing their activation. LiPR also rescued the reduction of immature hippocampal neurons and modulated calcium dynamics in iPSC-derived human neurons. In addition, some of these neurogenic effects were exerted by another anti-obesity compound, Liraglutide. These results show for the first time that anti-obesity neuropeptides influence adult neurogenesis and suggest that the neurogenic process can serve as a target of anti-obesity pharmacotherapy.
Mammalian neurons lose the ability to regenerate their central nervous system axons as they mature during embryonic or early postnatal development. Neuronal maturation requires a transformation from a situation in which neuronal components grow and assemble to one in which these components are fixed and involved in the machinery for effective information transmission and computation. To regenerate after injury, neurons need to overcome this fixed state to reactivate their growth programme. A variety of intracellular processes involved in initiating or sustaining neuronal maturation, including the regulation of gene expression, cytoskeletal restructuring and shifts in intracellular trafficking, have been shown to prevent axon regeneration. Understanding these processes will contribute to the identification of targets to promote repair after injury or disease.
- MeSH
- axony * fyziologie MeSH
- lidé MeSH
- neurogeneze * fyziologie MeSH
- neurony fyziologie MeSH
- regenerace nervu * fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
CDK13-related disorder, also known as congenital heart defects, dysmorphic facial features and intellectual developmental disorder (CHDFIDD) is associated with mutations in the CDK13 gene encoding transcription-regulating cyclin-dependent kinase 13 (CDK13). Here, we focused on the development of craniofacial structures and analyzed early embryonic stages in CHDFIDD mouse models, with one model comprising a hypomorphic mutation in Cdk13 and exhibiting cleft lip/palate, and another model comprising knockout of Cdk13, featuring a stronger phenotype including midfacial cleft. Cdk13 was found to be physiologically expressed at high levels in the mouse embryonic craniofacial structures, namely in the forebrain, nasal epithelium and maxillary mesenchyme. We also uncovered that Cdk13 deficiency leads to development of hypoplastic branches of the trigeminal nerve including the maxillary branch. Additionally, we detected significant changes in the expression levels of genes involved in neurogenesis (Ache, Dcx, Mef2c, Neurog1, Ntn1, Pou4f1) within the developing palatal shelves. These results, together with changes in the expression pattern of other key face-specific genes (Fgf8, Foxd1, Msx1, Meis2 and Shh) at early stages in Cdk13 mutant embryos, demonstrate a key role of CDK13 in the regulation of craniofacial morphogenesis.
- MeSH
- cyklin-dependentní kinasy metabolismus genetika MeSH
- embryo savčí metabolismus MeSH
- embryonální vývoj * genetika MeSH
- fenotyp MeSH
- lebka embryologie patologie MeSH
- mentální retardace genetika MeSH
- modely nemocí na zvířatech * MeSH
- mutace genetika MeSH
- myši MeSH
- nervus trigeminus embryologie MeSH
- neurogeneze * genetika MeSH
- obličej embryologie abnormality MeSH
- protein doublecortin MeSH
- rozštěp patra genetika patologie embryologie MeSH
- rozštěp rtu genetika patologie embryologie MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Effective treatment of patients with autism spectrum disorder (ASD) is still absent so far. Taurine exhibits therapeutic effects towards the autism-like behaviour in ASD model animals. Here, we determined the mechanism of taurine effect on hippocampal neurogenesis in genetically inbred BTBR T+ tf/J (BTBR) mice, a proposed model of ASD. In this ASD mouse model, we explored the effect of oral taurine supplementation on ASD-like behaviours in an open field test, elevated plus maze, marble burying test, self-grooming test, and three-chamber test. The mice were divided into four groups of normal controls (WT) and models (BTBR), who did or did not receive 6-week taurine supplementation in water (WT, WT+ Taurine, BTBR, and BTBR+Taurine). Neurogenesis-related effects were determined by Ki67 immunofluorescence staining. Western blot analysis was performed to detect the expression of phosphatase and tensin homologue deleted from chromosome 10 (PTEN)/mTOR/AKT pathway-associated proteins. Our results showed that taurine improved the autism-like behaviour, increased the proliferation of hippocampal cells, promoted PTEN expression, and reduced phosphorylation of mTOR and AKT in hippocampal tissue of the BTBR mice. In conclusion, taurine reduced the autism-like behaviour in partially inherited autism model mice, which may be associa-ted with improving the defective neural precursor cell proliferation and enhancing the PTEN-associated pathway in hippocampal tissue.
- MeSH
- autistická porucha * metabolismus farmakoterapie MeSH
- chování zvířat účinky léků MeSH
- fosfohydroláza PTEN * metabolismus MeSH
- hipokampus * metabolismus účinky léků MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- neurogeneze * účinky léků MeSH
- poruchy autistického spektra metabolismus farmakoterapie MeSH
- proliferace buněk účinky léků MeSH
- protoonkogenní proteiny c-akt * metabolismus MeSH
- signální transdukce * účinky léků MeSH
- taurin * farmakologie MeSH
- TOR serin-threoninkinasy * metabolismus MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Neurogenesis in the adult brain takes place in two neurogenic niches: the ventricular-subventricular zone (V-SVZ) and the subgranular zone. After differentiation, neural precursor cells (neuroblasts) have to move to an adequate position, a process known as neuronal migration. Some studies show that in Alzheimer's disease, the adult neurogenesis is impaired. Our main aim was to investigate some proteins involved both in the physiopathology of Alzheimer's disease and in the neuronal migration process using the APP/PS1 Alzheimer's mouse model. Progenitor migrating cells are accumulated in the V-SVZ of the APP/PS1 mice. Furthermore, we find an increase of Cdh1 levels and a decrease of Cdk5/p35 and cyclin B1, indicating that these cells have an alteration of the cell cycle, which triggers a senescence state. We find less cells in the rostral migratory stream and less mature neurons in the olfactory bulbs from APP/PS1 mice, leading to an impaired odour discriminatory ability compared with WT mice. Alzheimer's disease mice present a deficit in cell migration from V-SVZ due to a senescent phenotype. Therefore, these results can contribute to a new approach of Alzheimer's based on senolytic compounds or pro-neurogenic factors.
Autoantibodies to neuronal antigens are viewed as potential biomarkers for neurodegenerative diseases. Increasing evidence, however, suggests a dissociation of the neurodegenerative process in the central nervous system and dynamics of neuronal proteins in peripheral circulation with the prevalence of a wide variety of immunoglobulins reactive to neuronal antigens reported also in the blood of healthy subjects, including children. Recently discovered physiological turnover of neurons in enteric nervous system with release of neuronal proteins in peripheral circulation may account for this conundrum and provide a new perspective on molecular biomarkers of neurodegenerative diseases and immunotherapy.
Schwann cell precursors (SCPs) are nerve-associated progenitors that can generate myelinating and non-myelinating Schwann cells but also are multipotent like the neural crest cells from which they originate. SCPs are omnipresent along outgrowing peripheral nerves throughout the body of vertebrate embryos. By using single-cell transcriptomics to generate a gene expression atlas of the entire neural crest lineage, we show that early SCPs and late migratory crest cells have similar transcriptional profiles characterised by a multipotent "hub" state containing cells biased towards traditional neural crest fates. SCPs keep diverging from the neural crest after being primed towards terminal Schwann cells and other fates, with different subtypes residing in distinct anatomical locations. Functional experiments using CRISPR-Cas9 loss-of-function further show that knockout of the common "hub" gene Sox8 causes defects in neural crest-derived cells along peripheral nerves by facilitating differentiation of SCPs towards sympathoadrenal fates. Finally, specific tumour populations found in melanoma, neurofibroma and neuroblastoma map to different stages of SCP/Schwann cell development. Overall, SCPs resemble migrating neural crest cells that maintain multipotency and become transcriptionally primed towards distinct lineages.
Neurogenesis in the adult hippocampus contributes to learning and memory in the healthy brain but is dysregulated in metabolic and neurodegenerative diseases. The molecular relationships between neural stem cell activity, adult neurogenesis, and global metabolism are largely unknown. Here we applied unbiased systems genetics methods to quantify genetic covariation among adult neurogenesis and metabolic phenotypes in peripheral tissues of a genetically diverse family of rat strains, derived from a cross between the spontaneously hypertensive (SHR/OlaIpcv) strain and Brown Norway (BN-Lx/Cub). The HXB/BXH family is a very well established model to dissect genetic variants that modulate metabolic and cardiovascular diseases and we have accumulated deep phenome and transcriptome data in a FAIR-compliant resource for systematic and integrative analyses. Here we measured rates of precursor cell proliferation, survival of new neurons, and gene expression in the hippocampus of the entire HXB/BXH family, including both parents. These data were combined with published metabolic phenotypes to detect a neurometabolic quantitative trait locus (QTL) for serum glucose and neuronal survival on Chromosome 16: 62.1-66.3 Mb. We subsequently fine-mapped the key phenotype to a locus that includes the Telo2-interacting protein 2 gene (Tti2)-a chaperone that modulates the activity and stability of PIKK kinases. To verify the hypothesis that differences in neurogenesis and glucose levels are caused by a polymorphism in Tti2, we generated a targeted frameshift mutation on the SHR/OlaIpcv background. Heterozygous SHR-Tti2+/- mutants had lower rates of hippocampal neurogenesis and hallmarks of dysglycemia compared to wild-type littermates. Our findings highlight Tti2 as a causal genetic link between glucose metabolism and structural brain plasticity. In humans, more than 800 genomic variants are linked to TTI2 expression, seven of which have associations to protein and blood stem cell factor concentrations, blood pressure and frontotemporal dementia.
- MeSH
- fenotyp MeSH
- glukosa * genetika metabolismus MeSH
- hipokampus metabolismus MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- neurogeneze * genetika MeSH
- potkani inbrední BN MeSH
- potkani inbrední SHR MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH